blob: b1e0d49a495d02341903441ed1369e99e00d63d6 [file] [log] [blame]
Ilya Moiseenko6b583af2011-08-12 19:01:43 -07001/*
2 Copyright (c) 2003-2011, Troy D. Hanson http://uthash.sourceforge.net
3 All rights reserved.
4
5 Redistribution and use in source and binary forms, with or without
6 modification, are permitted provided that the following conditions are met:
7
8 * Redistributions of source code must retain the above copyright
9 notice, this list of conditions and the following disclaimer.
10
11 THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS
12 IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED
13 TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A
14 PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT OWNER
15 OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL,
16 EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO,
17 PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR
18 PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF
19 LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING
20 NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF THIS
21 SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
22 */
23
24#ifndef UTHASH_H
25#define UTHASH_H
26
27#include <string.h> /* memcmp,strlen */
28#include <stddef.h> /* ptrdiff_t */
29#include <stdlib.h> /* exit() */
30
31/* These macros use decltype or the earlier __typeof GNU extension.
32 As decltype is only available in newer compilers (VS2010 or gcc 4.3+
33 when compiling c++ source) this code uses whatever method is needed
34 or, for VS2008 where neither is available, uses casting workarounds. */
35#ifdef _MSC_VER /* MS compiler */
36#if _MSC_VER >= 1600 && defined(__cplusplus) /* VS2010 or newer in C++ mode */
37#define DECLTYPE(x) (decltype(x))
38#else /* VS2008 or older (or VS2010 in C mode) */
39#define NO_DECLTYPE
40#define DECLTYPE(x)
41#endif
42#else /* GNU, Sun and other compilers */
43#define DECLTYPE(x) (__typeof(x))
44#endif
45
46#ifdef NO_DECLTYPE
47#define DECLTYPE_ASSIGN(dst,src) \
48do { \
49char **_da_dst = (char**)(&(dst)); \
50*_da_dst = (char*)(src); \
51} while(0)
52#else
53#define DECLTYPE_ASSIGN(dst,src) \
54do { \
55(dst) = DECLTYPE(dst)(src); \
56} while(0)
57#endif
58
59/* a number of the hash function use uint32_t which isn't defined on win32 */
60#ifdef _MSC_VER
61typedef unsigned int uint32_t;
62typedef unsigned char uint8_t;
63#else
64#include <inttypes.h> /* uint32_t */
65#endif
66
67#define UTHASH_VERSION 1.9.4
68
69#define uthash_fatal(msg) exit(-1) /* fatal error (out of memory,etc) */
70#define uthash_malloc(sz) malloc(sz) /* malloc fcn */
71#define uthash_free(ptr,sz) free(ptr) /* free fcn */
72
73#define uthash_noexpand_fyi(tbl) /* can be defined to log noexpand */
74#define uthash_expand_fyi(tbl) /* can be defined to log expands */
75
76/* initial number of buckets */
77#define HASH_INITIAL_NUM_BUCKETS 32 /* initial number of buckets */
78#define HASH_INITIAL_NUM_BUCKETS_LOG2 5 /* lg2 of initial number of buckets */
79#define HASH_BKT_CAPACITY_THRESH 10 /* expand when bucket count reaches */
80
81/* calculate the element whose hash handle address is hhe */
82#define ELMT_FROM_HH(tbl,hhp) ((void*)(((char*)(hhp)) - ((tbl)->hho)))
83
84#define HASH_FIND(hh,head,keyptr,keylen,out) \
85do { \
86unsigned _hf_bkt,_hf_hashv; \
87out=NULL; \
88if (head) { \
89HASH_FCN(keyptr,keylen, (head)->hh.tbl->num_buckets, _hf_hashv, _hf_bkt); \
90if (HASH_BLOOM_TEST((head)->hh.tbl, _hf_hashv)) { \
91HASH_FIND_IN_BKT((head)->hh.tbl, hh, (head)->hh.tbl->buckets[ _hf_bkt ], \
92keyptr,keylen,out); \
93} \
94} \
95} while (0)
96
97#ifdef HASH_BLOOM
98#define HASH_BLOOM_BITLEN (1ULL << HASH_BLOOM)
99#define HASH_BLOOM_BYTELEN (HASH_BLOOM_BITLEN/8) + ((HASH_BLOOM_BITLEN%8) ? 1:0)
100#define HASH_BLOOM_MAKE(tbl) \
101do { \
102(tbl)->bloom_nbits = HASH_BLOOM; \
103(tbl)->bloom_bv = (uint8_t*)uthash_malloc(HASH_BLOOM_BYTELEN); \
104if (!((tbl)->bloom_bv)) { uthash_fatal( "out of memory"); } \
105memset((tbl)->bloom_bv, 0, HASH_BLOOM_BYTELEN); \
106(tbl)->bloom_sig = HASH_BLOOM_SIGNATURE; \
107} while (0);
108
109#define HASH_BLOOM_FREE(tbl) \
110do { \
111uthash_free((tbl)->bloom_bv, HASH_BLOOM_BYTELEN); \
112} while (0);
113
114#define HASH_BLOOM_BITSET(bv,idx) (bv[(idx)/8] |= (1U << ((idx)%8)))
115#define HASH_BLOOM_BITTEST(bv,idx) (bv[(idx)/8] & (1U << ((idx)%8)))
116
117#define HASH_BLOOM_ADD(tbl,hashv) \
118HASH_BLOOM_BITSET((tbl)->bloom_bv, (hashv & (uint32_t)((1ULL << (tbl)->bloom_nbits) - 1)))
119
120#define HASH_BLOOM_TEST(tbl,hashv) \
121HASH_BLOOM_BITTEST((tbl)->bloom_bv, (hashv & (uint32_t)((1ULL << (tbl)->bloom_nbits) - 1)))
122
123#else
124#define HASH_BLOOM_MAKE(tbl)
125#define HASH_BLOOM_FREE(tbl)
126#define HASH_BLOOM_ADD(tbl,hashv)
