| /* |
| Copyright (c) 2003-2011, Troy D. Hanson http://uthash.sourceforge.net |
| All rights reserved. |
| |
| Redistribution and use in source and binary forms, with or without |
| modification, are permitted provided that the following conditions are met: |
| |
| * Redistributions of source code must retain the above copyright |
| notice, this list of conditions and the following disclaimer. |
| |
| THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS |
| IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED |
| TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A |
| PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT OWNER |
| OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, |
| EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, |
| PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR |
| PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF |
| LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING |
| NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF THIS |
| SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE. |
| */ |
| |
| #ifndef UTHASH_H |
| #define UTHASH_H |
| |
| #include <string.h> /* memcmp,strlen */ |
| #include <stddef.h> /* ptrdiff_t */ |
| #include <stdlib.h> /* exit() */ |
| |
| /* These macros use decltype or the earlier __typeof GNU extension. |
| As decltype is only available in newer compilers (VS2010 or gcc 4.3+ |
| when compiling c++ source) this code uses whatever method is needed |
| or, for VS2008 where neither is available, uses casting workarounds. */ |
| #ifdef _MSC_VER /* MS compiler */ |
| #if _MSC_VER >= 1600 && defined(__cplusplus) /* VS2010 or newer in C++ mode */ |
| #define DECLTYPE(x) (decltype(x)) |
| #else /* VS2008 or older (or VS2010 in C mode) */ |
| #define NO_DECLTYPE |
| #define DECLTYPE(x) |
| #endif |
| #else /* GNU, Sun and other compilers */ |
| #define DECLTYPE(x) (__typeof(x)) |
| #endif |
| |
| #ifdef NO_DECLTYPE |
| #define DECLTYPE_ASSIGN(dst,src) \ |
| do { \ |
| char **_da_dst = (char**)(&(dst)); \ |
| *_da_dst = (char*)(src); \ |
| } while(0) |
| #else |
| #define DECLTYPE_ASSIGN(dst,src) \ |
| do { \ |
| (dst) = DECLTYPE(dst)(src); \ |
| } while(0) |
| #endif |
| |
| /* a number of the hash function use uint32_t which isn't defined on win32 */ |
| #ifdef _MSC_VER |
| typedef unsigned int uint32_t; |
| typedef unsigned char uint8_t; |
| #else |
| #include <inttypes.h> /* uint32_t */ |
| #endif |
| |
| #define UTHASH_VERSION 1.9.4 |
| |
| #define uthash_fatal(msg) exit(-1) /* fatal error (out of memory,etc) */ |
| #define uthash_malloc(sz) malloc(sz) /* malloc fcn */ |
| #define uthash_free(ptr,sz) free(ptr) /* free fcn */ |
| |
| #define uthash_noexpand_fyi(tbl) /* can be defined to log noexpand */ |
| #define uthash_expand_fyi(tbl) /* can be defined to log expands */ |
| |
| /* initial number of buckets */ |
| #define HASH_INITIAL_NUM_BUCKETS 32 /* initial number of buckets */ |
| #define HASH_INITIAL_NUM_BUCKETS_LOG2 5 /* lg2 of initial number of buckets */ |
| #define HASH_BKT_CAPACITY_THRESH 10 /* expand when bucket count reaches */ |
| |
| /* calculate the element whose hash handle address is hhe */ |
| #define ELMT_FROM_HH(tbl,hhp) ((void*)(((char*)(hhp)) - ((tbl)->hho))) |
| |
| #define HASH_FIND(hh,head,keyptr,keylen,out) \ |
| do { \ |
| unsigned _hf_bkt,_hf_hashv; \ |
| out=NULL; \ |
| if (head) { \ |
| HASH_FCN(keyptr,keylen, (head)->hh.tbl->num_buckets, _hf_hashv, _hf_bkt); \ |
| if (HASH_BLOOM_TEST((head)->hh.tbl, _hf_hashv)) { \ |
| HASH_FIND_IN_BKT((head)->hh.tbl, hh, (head)->hh.tbl->buckets[ _hf_bkt ], \ |
| keyptr,keylen,out); \ |
| } \ |
| } \ |
| } while (0) |
| |
| #ifdef HASH_BLOOM |
| #define HASH_BLOOM_BITLEN (1ULL << HASH_BLOOM) |
| #define HASH_BLOOM_BYTELEN (HASH_BLOOM_BITLEN/8) + ((HASH_BLOOM_BITLEN%8) ? 1:0) |
| #define HASH_BLOOM_MAKE(tbl) \ |
| do { \ |
| (tbl)->bloom_nbits = HASH_BLOOM; \ |
| (tbl)->bloom_bv = (uint8_t*)uthash_malloc(HASH_BLOOM_BYTELEN); \ |
| if (!((tbl)->bloom_bv)) { uthash_fatal( "out of memory"); } \ |
| memset((tbl)->bloom_bv, 0, HASH_BLOOM_BYTELEN); \ |
| (tbl)->bloom_sig = HASH_BLOOM_SIGNATURE; \ |
| } while (0); |
| |
| #define HASH_BLOOM_FREE(tbl) \ |
| do { \ |