127#define HASH_BLOOM_TEST(tbl,hashv) (1)
128#endif
129
130#define HASH_MAKE_TABLE(hh,head) \
131do { \
132(head)->hh.tbl = (UT_hash_table*)uthash_malloc( \
133sizeof(UT_hash_table)); \
134if (!((head)->hh.tbl)) { uthash_fatal( "out of memory"); } \
135memset((head)->hh.tbl, 0, sizeof(UT_hash_table)); \
136(head)->hh.tbl->tail = &((head)->hh); \
137(head)->hh.tbl->num_buckets = HASH_INITIAL_NUM_BUCKETS; \
138(head)->hh.tbl->log2_num_buckets = HASH_INITIAL_NUM_BUCKETS_LOG2; \
139(head)->hh.tbl->hho = (char*)(&(head)->hh) - (char*)(head); \
140(head)->hh.tbl->buckets = (UT_hash_bucket*)uthash_malloc( \
141HASH_INITIAL_NUM_BUCKETS*sizeof(struct UT_hash_bucket)); \
142if (! (head)->hh.tbl->buckets) { uthash_fatal( "out of memory"); } \
143memset((head)->hh.tbl->buckets, 0, \
144HASH_INITIAL_NUM_BUCKETS*sizeof(struct UT_hash_bucket)); \
145HASH_BLOOM_MAKE((head)->hh.tbl); \
146(head)->hh.tbl->signature = HASH_SIGNATURE; \
147} while(0)
148
149#define HASH_ADD(hh,head,fieldname,keylen_in,add) \
150HASH_ADD_KEYPTR(hh,head,&add->fieldname,keylen_in,add)
151
152#define HASH_ADD_KEYPTR(hh,head,keyptr,keylen_in,add) \
153do { \
154unsigned _ha_bkt; \
155(add)->hh.next = NULL; \
156(add)->hh.key = (char*)keyptr; \
157(add)->hh.keylen = keylen_in; \
158if (!(head)) { \
159head = (add); \
160(head)->hh.prev = NULL; \
161HASH_MAKE_TABLE(hh,head); \
162} else { \
163(head)->hh.tbl->tail->next = (add); \
164(add)->hh.prev = ELMT_FROM_HH((head)->hh.tbl, (head)->hh.tbl->tail); \
165(head)->hh.tbl->tail = &((add)->hh); \
166} \
167(head)->hh.tbl->num_items++; \
168(add)->hh.tbl = (head)->hh.tbl; \
169HASH_FCN(keyptr,keylen_in, (head)->hh.tbl->num_buckets, \
170(add)->hh.hashv, _ha_bkt); \
171HASH_ADD_TO_BKT((head)->hh.tbl->buckets[_ha_bkt],&(add)->hh); \
172HASH_BLOOM_ADD((head)->hh.tbl,(add)->hh.hashv); \
173HASH_EMIT_KEY(hh,head,keyptr,keylen_in); \
174HASH_FSCK(hh,head); \
175} while(0)
176
177#define HASH_TO_BKT( hashv, num_bkts, bkt ) \
178do { \
179bkt = ((hashv) & ((num_bkts) - 1)); \
180} while(0)
181
182/* delete "delptr" from the hash table.
183 * "the usual" patch-up process for the app-order doubly-linked-list.
184 * The use of _hd_hh_del below deserves special explanation.
185 * These used to be expressed using (delptr) but that led to a bug
186 * if someone used the same symbol for the head and deletee, like
187 * HASH_DELETE(hh,users,users);
188 * We want that to work, but by changing the head (users) below
189 * we were forfeiting our ability to further refer to the deletee (users)
190 * in the patch-up process. Solution: use scratch space to
191 * copy the deletee pointer, then the latter references are via that
192 * scratch pointer rather than through the repointed (users) symbol.
193 */
194#define HASH_DELETE(hh,head,delptr) \
195do { \
196unsigned _hd_bkt; \
197struct UT_hash_handle *_hd_hh_del; \
198if ( ((delptr)->hh.prev == NULL) && ((delptr)->hh.next == NULL) ) { \
199uthash_free((head)->hh.tbl->buckets, \
200(head)->hh.tbl->num_buckets*sizeof(struct UT_hash_bucket) ); \
201HASH_BLOOM_FREE((head)->hh.tbl); \
202uthash_free((head)->hh.tbl, sizeof(UT_hash_table)); \
203head = NULL; \
204} else { \
205_hd_hh_del = &((delptr)->hh); \
206if ((delptr) == ELMT_FROM_HH((head)->hh.tbl,(head)->hh.tbl->tail)) { \
207(head)->hh.tbl->tail = \
208(UT_hash_handle*)((char*)((delptr)->hh.prev) + \
209(head)->hh.tbl->hho); \
210} \
211if ((delptr)->hh.prev) { \
212((UT_hash_handle*)((char*)((delptr)->hh.prev) + \
213(head)->hh.tbl->hho))->next = (delptr)->hh.next; \
214} else { \
215DECLTYPE_ASSIGN(head,(delptr)->hh.next); \
216} \
217if (_hd_hh_del->next) { \
218((UT_hash_handle*)((char*)_hd_hh_del->next + \
219(head)->hh.tbl->hho))->prev = \
220_hd_hh_del->prev; \
221} \
222HASH_TO_BKT( _hd_hh_del->hashv, (head)->hh.tbl->num_buckets, _hd_bkt); \
223HASH_DEL_IN_BKT(hh,(head)->hh.tbl->buckets[_hd_bkt], _hd_hh_del); \
224(head)->hh.tbl->num_items--; \
225} \
226HASH_FSCK(hh,head); \
227} while (0)
228
229
230/* convenience forms of HASH_FIND/HASH_ADD/HASH_DEL */
231#define HASH_FIND_STR(head,findstr,out) \
232HASH_FIND(hh,head,findstr,strlen(findstr),out)
233#define HASH_ADD_STR(head,strfield,add) \
234HASH_ADD(hh,head,strfield,strlen(add->strfield),add)
235#define HASH_FIND_INT(head,findint,out) \
236HASH_FIND(hh,head,findint,sizeof(int),out)
237#define HASH_ADD_INT(head,intfield,add) \
238HASH_ADD(hh,head,intfield,sizeof(int),add)
239#define HASH_FIND_PTR(head,findptr,out) \
240HASH_FIND(hh,head,findptr,sizeof(void *),out)
241#define HASH_ADD_PTR(head,ptrfield,add) \
242HASH_ADD(hh,head,ptrfield,sizeof(void *),add)
243#define HASH_DEL(head,delptr) \
244HASH_DELETE(hh,head,delptr)
245
246/* HASH_FSCK checks hash integrity on every add/delete when HASH_DEBUG is defined.
247 * This is for uthash developer only; it compiles away if HASH_DEBUG isn't defined.
248 */
249#ifdef HASH_DEBUG
250#define HASH_OOPS(...) do { fprintf(stderr,__VA_ARGS__); exit(-1); } while (0)
251#define HASH_FSCK(hh,head) \
252do { \
253unsigned _bkt_i; \
254unsigned _count, _bkt_count; \
255char *_prev; \
256struct UT_hash_handle *_thh; \
257if (head) { \
258_count = 0; \
259for( _bkt_i = 0; _bkt_i < (head)->hh.tbl->num_buckets; _bkt_i++) { \
260_bkt_count = 0; \
261_thh = (head)->hh.tbl->buckets[_bkt_i].hh_head; \
262_prev = NULL; \
263while (_thh) { \
264if (_prev != (char*)(_thh->hh_prev)) { \
265HASH_OOPS("invalid hh_prev %p, actual %p\n", \
266_thh->hh_prev, _prev ); \
267} \
268_bkt_count++; \
269_prev = (char*)(_thh); \
270_thh = _thh->hh_next; \
271} \
272_count += _bkt_count; \
273if ((head)->hh.tbl->buckets[_bkt_i].count != _bkt_count) { \
274HASH_OOPS("invalid bucket count %d, actual %d\n", \
275(head)->hh.tbl->buckets[_bkt_i].count, _bkt_count); \
276} \
277} \
278if (_count != (head)->hh.tbl->num_items) { \
279HASH_OOPS("invalid hh item count %d, actual %d\n", \
280(head)->hh.tbl->num_items, _count ); \
281} \
282/* traverse hh in app order; check next/prev integrity, count */ \
283_count = 0; \
284_prev = NULL; \
285_thh = &(head)->hh; \
286while (_thh) { \
287_count++; \
288if (_prev !=(char*)(_thh->prev)) { \
289HASH_OOPS("invalid prev %p, actual %p\n", \
290_thh->prev, _prev ); \
291} \
292_prev = (char*)ELMT_FROM_HH((head)->hh.tbl, _thh); \
293_thh = ( _thh->next ? (UT_hash_handle*)((char*)(_thh->next) + \
294(head)->hh.tbl->hho) : NULL ); \
295} \
296if (_count != (head)->hh.tbl->num_items) { \
297HASH_OOPS("invalid app item count %d, actual %d\n", \
298(head)->hh.tbl->num_items, _count ); \
299} \
300} \
301} while (0)
302#else
303#define HASH_FSCK(hh,head)
304#endif
305
306/* When compiled with -DHASH_EMIT_KEYS, length-prefixed keys are emitted to
307 * the descriptor to which this macro is defined for tuning the hash function.
308 * The app can #include <unistd.h> to get the prototype for write(2). */
309#ifdef HASH_EMIT_KEYS
310#define HASH_EMIT_KEY(hh,head,keyptr,fieldlen) \
311do { \
312unsigned _klen = fieldlen; \
313write(HASH_EMIT_KEYS, &_klen, sizeof(_klen)); \
314write(HASH_EMIT_KEYS, keyptr, fieldlen); \
315} while (0)
316#else
317#define HASH_EMIT_KEY(hh,head,keyptr,fieldlen)
318#endif
319
320/* default to Jenkin's hash unless overridden e.g. DHASH_FUNCTION=HASH_SAX */
321#ifdef HASH_FUNCTION
322#define HASH_FCN HASH_FUNCTION
323#else
324#define HASH_FCN HASH_JEN
325#endif
326
327/* The Bernstein hash function, used in Perl prior to v5.6 */
328#define HASH_BER(key,keylen,num_bkts,hashv,bkt) \
329do { \
330unsigned _hb_keylen=keylen; \
331char *_hb_key=(char*)(key); \
332(hashv) = 0; \
333while (_hb_keylen--) { (hashv) = ((hashv) * 33) + *_hb_key++; } \
334bkt = (hashv) & (num_bkts-1); \
335} while (0)
336
337
338/* SAX/FNV/OAT/JEN hash functions are macro variants of those listed at
339 * http://eternallyconfuzzled.com/tuts/algorithms/jsw_tut_hashing.aspx */
340#define HASH_SAX(key,keylen,num_bkts,hashv,bkt) \
341do { \
342unsigned _sx_i; \
343char *_hs_key=(char*)(key); \
344hashv = 0; \
345for(_sx_i=0; _sx_i < keylen; _sx_i++) \
346hashv ^= (hashv << 5) + (hashv >> 2) + _hs_key[_sx_i]; \
347bkt = hashv & (num_bkts-1); \
348} while (0)
349
350#define HASH_FNV(key,keylen,num_bkts,hashv,bkt) \
351do { \
352unsigned _fn_i; \
353char *_hf_key=(char*)(key); \
354hashv = 2166136261UL; \
355for(_fn_i=0; _fn_i < keylen; _fn_i++) \
356hashv = (hashv * 16777619) ^ _hf_key[_fn_i]; \
357bkt = hashv & (num_bkts-1); \
358} while(0);
359
360#define HASH_OAT(key,keylen,num_bkts,hashv,bkt) \
361do { \
362unsigned _ho_i; \
363char *_ho_key=(char*)(key); \
364hashv = 0; \
365for(_ho_i=0; _ho_i < keylen; _ho_i++) { \