| uthash_free((tbl)->bloom_bv, HASH_BLOOM_BYTELEN); \ |
| } while (0); |
| |
| #define HASH_BLOOM_BITSET(bv,idx) (bv[(idx)/8] |= (1U << ((idx)%8))) |
| #define HASH_BLOOM_BITTEST(bv,idx) (bv[(idx)/8] & (1U << ((idx)%8))) |
| |
| #define HASH_BLOOM_ADD(tbl,hashv) \ |
| HASH_BLOOM_BITSET((tbl)->bloom_bv, (hashv & (uint32_t)((1ULL << (tbl)->bloom_nbits) - 1))) |
| |
| #define HASH_BLOOM_TEST(tbl,hashv) \ |
| HASH_BLOOM_BITTEST((tbl)->bloom_bv, (hashv & (uint32_t)((1ULL << (tbl)->bloom_nbits) - 1))) |
| |
| #else |
| #define HASH_BLOOM_MAKE(tbl) |
| #define HASH_BLOOM_FREE(tbl) |
| #define HASH_BLOOM_ADD(tbl,hashv) |
| #define HASH_BLOOM_TEST(tbl,hashv) (1) |
| #endif |
| |
| #define HASH_MAKE_TABLE(hh,head) \ |
| do { \ |
| (head)->hh.tbl = (UT_hash_table*)uthash_malloc( \ |
| sizeof(UT_hash_table)); \ |
| if (!((head)->hh.tbl)) { uthash_fatal( "out of memory"); } \ |
| memset((head)->hh.tbl, 0, sizeof(UT_hash_table)); \ |
| (head)->hh.tbl->tail = &((head)->hh); \ |
| (head)->hh.tbl->num_buckets = HASH_INITIAL_NUM_BUCKETS; \ |
| (head)->hh.tbl->log2_num_buckets = HASH_INITIAL_NUM_BUCKETS_LOG2; \ |
| (head)->hh.tbl->hho = (char*)(&(head)->hh) - (char*)(head); \ |
| (head)->hh.tbl->buckets = (UT_hash_bucket*)uthash_malloc( \ |
| HASH_INITIAL_NUM_BUCKETS*sizeof(struct UT_hash_bucket)); \ |
| if (! (head)->hh.tbl->buckets) { uthash_fatal( "out of memory"); } \ |
| memset((head)->hh.tbl->buckets, 0, \ |
| HASH_INITIAL_NUM_BUCKETS*sizeof(struct UT_hash_bucket)); \ |
| HASH_BLOOM_MAKE((head)->hh.tbl); \ |
| (head)->hh.tbl->signature = HASH_SIGNATURE; \ |
| } while(0) |
| |
| #define HASH_ADD(hh,head,fieldname,keylen_in,add) \ |
| HASH_ADD_KEYPTR(hh,head,&add->fieldname,keylen_in,add) |
| |
| #define HASH_ADD_KEYPTR(hh,head,keyptr,keylen_in,add) \ |
| do { \ |
| unsigned _ha_bkt; \ |
| (add)->hh.next = NULL; \ |
| (add)->hh.key = (char*)keyptr; \ |
| (add)->hh.keylen = keylen_in; \ |
| if (!(head)) { \ |
| head = (add); \ |
| (head)->hh.prev = NULL; \ |
| HASH_MAKE_TABLE(hh,head); \ |
| } else { \ |
| (head)->hh.tbl->tail->next = (add); \ |
| (add)->hh.prev = ELMT_FROM_HH((head)->hh.tbl, (head)->hh.tbl->tail); \ |
| (head)->hh.tbl->tail = &((add)->hh); \ |
| } \ |
| (head)->hh.tbl->num_items++; \ |
| (add)->hh.tbl = (head)->hh.tbl; \ |
| HASH_FCN(keyptr,keylen_in, (head)->hh.tbl->num_buckets, \ |
| (add)->hh.hashv, _ha_bkt); \ |
| HASH_ADD_TO_BKT((head)->hh.tbl->buckets[_ha_bkt],&(add)->hh); \ |
| HASH_BLOOM_ADD((head)->hh.tbl,(add)->hh.hashv); \ |
| HASH_EMIT_KEY(hh,head,keyptr,keylen_in); \ |
| HASH_FSCK(hh,head); \ |
| } while(0) |
| |
| #define HASH_TO_BKT( hashv, num_bkts, bkt ) \ |
| do { \ |
| bkt = ((hashv) & ((num_bkts) - 1)); \ |
| } while(0) |
| |
| /* delete "delptr" from the hash table. |
| * "the usual" patch-up process for the app-order doubly-linked-list. |
| * The use of _hd_hh_del below deserves special explanation. |
| * These used to be expressed using (delptr) but that led to a bug |
| * if someone used the same symbol for the head and deletee, like |
| * HASH_DELETE(hh,users,users); |
| * We want that to work, but by changing the head (users) below |
| * we were forfeiting our ability to further refer to the deletee (users) |
| * in the patch-up process. Solution: use scratch space to |
| * copy the deletee pointer, then the latter references are via that |
| * scratch pointer rather than through the repointed (users) symbol. |
| */ |
| #define HASH_DELETE(hh,head,delptr) \ |
| do { \ |
| unsigned _hd_bkt; \ |
| struct UT_hash_handle *_hd_hh_del; \ |
| if ( ((delptr)->hh.prev == NULL) && ((delptr)->hh.next == NULL) ) { \ |
| uthash_free((head)->hh.tbl->buckets, \ |
| (head)->hh.tbl->num_buckets*sizeof(struct UT_hash_bucket) ); \ |
| HASH_BLOOM_FREE((head)->hh.tbl); \ |
| uthash_free((head)->hh.tbl, sizeof(UT_hash_table)); \ |
| head = NULL; \ |
| } else { \ |
| _hd_hh_del = &((delptr)->hh); \ |
| if ((delptr) == ELMT_FROM_HH((head)->hh.tbl,(head)->hh.tbl->tail)) { \ |
| (head)->hh.tbl->tail = \ |
| (UT_hash_handle*)((char*)((delptr)->hh.prev) + \ |
| (head)->hh.tbl->hho); \ |
| } \ |
| if ((delptr)->hh.prev) { \ |
| ((UT_hash_handle*)((char*)((delptr)->hh.prev) + \ |
| (head)->hh.tbl->hho))->next = (delptr)->hh.next; \ |
| } else { \ |