366hashv += _ho_key[_ho_i]; \
367hashv += (hashv << 10); \
368hashv ^= (hashv >> 6); \
369} \
370hashv += (hashv << 3); \
371hashv ^= (hashv >> 11); \
372hashv += (hashv << 15); \
373bkt = hashv & (num_bkts-1); \
374} while(0)
375
376#define HASH_JEN_MIX(a,b,c) \
377do { \
378a -= b; a -= c; a ^= ( c >> 13 ); \
379b -= c; b -= a; b ^= ( a << 8 ); \
380c -= a; c -= b; c ^= ( b >> 13 ); \
381a -= b; a -= c; a ^= ( c >> 12 ); \
382b -= c; b -= a; b ^= ( a << 16 ); \
383c -= a; c -= b; c ^= ( b >> 5 ); \
384a -= b; a -= c; a ^= ( c >> 3 ); \
385b -= c; b -= a; b ^= ( a << 10 ); \
386c -= a; c -= b; c ^= ( b >> 15 ); \
387} while (0)
388
389#define HASH_JEN(key,keylen,num_bkts,hashv,bkt) \
390do { \
391unsigned _hj_i,_hj_j,_hj_k; \
392char *_hj_key=(char*)(key); \
393hashv = 0xfeedbeef; \
394_hj_i = _hj_j = 0x9e3779b9; \
395_hj_k = keylen; \
396while (_hj_k >= 12) { \
397_hj_i += (_hj_key[0] + ( (unsigned)_hj_key[1] << 8 ) \
398+ ( (unsigned)_hj_key[2] << 16 ) \
399+ ( (unsigned)_hj_key[3] << 24 ) ); \
400_hj_j += (_hj_key[4] + ( (unsigned)_hj_key[5] << 8 ) \
401+ ( (unsigned)_hj_key[6] << 16 ) \
402+ ( (unsigned)_hj_key[7] << 24 ) ); \
403hashv += (_hj_key[8] + ( (unsigned)_hj_key[9] << 8 ) \
404+ ( (unsigned)_hj_key[10] << 16 ) \
405+ ( (unsigned)_hj_key[11] << 24 ) ); \
406\
407HASH_JEN_MIX(_hj_i, _hj_j, hashv); \
408\
409_hj_key += 12; \
410_hj_k -= 12; \
411} \
412hashv += keylen; \
413switch ( _hj_k ) { \
414case 11: hashv += ( (unsigned)_hj_key[10] << 24 ); \
415case 10: hashv += ( (unsigned)_hj_key[9] << 16 ); \
416case 9: hashv += ( (unsigned)_hj_key[8] << 8 ); \
417case 8: _hj_j += ( (unsigned)_hj_key[7] << 24 ); \
418case 7: _hj_j += ( (unsigned)_hj_key[6] << 16 ); \
419case 6: _hj_j += ( (unsigned)_hj_key[5] << 8 ); \
420case 5: _hj_j += _hj_key[4]; \
421case 4: _hj_i += ( (unsigned)_hj_key[3] << 24 ); \
422case 3: _hj_i += ( (unsigned)_hj_key[2] << 16 ); \
423case 2: _hj_i += ( (unsigned)_hj_key[1] << 8 ); \
424case 1: _hj_i += _hj_key[0]; \
425} \
426HASH_JEN_MIX(_hj_i, _hj_j, hashv); \
427bkt = hashv & (num_bkts-1); \
428} while(0)
429
430/* The Paul Hsieh hash function */
431#undef get16bits
432#if (defined(__GNUC__) && defined(__i386__)) || defined(__WATCOMC__) \
433|| defined(_MSC_VER) || defined (__BORLANDC__) || defined (__TURBOC__)
434#define get16bits(d) (*((const uint16_t *) (d)))
435#endif
436
437#if !defined (get16bits)
438#define get16bits(d) ((((uint32_t)(((const uint8_t *)(d))[1])) << 8) \
439+(uint32_t)(((const uint8_t *)(d))[0]) )
440#endif
441#define HASH_SFH(key,keylen,num_bkts,hashv,bkt) \
442do { \
443char *_sfh_key=(char*)(key); \
444uint32_t _sfh_tmp, _sfh_len = keylen; \
445\
446int _sfh_rem = _sfh_len & 3; \
447_sfh_len >>= 2; \
448hashv = 0xcafebabe; \
449\
450/* Main loop */ \
451for (;_sfh_len > 0; _sfh_len--) { \
452hashv += get16bits (_sfh_key); \
453_sfh_tmp = (get16bits (_sfh_key+2) << 11) ^ hashv; \
454hashv = (hashv << 16) ^ _sfh_tmp; \
455_sfh_key += 2*sizeof (uint16_t); \
456hashv += hashv >> 11; \
457} \
458\
459/* Handle end cases */ \
460switch (_sfh_rem) { \
461case 3: hashv += get16bits (_sfh_key); \
462hashv ^= hashv << 16; \
463hashv ^= _sfh_key[sizeof (uint16_t)] << 18; \
464hashv += hashv >> 11; \
465break; \
466case 2: hashv += get16bits (_sfh_key); \
467hashv ^= hashv << 11; \
468hashv += hashv >> 17; \
469break; \
470case 1: hashv += *_sfh_key; \
471hashv ^= hashv << 10; \
472hashv += hashv >> 1; \
473} \
474\
475/* Force "avalanching" of final 127 bits */ \
476hashv ^= hashv << 3; \
477hashv += hashv >> 5; \
478hashv ^= hashv << 4; \
479hashv += hashv >> 17; \
480hashv ^= hashv << 25; \
481hashv += hashv >> 6; \
482bkt = hashv & (num_bkts-1); \
483} while(0);
484
485#ifdef HASH_USING_NO_STRICT_ALIASING
486/* The MurmurHash exploits some CPU's (x86,x86_64) tolerance for unaligned reads.
487 * For other types of CPU's (e.g. Sparc) an unaligned read causes a bus error.
488 * MurmurHash uses the faster approach only on CPU's where we know it's safe.
489 *
490 * Note the preprocessor built-in defines can be emitted using:
491 *
492 * gcc -m64 -dM -E - < /dev/null (on gcc)
493 * cc -## a.c (where a.c is a simple test file) (Sun Studio)
494 */
495#if (defined(__i386__) || defined(__x86_64__))
496#define MUR_GETBLOCK(p,i) p[i]
497#else /* non intel */
498#define MUR_PLUS0_ALIGNED(p) (((unsigned long)p & 0x3) == 0)
499#define MUR_PLUS1_ALIGNED(p) (((unsigned long)p & 0x3) == 1)
500#define MUR_PLUS2_ALIGNED(p) (((unsigned long)p & 0x3) == 2)
501#define MUR_PLUS3_ALIGNED(p) (((unsigned long)p & 0x3) == 3)
502#define WP(p) ((uint32_t*)((unsigned long)(p) & ~3UL))
503#if (defined(__BIG_ENDIAN__) || defined(SPARC) || defined(__ppc__) || defined(__ppc64__))
504#define MUR_THREE_ONE(p) ((((*WP(p))&0x00ffffff) << 8) | (((*(WP(p)+1))&0xff000000) >> 24))
505#define MUR_TWO_TWO(p) ((((*WP(p))&0x0000ffff) <<16) | (((*(WP(p)+1))&0xffff0000) >> 16))
506#define MUR_ONE_THREE(p) ((((*WP(p))&0x000000ff) <<24) | (((*(WP(p)+1))&0xffffff00) >> 8))
507#else /* assume little endian non-intel */
508#define MUR_THREE_ONE(p) ((((*WP(p))&0xffffff00) >> 8) | (((*(WP(p)+1))&0x000000ff) << 24))
509#define MUR_TWO_TWO(p) ((((*WP(p))&0xffff0000) >>16) | (((*(WP(p)+1))&0x0000ffff) << 16))
510#define MUR_ONE_THREE(p) ((((*WP(p))&0xff000000) >>24) | (((*(WP(p)+1))&0x00ffffff) << 8))
511#endif
512#define MUR_GETBLOCK(p,i) (MUR_PLUS0_ALIGNED(p) ? ((p)[i]) : \
513(MUR_PLUS1_ALIGNED(p) ? MUR_THREE_ONE(p) : \
514(MUR_PLUS2_ALIGNED(p) ? MUR_TWO_TWO(p) : \
515MUR_ONE_THREE(p))))
516#endif
517#define MUR_ROTL32(x,r) (((x) << (r)) | ((x) >> (32 - (r))))
518#define MUR_FMIX(_h) \
519do { \
520_h ^= _h >> 16; \
521_h *= 0x85ebca6b; \
522_h ^= _h >> 13; \
523_h *= 0xc2b2ae35l; \
524_h ^= _h >> 16; \
525} while(0)
526
527#define HASH_MUR(key,keylen,num_bkts,hashv,bkt) \
528do { \
529const uint8_t *_mur_data = (const uint8_t*)(key); \
530const int _mur_nblocks = (keylen) / 4; \
531uint32_t _mur_h1 = 0xf88D5353; \
532uint32_t _mur_c1 = 0xcc9e2d51; \
533uint32_t _mur_c2 = 0x1b873593; \
534const uint32_t *_mur_blocks = (const uint32_t*)(_mur_data+_mur_nblocks*4); \
535int _mur_i; \
536for(_mur_i = -_mur_nblocks; _mur_i; _mur_i++) { \
537uint32_t _mur_k1 = MUR_GETBLOCK(_mur_blocks,_mur_i); \
538_mur_k1 *= _mur_c1; \
539_mur_k1 = MUR_ROTL32(_mur_k1,15); \
540_mur_k1 *= _mur_c2; \
541\
542_mur_h1 ^= _mur_k1; \
543_mur_h1 = MUR_ROTL32(_mur_h1,13); \
544_mur_h1 = _mur_h1*5+0xe6546b64; \
545} \
546const uint8_t *_mur_tail = (const uint8_t*)(_mur_data + _mur_nblocks*4); \
547uint32_t _mur_k1=0; \
548switch((keylen) & 3) { \
549case 3: _mur_k1 ^= _mur_tail[2] << 16; \
550case 2: _mur_k1 ^= _mur_tail[1] << 8; \
551case 1: _mur_k1 ^= _mur_tail[0]; \
552_mur_k1 *= _mur_c1; \
553_mur_k1 = MUR_ROTL32(_mur_k1,15); \
554_mur_k1 *= _mur_c2; \
555_mur_h1 ^= _mur_k1; \
556} \
557_mur_h1 ^= (keylen); \
558MUR_FMIX(_mur_h1); \
559hashv = _mur_h1; \
560bkt = hashv & (num_bkts-1); \
561} while(0)
562#endif /* HASH_USING_NO_STRICT_ALIASING */
563
564/* key comparison function; return 0 if keys equal */
565#define HASH_KEYCMP(a,b,len) memcmp(a,b,len)
566
567/* iterate over items in a known bucket to find desired item */
568#define HASH_FIND_IN_BKT(tbl,hh,head,keyptr,keylen_in,out) \
569do { \
570if (head.hh_head) DECLTYPE_ASSIGN(out,ELMT_FROM_HH(tbl,head.hh_head)); \
571else out=NULL; \
572while (out) { \
573if (out->hh.keylen == keylen_in) { \
574if ((HASH_KEYCMP(out->hh.key,keyptr,keylen_in)) == 0) break; \
575} \
576if (out->hh.hh_next) DECLTYPE_ASSIGN(out,ELMT_FROM_HH(tbl,out->hh.hh_next)); \
577else out = NULL; \
578} \
579} while(0)
580
581/* add an item to a bucket */
582#define HASH_ADD_TO_BKT(head,addhh) \
583do { \
584head.count++; \
585(addhh)->hh_next = head.hh_head; \
586(addhh)->hh_prev = NULL; \
587if (head.hh_head) { (head).hh_head->hh_prev = (addhh); } \