| DECLTYPE_ASSIGN(head,(delptr)->hh.next); \ |
| } \ |
| if (_hd_hh_del->next) { \ |
| ((UT_hash_handle*)((char*)_hd_hh_del->next + \ |
| (head)->hh.tbl->hho))->prev = \ |
| _hd_hh_del->prev; \ |
| } \ |
| HASH_TO_BKT( _hd_hh_del->hashv, (head)->hh.tbl->num_buckets, _hd_bkt); \ |
| HASH_DEL_IN_BKT(hh,(head)->hh.tbl->buckets[_hd_bkt], _hd_hh_del); \ |
| (head)->hh.tbl->num_items--; \ |
| } \ |
| HASH_FSCK(hh,head); \ |
| } while (0) |
| |
| |
| /* convenience forms of HASH_FIND/HASH_ADD/HASH_DEL */ |
| #define HASH_FIND_STR(head,findstr,out) \ |
| HASH_FIND(hh,head,findstr,strlen(findstr),out) |
| #define HASH_ADD_STR(head,strfield,add) \ |
| HASH_ADD(hh,head,strfield,strlen(add->strfield),add) |
| #define HASH_FIND_INT(head,findint,out) \ |
| HASH_FIND(hh,head,findint,sizeof(int),out) |
| #define HASH_ADD_INT(head,intfield,add) \ |
| HASH_ADD(hh,head,intfield,sizeof(int),add) |
| #define HASH_FIND_PTR(head,findptr,out) \ |
| HASH_FIND(hh,head,findptr,sizeof(void *),out) |
| #define HASH_ADD_PTR(head,ptrfield,add) \ |
| HASH_ADD(hh,head,ptrfield,sizeof(void *),add) |
| #define HASH_DEL(head,delptr) \ |
| HASH_DELETE(hh,head,delptr) |
| |
| /* HASH_FSCK checks hash integrity on every add/delete when HASH_DEBUG is defined. |
| * This is for uthash developer only; it compiles away if HASH_DEBUG isn't defined. |
| */ |
| #ifdef HASH_DEBUG |
| #define HASH_OOPS(...) do { fprintf(stderr,__VA_ARGS__); exit(-1); } while (0) |
| #define HASH_FSCK(hh,head) \ |
| do { \ |
| unsigned _bkt_i; \ |
| unsigned _count, _bkt_count; \ |
| char *_prev; \ |
| struct UT_hash_handle *_thh; \ |
| if (head) { \ |
| _count = 0; \ |
| for( _bkt_i = 0; _bkt_i < (head)->hh.tbl->num_buckets; _bkt_i++) { \ |
| _bkt_count = 0; \ |
| _thh = (head)->hh.tbl->buckets[_bkt_i].hh_head; \ |
| _prev = NULL; \ |
| while (_thh) { \ |
| if (_prev != (char*)(_thh->hh_prev)) { \ |
| HASH_OOPS("invalid hh_prev %p, actual %p\n", \ |
| _thh->hh_prev, _prev ); \ |
| } \ |
| _bkt_count++; \ |
| _prev = (char*)(_thh); \ |
| _thh = _thh->hh_next; \ |
| } \ |
| _count += _bkt_count; \ |
| if ((head)->hh.tbl->buckets[_bkt_i].count != _bkt_count) { \ |
| HASH_OOPS("invalid bucket count %d, actual %d\n", \ |
| (head)->hh.tbl->buckets[_bkt_i].count, _bkt_count); \ |
| } \ |
| } \ |
| if (_count != (head)->hh.tbl->num_items) { \ |
| HASH_OOPS("invalid hh item count %d, actual %d\n", \ |
| (head)->hh.tbl->num_items, _count ); \ |
| } \ |
| /* traverse hh in app order; check next/prev integrity, count */ \ |
| _count = 0; \ |
| _prev = NULL; \ |
| _thh = &(head)->hh; \ |
| while (_thh) { \ |
| _count++; \ |
| if (_prev !=(char*)(_thh->prev)) { \ |
| HASH_OOPS("invalid prev %p, actual %p\n", \ |
| _thh->prev, _prev ); \ |
| } \ |
| _prev = (char*)ELMT_FROM_HH((head)->hh.tbl, _thh); \ |
| _thh = ( _thh->next ? (UT_hash_handle*)((char*)(_thh->next) + \ |
| (head)->hh.tbl->hho) : NULL ); \ |
| } \ |
| if (_count != (head)->hh.tbl->num_items) { \ |
| HASH_OOPS("invalid app item count %d, actual %d\n", \ |
| (head)->hh.tbl->num_items, _count ); \ |
| } \ |
| } \ |
| } while (0) |
| #else |
| #define HASH_FSCK(hh,head) |
| #endif |
| |
| /* When compiled with -DHASH_EMIT_KEYS, length-prefixed keys are emitted to |
| * the descriptor to which this macro is defined for tuning the hash function. |
| * The app can #include <unistd.h> to get the prototype for write(2). */ |
| #ifdef HASH_EMIT_KEYS |
| #define HASH_EMIT_KEY(hh,head,keyptr,fieldlen) \ |
| do { \ |
| unsigned _klen = fieldlen; \ |
| write(HASH_EMIT_KEYS, &_klen, sizeof(_klen)); \ |
| write(HASH_EMIT_KEYS, keyptr, fieldlen); \ |
| } while (0) |
| #else |
| #define HASH_EMIT_KEY(hh,head,keyptr,fieldlen) |
| #endif |
| |
| /* default to Jenkin's hash unless overridden e.g. DHASH_FUNCTION=HASH_SAX */ |
| #ifdef HASH_FUNCTION |
| #define HASH_FCN HASH_FUNCTION |
| #else |
| #define HASH_FCN HASH_JEN |
| #endif |
| |
| /* The Bernstein hash function, used in Perl prior to v5.6 */ |
| #define HASH_BER(key,keylen,num_bkts,hashv,bkt) \ |
| do { \ |
| unsigned _hb_keylen=keylen; \ |
| char *_hb_key=(char*)(key); \ |
| (hashv) = 0; \ |
| while (_hb_keylen--) { (hashv) = ((hashv) * 33) + *_hb_key++; } \ |
| bkt = (hashv) & (num_bkts-1); \ |
| } while (0) |
| |
| |