588(head).hh_head=addhh; \
589if (head.count >= ((head.expand_mult+1) * HASH_BKT_CAPACITY_THRESH) \
590&& (addhh)->tbl->noexpand != 1) { \
591HASH_EXPAND_BUCKETS((addhh)->tbl); \
592} \
593} while(0)
594
595/* remove an item from a given bucket */
596#define HASH_DEL_IN_BKT(hh,head,hh_del) \
597(head).count--; \
598if ((head).hh_head == hh_del) { \
599(head).hh_head = hh_del->hh_next; \
600} \
601if (hh_del->hh_prev) { \
602hh_del->hh_prev->hh_next = hh_del->hh_next; \
603} \
604if (hh_del->hh_next) { \
605hh_del->hh_next->hh_prev = hh_del->hh_prev; \
606}
607
608/* Bucket expansion has the effect of doubling the number of buckets
609 * and redistributing the items into the new buckets. Ideally the
610 * items will distribute more or less evenly into the new buckets
611 * (the extent to which this is true is a measure of the quality of
612 * the hash function as it applies to the key domain).
613 *
614 * With the items distributed into more buckets, the chain length
615 * (item count) in each bucket is reduced. Thus by expanding buckets
616 * the hash keeps a bound on the chain length. This bounded chain
617 * length is the essence of how a hash provides constant time lookup.
618 *
619 * The calculation of tbl->ideal_chain_maxlen below deserves some
620 * explanation. First, keep in mind that we're calculating the ideal
621 * maximum chain length based on the *new* (doubled) bucket count.
622 * In fractions this is just n/b (n=number of items,b=new num buckets).
623 * Since the ideal chain length is an integer, we want to calculate
624 * ceil(n/b). We don't depend on floating point arithmetic in this
625 * hash, so to calculate ceil(n/b) with integers we could write
626 *
627 * ceil(n/b) = (n/b) + ((n%b)?1:0)
628 *
629 * and in fact a previous version of this hash did just that.
630 * But now we have improved things a bit by recognizing that b is
631 * always a power of two. We keep its base 2 log handy (call it lb),
632 * so now we can write this with a bit shift and logical AND:
633 *
634 * ceil(n/b) = (n>>lb) + ( (n & (b-1)) ? 1:0)
635 *
636 */
637#define HASH_EXPAND_BUCKETS(tbl) \
638do { \
639unsigned _he_bkt; \
640unsigned _he_bkt_i; \
641struct UT_hash_handle *_he_thh, *_he_hh_nxt; \
642UT_hash_bucket *_he_new_buckets, *_he_newbkt; \
643_he_new_buckets = (UT_hash_bucket*)uthash_malloc( \
6442 * tbl->num_buckets * sizeof(struct UT_hash_bucket)); \
645if (!_he_new_buckets) { uthash_fatal( "out of memory"); } \
646memset(_he_new_buckets, 0, \
6472 * tbl->num_buckets * sizeof(struct UT_hash_bucket)); \
648tbl->ideal_chain_maxlen = \
649(tbl->num_items >> (tbl->log2_num_buckets+1)) + \
650((tbl->num_items & ((tbl->num_buckets*2)-1)) ? 1 : 0); \
651tbl->nonideal_items = 0; \
652for(_he_bkt_i = 0; _he_bkt_i < tbl->num_buckets; _he_bkt_i++) \
653{ \
654_he_thh = tbl->buckets[ _he_bkt_i ].hh_head; \
655while (_he_thh) { \
656_he_hh_nxt = _he_thh->hh_next; \
657HASH_TO_BKT( _he_thh->hashv, tbl->num_buckets*2, _he_bkt); \
658_he_newbkt = &(_he_new_buckets[ _he_bkt ]); \
659if (++(_he_newbkt->count) > tbl->ideal_chain_maxlen) { \
660tbl->nonideal_items++; \
661_he_newbkt->expand_mult = _he_newbkt->count / \
662tbl->ideal_chain_maxlen; \
663} \
664_he_thh->hh_prev = NULL; \
665_he_thh->hh_next = _he_newbkt->hh_head; \
666if (_he_newbkt->hh_head) _he_newbkt->hh_head->hh_prev = \
667_he_thh; \
668_he_newbkt->hh_head = _he_thh; \
669_he_thh = _he_hh_nxt; \
670} \
671} \
672uthash_free( tbl->buckets, tbl->num_buckets*sizeof(struct UT_hash_bucket) ); \
673tbl->num_buckets *= 2; \
674tbl->log2_num_buckets++; \
675tbl->buckets = _he_new_buckets; \
676tbl->ineff_expands = (tbl->nonideal_items > (tbl->num_items >> 1)) ? \
677(tbl->ineff_expands+1) : 0; \
678if (tbl->ineff_expands > 1) { \
679tbl->noexpand=1; \
680uthash_noexpand_fyi(tbl); \
681} \
682uthash_expand_fyi(tbl); \
683} while(0)
684
685
686/* This is an adaptation of Simon Tatham's O(n log(n)) mergesort */
687/* Note that HASH_SORT assumes the hash handle name to be hh.
688 * HASH_SRT was added to allow the hash handle name to be passed in. */
689#define HASH_SORT(head,cmpfcn) HASH_SRT(hh,head,cmpfcn)
690#define HASH_SRT(hh,head,cmpfcn) \
691do { \
692unsigned _hs_i; \
693unsigned _hs_looping,_hs_nmerges,_hs_insize,_hs_psize,_hs_qsize; \
694struct UT_hash_handle *_hs_p, *_hs_q, *_hs_e, *_hs_list, *_hs_tail; \
695if (head) { \
696_hs_insize = 1; \
697_hs_looping = 1; \
698_hs_list = &((head)->hh); \
699while (_hs_looping) { \
700_hs_p = _hs_list; \
701_hs_list = NULL; \
702_hs_tail = NULL; \
703_hs_nmerges = 0; \
704while (_hs_p) { \
705_hs_nmerges++; \
706_hs_q = _hs_p; \
707_hs_psize = 0; \
708for ( _hs_i = 0; _hs_i < _hs_insize; _hs_i++ ) { \
709_hs_psize++; \
710_hs_q = (UT_hash_handle*)((_hs_q->next) ? \
711((void*)((char*)(_hs_q->next) + \
712(head)->hh.tbl->hho)) : NULL); \
713if (! (_hs_q) ) break; \
714} \
715_hs_qsize = _hs_insize; \
716while ((_hs_psize > 0) || ((_hs_qsize > 0) && _hs_q )) { \
717if (_hs_psize == 0) { \
718_hs_e = _hs_q; \
719_hs_q = (UT_hash_handle*)((_hs_q->next) ? \
720((void*)((char*)(_hs_q->next) + \
721(head)->hh.tbl->hho)) : NULL); \
722_hs_qsize--; \
723} else if ( (_hs_qsize == 0) || !(_hs_q) ) { \
724_hs_e = _hs_p; \
725_hs_p = (UT_hash_handle*)((_hs_p->next) ? \
726((void*)((char*)(_hs_p->next) + \
727(head)->hh.tbl->hho)) : NULL); \
728_hs_psize--; \
729} else if (( \
730cmpfcn(DECLTYPE(head)(ELMT_FROM_HH((head)->hh.tbl,_hs_p)), \
731DECLTYPE(head)(ELMT_FROM_HH((head)->hh.tbl,_hs_q))) \
732) <= 0) { \
733_hs_e = _hs_p; \
734_hs_p = (UT_hash_handle*)((_hs_p->next) ? \
735((void*)((char*)(_hs_p->next) + \
736(head)->hh.tbl->hho)) : NULL); \
737_hs_psize--; \
738} else { \
739_hs_e = _hs_q; \
740_hs_q = (UT_hash_handle*)((_hs_q->next) ? \
741((void*)((char*)(_hs_q->next) + \
742(head)->hh.tbl->hho)) : NULL); \
743_hs_qsize--; \
744} \
745if ( _hs_tail ) { \
746_hs_tail->next = ((_hs_e) ? \
747ELMT_FROM_HH((head)->hh.tbl,_hs_e) : NULL); \
748} else { \
749_hs_list = _hs_e; \
750} \
751_hs_e->prev = ((_hs_tail) ? \
752ELMT_FROM_HH((head)->hh.tbl,_hs_tail) : NULL); \
753_hs_tail = _hs_e; \
754} \
755_hs_p = _hs_q; \
756} \
757_hs_tail->next = NULL; \
758if ( _hs_nmerges <= 1 ) { \
759_hs_looping=0; \
760(head)->hh.tbl->tail = _hs_tail; \
761DECLTYPE_ASSIGN(head,ELMT_FROM_HH((head)->hh.tbl, _hs_list)); \
762} \
763_hs_insize *= 2; \
764} \
765HASH_FSCK(hh,head); \
766} \
767} while (0)
768
769/* This function selects items from one hash into another hash.