| /* SAX/FNV/OAT/JEN hash functions are macro variants of those listed at |
| * http://eternallyconfuzzled.com/tuts/algorithms/jsw_tut_hashing.aspx */ |
| #define HASH_SAX(key,keylen,num_bkts,hashv,bkt) \ |
| do { \ |
| unsigned _sx_i; \ |
| char *_hs_key=(char*)(key); \ |
| hashv = 0; \ |
| for(_sx_i=0; _sx_i < keylen; _sx_i++) \ |
| hashv ^= (hashv << 5) + (hashv >> 2) + _hs_key[_sx_i]; \ |
| bkt = hashv & (num_bkts-1); \ |
| } while (0) |
| |
| #define HASH_FNV(key,keylen,num_bkts,hashv,bkt) \ |
| do { \ |
| unsigned _fn_i; \ |
| char *_hf_key=(char*)(key); \ |
| hashv = 2166136261UL; \ |
| for(_fn_i=0; _fn_i < keylen; _fn_i++) \ |
| hashv = (hashv * 16777619) ^ _hf_key[_fn_i]; \ |
| bkt = hashv & (num_bkts-1); \ |
| } while(0); |
| |
| #define HASH_OAT(key,keylen,num_bkts,hashv,bkt) \ |
| do { \ |
| unsigned _ho_i; \ |
| char *_ho_key=(char*)(key); \ |
| hashv = 0; \ |
| for(_ho_i=0; _ho_i < keylen; _ho_i++) { \ |
| hashv += _ho_key[_ho_i]; \ |
| hashv += (hashv << 10); \ |
| hashv ^= (hashv >> 6); \ |
| } \ |
| hashv += (hashv << 3); \ |
| hashv ^= (hashv >> 11); \ |
| hashv += (hashv << 15); \ |
| bkt = hashv & (num_bkts-1); \ |
| } while(0) |
| |
| #define HASH_JEN_MIX(a,b,c) \ |
| do { \ |
| a -= b; a -= c; a ^= ( c >> 13 ); \ |
| b -= c; b -= a; b ^= ( a << 8 ); \ |
| c -= a; c -= b; c ^= ( b >> 13 ); \ |
| a -= b; a -= c; a ^= ( c >> 12 ); \ |
| b -= c; b -= a; b ^= ( a << 16 ); \ |
| c -= a; c -= b; c ^= ( b >> 5 ); \ |
| a -= b; a -= c; a ^= ( c >> 3 ); \ |
| b -= c; b -= a; b ^= ( a << 10 ); \ |
| c -= a; c -= b; c ^= ( b >> 15 ); \ |
| } while (0) |
| |
| #define HASH_JEN(key,keylen,num_bkts,hashv,bkt) \ |
| do { \ |
| unsigned _hj_i,_hj_j,_hj_k; \ |
| char *_hj_key=(char*)(key); \ |
| hashv = 0xfeedbeef; \ |
| _hj_i = _hj_j = 0x9e3779b9; \ |
| _hj_k = keylen; \ |
| while (_hj_k >= 12) { \ |
| _hj_i += (_hj_key[0] + ( (unsigned)_hj_key[1] << 8 ) \ |
| + ( (unsigned)_hj_key[2] << 16 ) \ |
| + ( (unsigned)_hj_key[3] << 24 ) ); \ |
| _hj_j += (_hj_key[4] + ( (unsigned)_hj_key[5] << 8 ) \ |
| + ( (unsigned)_hj_key[6] << 16 ) \ |
| + ( (unsigned)_hj_key[7] << 24 ) ); \ |
| hashv += (_hj_key[8] + ( (unsigned)_hj_key[9] << 8 ) \ |
| + ( (unsigned)_hj_key[10] << 16 ) \ |
| + ( (unsigned)_hj_key[11] << 24 ) ); \ |
| \ |
| HASH_JEN_MIX(_hj_i, _hj_j, hashv); \ |
| \ |
| _hj_key += 12; \ |
| _hj_k -= 12; \ |
| } \ |
| hashv += keylen; \ |
| switch ( _hj_k ) { \ |
| case 11: hashv += ( (unsigned)_hj_key[10] << 24 ); \ |
| case 10: hashv += ( (unsigned)_hj_key[9] << 16 ); \ |
| case 9: hashv += ( (unsigned)_hj_key[8] << 8 ); \ |
| case 8: _hj_j += ( (unsigned)_hj_key[7] << 24 ); \ |
| case 7: _hj_j += ( (unsigned)_hj_key[6] << 16 ); \ |
| case 6: _hj_j += ( (unsigned)_hj_key[5] << 8 ); \ |
| case 5: _hj_j += _hj_key[4]; \ |
| case 4: _hj_i += ( (unsigned)_hj_key[3] << 24 ); \ |
| case 3: _hj_i += ( (unsigned)_hj_key[2] << 16 ); \ |
| case 2: _hj_i += ( (unsigned)_hj_key[1] << 8 ); \ |
| case 1: _hj_i += _hj_key[0]; \ |
| } \ |
| HASH_JEN_MIX(_hj_i, _hj_j, hashv); \ |
| bkt = hashv & (num_bkts-1); \ |
| } while(0) |
| |
| /* The Paul Hsieh hash function */ |
| #undef get16bits |
| #if (defined(__GNUC__) && defined(__i386__)) || defined(__WATCOMC__) \ |
| || defined(_MSC_VER) || defined (__BORLANDC__) || defined (__TURBOC__) |
| #define get16bits(d) (*((const uint16_t *) (d))) |
| #endif |
| |
| #if !defined (get16bits) |
| #define get16bits(d) ((((uint32_t)(((const uint8_t *)(d))[1])) << 8) \ |
| +(uint32_t)(((const uint8_t *)(d))[0]) ) |
| #endif |
| #define HASH_SFH(key,keylen,num_bkts,hashv,bkt) \ |
| do { \ |
| char *_sfh_key=(char*)(key); \ |
| uint32_t _sfh_tmp, _sfh_len = keylen; \ |
| \ |
| int _sfh_rem = _sfh_len & 3; \ |
| _sfh_len >>= 2; \ |
| hashv = 0xcafebabe; \ |
| \ |
| /* Main loop */ \ |
| for (;_sfh_len > 0; _sfh_len--) { \ |
| hashv += get16bits (_sfh_key); \ |
| _sfh_tmp = (get16bits (_sfh_key+2) << 11) ^ hashv; \ |
| hashv = (hashv << 16) ^ _sfh_tmp; \ |
| _sfh_key += 2*sizeof (uint16_t); \ |
| hashv += hashv >> 11; \ |
| } \ |
| \ |
| /* Handle end cases */ \ |
| switch (_sfh_rem) { \ |
| case 3: hashv += get16bits (_sfh_key); \ |
| hashv ^= hashv << 16; \ |
| hashv ^= _sfh_key[sizeof (uint16_t)] << 18; \ |
| hashv += hashv >> 11; \ |
| break; \ |
| case 2: hashv += get16bits (_sfh_key); \ |
| hashv ^= hashv << 11; \ |
| hashv += hashv >> 17; \ |
| break; \ |
| case 1: hashv += *_sfh_key; \ |
| hashv ^= hashv << 10; \ |
| hashv += hashv >> 1; \ |
| } \ |
| \ |
| /* Force "avalanching" of final 127 bits */ \ |
| hashv ^= hashv << 3; \ |
| hashv += hashv >> 5; \ |
| hashv ^= hashv << 4; \ |
| hashv += hashv >> 17; \ |
| hashv ^= hashv << 25; \ |
| hashv += hashv >> 6; \ |
| bkt = hashv & (num_bkts-1); \ |
| } while(0); |
| |
| #ifdef HASH_USING_NO_STRICT_ALIASING |
| /* The MurmurHash exploits some CPU's (x86,x86_64) tolerance for unaligned reads. |
| * For other types of CPU's (e.g. Sparc) an unaligned read causes a bus error. |
| * MurmurHash uses the faster approach only on CPU's where we know it's safe. |
| * |
| * Note the preprocessor built-in defines can be emitted using: |
| * |
| * gcc -m64 -dM -E - < /dev/null (on gcc) |
| * cc -## a.c (where a.c is a simple test file) (Sun Studio) |
| */ |
| #if (defined(__i386__) || defined(__x86_64__)) |
| #define MUR_GETBLOCK(p,i) p[i] |
| #else /* non intel */ |
| #define MUR_PLUS0_ALIGNED(p) (((unsigned long)p & 0x3) == 0) |
| #define MUR_PLUS1_ALIGNED(p) (((unsigned long)p & 0x3) == 1) |
| #define MUR_PLUS2_ALIGNED(p) (((unsigned long)p & 0x3) == 2) |
| #define MUR_PLUS3_ALIGNED(p) (((unsigned long)p & 0x3) == 3) |
| #define WP(p) ((uint32_t*)((unsigned long)(p) & ~3UL)) |
| #if (defined(__BIG_ENDIAN__) || defined(SPARC) || defined(__ppc__) || defined(__ppc64__)) |
| #define MUR_THREE_ONE(p) ((((*WP(p))&0x00ffffff) << 8) | (((*(WP(p)+1))&0xff000000) >> 24)) |
| #define MUR_TWO_TWO(p) ((((*WP(p))&0x0000ffff) <<16) | (((*(WP(p)+1))&0xffff0000) >> 16)) |
| #define MUR_ONE_THREE(p) ((((*WP(p))&0x000000ff) <<24) | (((*(WP(p)+1))&0xffffff00) >> 8)) |
| #else /* assume little endian non-intel */ |
| #define MUR_THREE_ONE(p) ((((*WP(p))&0xffffff00) >> 8) | (((*(WP(p)+1))&0x000000ff) << 24)) |
| #define MUR_TWO_TWO(p) ((((*WP(p))&0xffff0000) >>16) | (((*(WP(p)+1))&0x0000ffff) << 16)) |
| #define MUR_ONE_THREE(p) ((((*WP(p))&0xff000000) >>24) | (((*(WP(p)+1))&0x00ffffff) << 8)) |
| #endif |
| #define MUR_GETBLOCK(p,i) (MUR_PLUS0_ALIGNED(p) ? ((p)[i]) : \ |
| (MUR_PLUS1_ALIGNED(p) ? MUR_THREE_ONE(p) : \ |
| (MUR_PLUS2_ALIGNED(p) ? MUR_TWO_TWO(p) : \ |
| MUR_ONE_THREE(p)))) |
| #endif |
| #define MUR_ROTL32(x,r) (((x) << (r)) | ((x) >> (32 - (r)))) |
| #define MUR_FMIX(_h) \ |
| do { \ |
| _h ^= _h >> 16; \ |
| _h *= 0x85ebca6b; \ |
| _h ^= _h >> 13; \ |
| _h *= 0xc2b2ae35l; \ |
| _h ^= _h >> 16; \ |
| } while(0) |
| |
| #define HASH_MUR(key,keylen,num_bkts,hashv,bkt) \ |
| do { \ |
| const uint8_t *_mur_data = (const uint8_t*)(key); \ |
| const int _mur_nblocks = (keylen) / 4; \ |
| uint32_t _mur_h1 = 0xf88D5353; \ |
| uint32_t _mur_c1 = 0xcc9e2d51; \ |
| uint32_t _mur_c2 = 0x1b873593; \ |
| const uint32_t *_mur_blocks = (const uint32_t*)(_mur_data+_mur_nblocks*4); \ |
| int _mur_i; \ |
| for(_mur_i = -_mur_nblocks; _mur_i; _mur_i++) { \ |
| uint32_t _mur_k1 = MUR_GETBLOCK(_mur_blocks,_mur_i); \ |
| _mur_k1 *= _mur_c1; \ |
| _mur_k1 = MUR_ROTL32(_mur_k1,15); \ |
| _mur_k1 *= _mur_c2; \ |
| \ |
| _mur_h1 ^= _mur_k1; \ |
| _mur_h1 = MUR_ROTL32(_mur_h1,13); \ |
| _mur_h1 = _mur_h1*5+0xe6546b64; \ |
| } \ |
| const uint8_t *_mur_tail = (const uint8_t*)(_mur_data + _mur_nblocks*4); \ |
| uint32_t _mur_k1=0; \ |
| switch((keylen) & 3) { \ |
| case 3: _mur_k1 ^= _mur_tail[2] << 16; \ |
| case 2: _mur_k1 ^= _mur_tail[1] << 8; \ |
| case 1: _mur_k1 ^= _mur_tail[0]; \ |
| _mur_k1 *= _mur_c1; \ |
| _mur_k1 = MUR_ROTL32(_mur_k1,15); \ |
| _mur_k1 *= _mur_c2; \ |
| _mur_h1 ^= _mur_k1; \ |
| } \ |
| _mur_h1 ^= (keylen); \ |
| MUR_FMIX(_mur_h1); \ |
| hashv = _mur_h1; \ |
| bkt = hashv & (num_bkts-1); \ |
| } while(0) |
| #endif /* HASH_USING_NO_STRICT_ALIASING */ |
| |
| /* key comparison function; return 0 if keys equal */ |
| #define HASH_KEYCMP(a,b,len) memcmp(a,b,len) |
| |
| /* iterate over items in a known bucket to find desired item */ |
| #define HASH_FIND_IN_BKT(tbl,hh,head,keyptr,keylen_in,out) \ |
| do { \ |
| if (head.hh_head) DECLTYPE_ASSIGN(out,ELMT_FROM_HH(tbl,head.hh_head)); \ |
| else out=NULL; \ |
| while (out) { \ |
| if (out->hh.keylen == keylen_in) { \ |