770 * The end result is that the selected items have dual presence
771 * in both hashes. There is no copy of the items made; rather
772 * they are added into the new hash through a secondary hash
773 * hash handle that must be present in the structure. */
774#define HASH_SELECT(hh_dst, dst, hh_src, src, cond) \
775do { \
776unsigned _src_bkt, _dst_bkt; \
777void *_last_elt=NULL, *_elt; \
778UT_hash_handle *_src_hh, *_dst_hh, *_last_elt_hh=NULL; \
779ptrdiff_t _dst_hho = ((char*)(&(dst)->hh_dst) - (char*)(dst)); \
780if (src) { \
781for(_src_bkt=0; _src_bkt < (src)->hh_src.tbl->num_buckets; _src_bkt++) { \
782for(_src_hh = (src)->hh_src.tbl->buckets[_src_bkt].hh_head; \
783_src_hh; \
784_src_hh = _src_hh->hh_next) { \
785_elt = ELMT_FROM_HH((src)->hh_src.tbl, _src_hh); \
786if (cond(_elt)) { \
787_dst_hh = (UT_hash_handle*)(((char*)_elt) + _dst_hho); \
788_dst_hh->key = _src_hh->key; \
789_dst_hh->keylen = _src_hh->keylen; \
790_dst_hh->hashv = _src_hh->hashv; \
791_dst_hh->prev = _last_elt; \
792_dst_hh->next = NULL; \
793if (_last_elt_hh) { _last_elt_hh->next = _elt; } \
794if (!dst) { \
795DECLTYPE_ASSIGN(dst,_elt); \
796HASH_MAKE_TABLE(hh_dst,dst); \
797} else { \
798_dst_hh->tbl = (dst)->hh_dst.tbl; \
799} \
800HASH_TO_BKT(_dst_hh->hashv, _dst_hh->tbl->num_buckets, _dst_bkt); \
801HASH_ADD_TO_BKT(_dst_hh->tbl->buckets[_dst_bkt],_dst_hh); \
802(dst)->hh_dst.tbl->num_items++; \
803_last_elt = _elt; \
804_last_elt_hh = _dst_hh; \
805} \
806} \
807} \
808} \
809HASH_FSCK(hh_dst,dst); \
810} while (0)
811
812#define HASH_CLEAR(hh,head) \
813do { \
814if (head) { \
815uthash_free((head)->hh.tbl->buckets, \
816(head)->hh.tbl->num_buckets*sizeof(struct UT_hash_bucket)); \
817uthash_free((head)->hh.tbl, sizeof(UT_hash_table)); \
818(head)=NULL; \
819} \
820} while(0)
821
822#ifdef NO_DECLTYPE
823#define HASH_ITER(hh,head,el,tmp) \
824for((el)=(head), (*(char**)(&(tmp)))=(char*)((head)?(head)->hh.next:NULL); \
825el; (el)=(tmp),(*(char**)(&(tmp)))=(char*)((tmp)?(tmp)->hh.next:NULL))
826#else
827#define HASH_ITER(hh,head,el,tmp) \
828for((el)=(head),(tmp)=DECLTYPE(el)((head)?(head)->hh.next:NULL); \
829el; (el)=(tmp),(tmp)=DECLTYPE(el)((tmp)?(tmp)->hh.next:NULL))
830#endif
831
832/* obtain a count of items in the hash */
833#define HASH_COUNT(head) HASH_CNT(hh,head)
834#define HASH_CNT(hh,head) ((head)?((head)->hh.tbl->num_items):0)
835
836typedef struct UT_hash_bucket {
837 struct UT_hash_handle *hh_head;
838 unsigned count;
839
840 /* expand_mult is normally set to 0. In this situation, the max chain length
841 * threshold is enforced at its default value, HASH_BKT_CAPACITY_THRESH. (If
842 * the bucket's chain exceeds this length, bucket expansion is triggered).
843 * However, setting expand_mult to a non-zero value delays bucket expansion
844 * (that would be triggered by additions to this particular bucket)
845 * until its chain length reaches a *multiple* of HASH_BKT_CAPACITY_THRESH.
846 * (The multiplier is simply expand_mult+1). The whole idea of this
847 * multiplier is to reduce bucket expansions, since they are expensive, in
848 * situations where we know that a particular bucket tends to be overused.
849 * It is better to let its chain length grow to a longer yet-still-bounded
850 * value, than to do an O(n) bucket expansion too often.
851 */
852 unsigned expand_mult;
853
854} UT_hash_bucket;
855
856/* random signature used only to find hash tables in external analysis */
857#define HASH_SIGNATURE 0xa0111fe1
858#define HASH_BLOOM_SIGNATURE 0xb12220f2
859
860typedef struct UT_hash_table {
861 UT_hash_bucket *buckets;
862 unsigned num_buckets, log2_num_buckets;
863 unsigned num_items;
864 struct UT_hash_handle *tail; /* tail hh in app order, for fast append */
865 ptrdiff_t hho; /* hash handle offset (byte pos of hash handle in element */
866
867 /* in an ideal situation (all buckets used equally), no bucket would have
868 * more than ceil(#items/#buckets) items. that's the ideal chain length. */
869 unsigned ideal_chain_maxlen;
870
871 /* nonideal_items is the number of items in the hash whose chain position
872 * exceeds the ideal chain maxlen. these items pay the penalty for an uneven
873 * hash distribution; reaching them in a chain traversal takes >ideal steps */
874 unsigned nonideal_items;
875
876 /* ineffective expands occur when a bucket doubling was performed, but
877 * afterward, more than half the items in the hash had nonideal chain
878 * positions. If this happens on two consecutive expansions we inhibit any
879 * further expansion, as it's not helping; this happens when the hash
880 * function isn't a good fit for the key domain. When expansion is inhibited
881 * the hash will still work, albeit no longer in constant time. */
882 unsigned ineff_expands, noexpand;
883
884 uint32_t signature; /* used only to find hash tables in external analysis */
885#ifdef HASH_BLOOM
886 uint32_t bloom_sig; /* used only to test bloom exists in external analysis */
887 uint8_t *bloom_bv;
888 char bloom_nbits;
889#endif
890
891} UT_hash_table;
892
893typedef struct UT_hash_handle {
894 struct UT_hash_table *tbl;
895 void *prev; /* prev element in app order */
896 void *next; /* next element in app order */
897 struct UT_hash_handle *hh_prev; /* previous hh in bucket order */
898 struct UT_hash_handle *hh_next; /* next hh in bucket order */
899 void *key; /* ptr to enclosing struct's key */
900 unsigned keylen; /* enclosing struct's key len */
901 unsigned hashv; /* result of hash-fcn(key) */
902} UT_hash_handle;
903
904#endif /* UTHASH_H */