| if ((HASH_KEYCMP(out->hh.key,keyptr,keylen_in)) == 0) break; \ |
| } \ |
| if (out->hh.hh_next) DECLTYPE_ASSIGN(out,ELMT_FROM_HH(tbl,out->hh.hh_next)); \ |
| else out = NULL; \ |
| } \ |
| } while(0) |
| |
| /* add an item to a bucket */ |
| #define HASH_ADD_TO_BKT(head,addhh) \ |
| do { \ |
| head.count++; \ |
| (addhh)->hh_next = head.hh_head; \ |
| (addhh)->hh_prev = NULL; \ |
| if (head.hh_head) { (head).hh_head->hh_prev = (addhh); } \ |
| (head).hh_head=addhh; \ |
| if (head.count >= ((head.expand_mult+1) * HASH_BKT_CAPACITY_THRESH) \ |
| && (addhh)->tbl->noexpand != 1) { \ |
| HASH_EXPAND_BUCKETS((addhh)->tbl); \ |
| } \ |
| } while(0) |
| |
| /* remove an item from a given bucket */ |
| #define HASH_DEL_IN_BKT(hh,head,hh_del) \ |
| (head).count--; \ |
| if ((head).hh_head == hh_del) { \ |
| (head).hh_head = hh_del->hh_next; \ |
| } \ |
| if (hh_del->hh_prev) { \ |
| hh_del->hh_prev->hh_next = hh_del->hh_next; \ |
| } \ |
| if (hh_del->hh_next) { \ |
| hh_del->hh_next->hh_prev = hh_del->hh_prev; \ |
| } |
| |
| /* Bucket expansion has the effect of doubling the number of buckets |
| * and redistributing the items into the new buckets. Ideally the |
| * items will distribute more or less evenly into the new buckets |
| * (the extent to which this is true is a measure of the quality of |
| * the hash function as it applies to the key domain). |
| * |
| * With the items distributed into more buckets, the chain length |
| * (item count) in each bucket is reduced. Thus by expanding buckets |
| * the hash keeps a bound on the chain length. This bounded chain |
| * length is the essence of how a hash provides constant time lookup. |
| * |
| * The calculation of tbl->ideal_chain_maxlen below deserves some |
| * explanation. First, keep in mind that we're calculating the ideal |
| * maximum chain length based on the *new* (doubled) bucket count. |
| * In fractions this is just n/b (n=number of items,b=new num buckets). |
| * Since the ideal chain length is an integer, we want to calculate |
| * ceil(n/b). We don't depend on floating point arithmetic in this |
| * hash, so to calculate ceil(n/b) with integers we could write |
| * |
| * ceil(n/b) = (n/b) + ((n%b)?1:0) |
| * |
| * and in fact a previous version of this hash did just that. |
| * But now we have improved things a bit by recognizing that b is |
| * always a power of two. We keep its base 2 log handy (call it lb), |
| * so now we can write this with a bit shift and logical AND: |
| * |
| * ceil(n/b) = (n>>lb) + ( (n & (b-1)) ? 1:0) |
| * |
| */ |
| #define HASH_EXPAND_BUCKETS(tbl) \ |
| do { \ |
| unsigned _he_bkt; \ |
| unsigned _he_bkt_i; \ |
| struct UT_hash_handle *_he_thh, *_he_hh_nxt; \ |
| UT_hash_bucket *_he_new_buckets, *_he_newbkt; \ |
| _he_new_buckets = (UT_hash_bucket*)uthash_malloc( \ |
| 2 * tbl->num_buckets * sizeof(struct UT_hash_bucket)); \ |
| if (!_he_new_buckets) { uthash_fatal( "out of memory"); } \ |
| memset(_he_new_buckets, 0, \ |
| 2 * tbl->num_buckets * sizeof(struct UT_hash_bucket)); \ |
| tbl->ideal_chain_maxlen = \ |
| (tbl->num_items >> (tbl->log2_num_buckets+1)) + \ |
| ((tbl->num_items & ((tbl->num_buckets*2)-1)) ? 1 : 0); \ |
| tbl->nonideal_items = 0; \ |
| for(_he_bkt_i = 0; _he_bkt_i < tbl->num_buckets; _he_bkt_i++) \ |
| { \ |
| _he_thh = tbl->buckets[ _he_bkt_i ].hh_head; \ |
| while (_he_thh) { \ |
| _he_hh_nxt = _he_thh->hh_next; \ |
| HASH_TO_BKT( _he_thh->hashv, tbl->num_buckets*2, _he_bkt); \ |
| _he_newbkt = &(_he_new_buckets[ _he_bkt ]); \ |
| if (++(_he_newbkt->count) > tbl->ideal_chain_maxlen) { \ |
| tbl->nonideal_items++; \ |
| _he_newbkt->expand_mult = _he_newbkt->count / \ |
| tbl->ideal_chain_maxlen; \ |
| } \ |
| _he_thh->hh_prev = NULL; \ |
| _he_thh->hh_next = _he_newbkt->hh_head; \ |
| if (_he_newbkt->hh_head) _he_newbkt->hh_head->hh_prev = \ |
| _he_thh; \ |
| _he_newbkt->hh_head = _he_thh; \ |
| _he_thh = _he_hh_nxt; \ |
| } \ |
| } \ |
| uthash_free( tbl->buckets, tbl->num_buckets*sizeof(struct UT_hash_bucket) ); \ |
| tbl->num_buckets *= 2; \ |
| tbl->log2_num_buckets++; \ |
| tbl->buckets = _he_new_buckets; \ |
| tbl->ineff_expands = (tbl->nonideal_items > (tbl->num_items >> 1)) ? \ |
| (tbl->ineff_expands+1) : 0; \ |
| if (tbl->ineff_expands > 1) { \ |
| tbl->noexpand=1; \ |
| uthash_noexpand_fyi(tbl); \ |
| } \ |
| uthash_expand_fyi(tbl); \ |
| } while(0) |
| |
| |
| /* This is an adaptation of Simon Tatham's O(n log(n)) mergesort */ |
| /* Note that HASH_SORT assumes the hash handle name to be hh. |
| * HASH_SRT was added to allow the hash handle name to be passed in. */ |
| #define HASH_SORT(head,cmpfcn) HASH_SRT(hh,head,cmpfcn) |
| #define HASH_SRT(hh,head,cmpfcn) \ |
| do { \ |
| unsigned _hs_i; \ |
| unsigned _hs_looping,_hs_nmerges,_hs_insize,_hs_psize,_hs_qsize; \ |
| struct UT_hash_handle *_hs_p, *_hs_q, *_hs_e, *_hs_list, *_hs_tail; \ |
| if (head) { \ |
| _hs_insize = 1; \ |
| _hs_looping = 1; \ |
| _hs_list = &((head)->hh); \ |
| while (_hs_looping) { \ |
| _hs_p = _hs_list; \ |
| _hs_list = NULL; \ |
| _hs_tail = NULL; \ |
| _hs_nmerges = 0; \ |
| while (_hs_p) { \ |
| _hs_nmerges++; \ |
| _hs_q = _hs_p; \ |
| _hs_psize = 0; \ |
| for ( _hs_i = 0; _hs_i < _hs_insize; _hs_i++ ) { \ |
| _hs_psize++; \ |
| _hs_q = (UT_hash_handle*)((_hs_q->next) ? \ |
| ((void*)((char*)(_hs_q->next) + \ |
| (head)->hh.tbl->hho)) : NULL); \ |
| if (! (_hs_q) ) break; \ |
| } \ |
| _hs_qsize = _hs_insize; \ |
| while ((_hs_psize > 0) || ((_hs_qsize > 0) && _hs_q )) { \ |
| if (_hs_psize == 0) { \ |
| _hs_e = _hs_q; \ |
| _hs_q = (UT_hash_handle*)((_hs_q->next) ? \ |
| ((void*)((char*)(_hs_q->next) + \ |
| (head)->hh.tbl->hho)) : NULL); \ |
| _hs_qsize--; \ |
| } else if ( (_hs_qsize == 0) || !(_hs_q) ) { \ |
| _hs_e = _hs_p; \ |
| _hs_p = (UT_hash_handle*)((_hs_p->next) ? \ |
| ((void*)((char*)(_hs_p->next) + \ |
| (head)->hh.tbl->hho)) : NULL); \ |
| _hs_psize--; \ |
| } else if (( \ |
| cmpfcn(DECLTYPE(head)(ELMT_FROM_HH((head)->hh.tbl,_hs_p)), \ |
| DECLTYPE(head)(ELMT_FROM_HH((head)->hh.tbl,_hs_q))) \ |
| ) <= 0) { \ |
| _hs_e = _hs_p; \ |
| _hs_p = (UT_hash_handle*)((_hs_p->next) ? \ |
| ((void*)((char*)(_hs_p->next) + \ |
| (head)->hh.tbl->hho)) : NULL); \ |
| _hs_psize--; \ |
| } else { \ |
| _hs_e = _hs_q; \ |
| _hs_q = (UT_hash_handle*)((_hs_q->next) ? \ |
| ((void*)((char*)(_hs_q->next) + \ |
| (head)->hh.tbl->hho)) : NULL); \ |
| _hs_qsize--; \ |
| } \ |
| if ( _hs_tail ) { \ |
| _hs_tail->next = ((_hs_e) ? \ |
| ELMT_FROM_HH((head)->hh.tbl,_hs_e) : NULL); \ |
| } else { \ |
| _hs_list = _hs_e; \ |
| } \ |
| _hs_e->prev = ((_hs_tail) ? \ |
| ELMT_FROM_HH((head)->hh.tbl,_hs_tail) : NULL); \ |
| _hs_tail = _hs_e; \ |
| } \ |
| _hs_p = _hs_q; \ |
| } \ |
| _hs_tail->next = NULL; \ |
| if ( _hs_nmerges <= 1 ) { \ |
| _hs_looping=0; \ |
| (head)->hh.tbl->tail = _hs_tail; \ |
| DECLTYPE_ASSIGN(head,ELMT_FROM_HH((head)->hh.tbl, _hs_list)); \ |
| } \ |
| _hs_insize *= 2; \ |
| } \ |
| HASH_FSCK(hh,head); \ |
| } \ |
| } while (0) |
| |
| /* This function selects items from one hash into another hash. |
| * The end result is that the selected items have dual presence |
| * in both hashes. There is no copy of the items made; rather |
| * they are added into the new hash through a secondary hash |
| * hash handle that must be present in the structure. */ |
| #define HASH_SELECT(hh_dst, dst, hh_src, src, cond) \ |
| do { \ |
| unsigned _src_bkt, _dst_bkt; \ |
| void *_last_elt=NULL, *_elt; \ |
| UT_hash_handle *_src_hh, *_dst_hh, *_last_elt_hh=NULL; \ |
| ptrdiff_t _dst_hho = ((char*)(&(dst)->hh_dst) - (char*)(dst)); \ |
| if (src) { \ |
| for(_src_bkt=0; _src_bkt < (src)->hh_src.tbl->num_buckets; _src_bkt++) { \ |
| for(_src_hh = (src)->hh_src.tbl->buckets[_src_bkt].hh_head; \ |
| _src_hh; \ |
| _src_hh = _src_hh->hh_next) { \ |
| _elt = ELMT_FROM_HH((src)->hh_src.tbl, _src_hh); \ |
| if (cond(_elt)) { \ |
| _dst_hh = (UT_hash_handle*)(((char*)_elt) + _dst_hho); \ |
| _dst_hh->key = _src_hh->key; \ |
| _dst_hh->keylen = _src_hh->keylen; \ |
| _dst_hh->hashv = _src_hh->hashv; \ |
| _dst_hh->prev = _last_elt; \ |
| _dst_hh->next = NULL; \ |
| if (_last_elt_hh) { _last_elt_hh->next = _elt; } \ |
| if (!dst) { \ |
| DECLTYPE_ASSIGN(dst,_elt); \ |
| HASH_MAKE_TABLE(hh_dst,dst); \ |
| } else { \ |
| _dst_hh->tbl = (dst)->hh_dst.tbl; \ |
| } \ |
| HASH_TO_BKT(_dst_hh->hashv, _dst_hh->tbl->num_buckets, _dst_bkt); \ |
| HASH_ADD_TO_BKT(_dst_hh->tbl->buckets[_dst_bkt],_dst_hh); \ |
| (dst)->hh_dst.tbl->num_items++; \ |
| _last_elt = _elt; \ |
| _last_elt_hh = _dst_hh; \ |
| } \ |
| } \ |
| } \ |
| } \ |
| HASH_FSCK(hh_dst,dst); \ |
| } while (0) |
| |
| #define HASH_CLEAR(hh,head) \ |
| do { \ |
| if (head) { \ |
| uthash_free((head)->hh.tbl->buckets, \ |
| (head)->hh.tbl->num_buckets*sizeof(struct UT_hash_bucket)); \ |
| uthash_free((head)->hh.tbl, sizeof(UT_hash_table)); \ |
| (head)=NULL; \ |
| } \ |
| } while(0) |
| |
| #ifdef NO_DECLTYPE |
| #define HASH_ITER(hh,head,el,tmp) \ |
| for((el)=(head), (*(char**)(&(tmp)))=(char*)((head)?(head)->hh.next:NULL); \ |
| el; (el)=(tmp),(*(char**)(&(tmp)))=(char*)((tmp)?(tmp)->hh.next:NULL)) |
| #else |
| #define HASH_ITER(hh,head,el,tmp) \ |
| for((el)=(head),(tmp)=DECLTYPE(el)((head)?(head)->hh.next:NULL); \ |
| el; (el)=(tmp),(tmp)=DECLTYPE(el)((tmp)?(tmp)->hh.next:NULL)) |
| #endif |
| |
| /* obtain a count of items in the hash */ |
| #define HASH_COUNT(head) HASH_CNT(hh,head) |
| #define HASH_CNT(hh,head) ((head)?((head)->hh.tbl->num_items):0) |
| |
| typedef struct UT_hash_bucket { |
| struct UT_hash_handle *hh_head; |
| unsigned count; |
| |
| /* expand_mult is normally set to 0. In this situation, the max chain length |
| * threshold is enforced at its default value, HASH_BKT_CAPACITY_THRESH. (If |
| * the bucket's chain exceeds this length, bucket expansion is triggered). |
| * However, setting expand_mult to a non-zero value delays bucket expansion |
| * (that would be triggered by additions to this particular bucket) |
| * until its chain length reaches a *multiple* of HASH_BKT_CAPACITY_THRESH. |
| * (The multiplier is simply expand_mult+1). The whole idea of this |
| * multiplier is to reduce bucket expansions, since they are expensive, in |
| * situations where we know that a particular bucket tends to be overused. |
| * It is better to let its chain length grow to a longer yet-still-bounded |
| * value, than to do an O(n) bucket expansion too often. |
| */ |
| unsigned expand_mult; |
| |
| } UT_hash_bucket; |
| |
| /* random signature used only to find hash tables in external analysis */ |
| #define HASH_SIGNATURE 0xa0111fe1 |
| #define HASH_BLOOM_SIGNATURE 0xb12220f2 |
| |
| typedef struct UT_hash_table { |
| UT_hash_bucket *buckets; |
| unsigned num_buckets, log2_num_buckets; |
| unsigned num_items; |
| struct UT_hash_handle *tail; /* tail hh in app order, for fast append */ |
| ptrdiff_t hho; /* hash handle offset (byte pos of hash handle in element */ |
| |
| /* in an ideal situation (all buckets used equally), no bucket would have |
| * more than ceil(#items/#buckets) items. that's the ideal chain length. */ |
| unsigned ideal_chain_maxlen; |
| |
| /* nonideal_items is the number of items in the hash whose chain position |
| * exceeds the ideal chain maxlen. these items pay the penalty for an uneven |
| * hash distribution; reaching them in a chain traversal takes >ideal steps */ |
| unsigned nonideal_items; |
| |
| /* ineffective expands occur when a bucket doubling was performed, but |
| * afterward, more than half the items in the hash had nonideal chain |
| * positions. If this happens on two consecutive expansions we inhibit any |
| * further expansion, as it's not helping; this happens when the hash |
| * function isn't a good fit for the key domain. When expansion is inhibited |
| * the hash will still work, albeit no longer in constant time. */ |
| unsigned ineff_expands, noexpand; |
| |
| uint32_t signature; /* used only to find hash tables in external analysis */ |
| #ifdef HASH_BLOOM |
| uint32_t bloom_sig; /* used only to test bloom exists in external analysis */ |
| uint8_t *bloom_bv; |
| char bloom_nbits; |
| #endif |
| |
| } UT_hash_table; |
| |
| typedef struct UT_hash_handle { |
| struct UT_hash_table *tbl; |
| void *prev; /* prev element in app order */ |
| void *next; /* next element in app order */ |
| struct UT_hash_handle *hh_prev; /* previous hh in bucket order */ |
| struct UT_hash_handle *hh_next; /* next hh in bucket order */ |
| void *key; /* ptr to enclosing struct's key */ |
| unsigned keylen; /* enclosing struct's key len */ |
| unsigned hashv; /* result of hash-fcn(key) */ |
| } UT_hash_handle; |
| |
| #endif /* UTHASH_H */ |