Saurab Dulal | 8ae870a | 2018-07-31 05:17:49 +0000 | [diff] [blame^] | 1 | # -*- Mode:python; c-file-style:"gnu"; indent-tabs-mode:nil -*- */ |
| 2 | #!/usr/bin/env python |
| 3 | # |
| 4 | # Copyright (C) 2015-2019, The University of Memphis |
| 5 | # |
| 6 | # This file is part of Mini-NDN. |
| 7 | # See AUTHORS.md for a complete list of Mini-NDN authors and contributors. |
| 8 | # |
| 9 | # Mini-NDN is free software: you can redistribute it and/or modify |
| 10 | # it under the terms of the GNU General Public License as published by |
| 11 | # the Free Software Foundation, either version 3 of the License, or |
| 12 | # (at your option) any later version. |
| 13 | # |
| 14 | # Mini-NDN is distributed in the hope that it will be useful, |
| 15 | # but WITHOUT ANY WARRANTY; without even the implied warranty of |
| 16 | # MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the |
| 17 | # GNU General Public License for more details. |
| 18 | # |
| 19 | # You should have received a copy of the GNU General Public License |
| 20 | # along with Mini-NDN, e.g., in COPYING.md file. |
| 21 | # If not, see <http://www.gnu.org/licenses/>. |
| 22 | |
| 23 | ''' |
| 24 | This module will compute link state, hyperbolic and geohyperbolic |
| 25 | routes and their costs from the given Mini-NDN topology |
| 26 | ''' |
| 27 | |
| 28 | import heapq |
| 29 | import math |
| 30 | from collections import defaultdict |
| 31 | from math import sin, cos, sinh, cosh, acos, acosh |
| 32 | import json |
| 33 | import operator |
| 34 | |
| 35 | from mininet.log import info, debug, error |
| 36 | |
| 37 | UNKNOWN_DISTANCE = -1 |
| 38 | HYPERBOLIC_COST_ADJUSTMENT_FACTOR = 1000 |
| 39 | |
| 40 | class CalculateRoutes(): |
| 41 | """ |
| 42 | Creates a route calculation object, which is used to compute routes from a node to |
| 43 | every other nodes in a given topology topology using hyperbolic or geohyperbolic |
| 44 | routing algorithm |
| 45 | |
| 46 | :param NetObject netObj: Mininet net object |
| 47 | :param RoutingType routingType: (optional) Routing algorithm, link-state or hr etc |
| 48 | """ |
| 49 | def __init__(self, netObj, routingType): |
| 50 | self.adjacenctMatrix = defaultdict(dict) |
| 51 | self.nodeDict = defaultdict(dict) |
| 52 | self.routingType = routingType |
| 53 | for host in netObj.hosts: |
| 54 | radius = float(host.params['params']['radius']) |
| 55 | angles = [float(x) for x in host.params['params']['angle'].split(',')] |
| 56 | self.nodeDict[host.name][radius] = angles |
| 57 | |
| 58 | for link in netObj.topo.links_conf: |
| 59 | linkDelay = int(link.linkDict['delay'].replace("ms", "")) |
| 60 | self.adjacenctMatrix[link.h1][link.h2] = linkDelay |
| 61 | self.adjacenctMatrix[link.h2][link.h1] = linkDelay |
| 62 | |
| 63 | def getNestedDictionary(self): |
| 64 | return defaultdict(self.getNestedDictionary) |
| 65 | |
| 66 | def getRoutes(self, nFaces): |
| 67 | resultMatrix = self.getNestedDictionary() |
| 68 | routes = defaultdict(list) |
| 69 | |
| 70 | if self.routingType == "link-state": |
| 71 | if nFaces == 1: |
| 72 | resultMatrix = self.computeDijkastra() # only best routes. |
| 73 | else: |
| 74 | resultMatrix = self.computeDijkastraAll() # all possible routes |
| 75 | elif self.routingType == "hr": |
| 76 | # Note: For hyperbolic, only way to find the best routes is by computing all possible |
| 77 | # routes and getting the best one. |
| 78 | resultMatrix = self.computeHyperbolic() |
| 79 | else: |
| 80 | info("Routing type not supported\n") |
| 81 | return [] |
| 82 | |
| 83 | for node in resultMatrix: |
| 84 | for destinationNode in resultMatrix[node]: |
| 85 | # Sort node - destination via neighbor based on their cost |
| 86 | tempDict = resultMatrix[node][destinationNode] |
| 87 | shortedTempDict = sorted(tempDict.items(), key=operator.itemgetter(1)) |
| 88 | # nFaces option gets n-best faces based on shortest distance, default is all |
| 89 | if nFaces == 0: |
| 90 | for item in shortedTempDict: |
| 91 | viaNeighbor = item[0] |
| 92 | cost = item[1] |
| 93 | routes[node].append([destinationNode, str(cost), viaNeighbor]) |
| 94 | else: |
| 95 | for index, item in enumerate(shortedTempDict): |
| 96 | if index >= nFaces: |
| 97 | break |
| 98 | viaNeighbor = item[0] |
| 99 | cost = item[1] |
| 100 | routes[node].append([destinationNode, str(cost), viaNeighbor]) |
| 101 | |
| 102 | debug("-routes----", routes) |
| 103 | return routes |
| 104 | |
| 105 | def getNodeNames(self): |
| 106 | return [k for k in self.nodeDict] |
| 107 | |
| 108 | def computeHyperbolic(self): |
| 109 | paths = self.getNestedDictionary() |
| 110 | nodeNames = self.getNodeNames() |
| 111 | for node in self.nodeDict: |
| 112 | neighbors = [k for k in self.adjacenctMatrix[node]] |
| 113 | for viaNeighbor in neighbors: |
| 114 | others = list(set(nodeNames) - set(viaNeighbor) - set(node)) |
| 115 | paths[node][viaNeighbor][viaNeighbor] = 0 |
| 116 | # Compute distance from neighbors to no-neighbors |
| 117 | for destinationNode in others: |
| 118 | hyperbolicDistance = getHyperbolicDistance(self.nodeDict[viaNeighbor], |
| 119 | self.nodeDict[destinationNode]) |
| 120 | hyperbolicCost = int(HYPERBOLIC_COST_ADJUSTMENT_FACTOR \ |
| 121 | * round(hyperbolicDistance, 6)) |
| 122 | paths[node][destinationNode][viaNeighbor] = hyperbolicCost |
| 123 | |
| 124 | debug("Shortest Distance Matrix: {}".format(json.dumps(paths))) |
| 125 | return paths |
| 126 | |
| 127 | def computeDijkastra(self): |
| 128 | """ |
| 129 | Dijkstra computation: Compute all the shortest paths from nodes to the destinations. |
| 130 | And fills the distance matrix with the corresponding source to destination cost |
| 131 | """ |
| 132 | distanceMatrix = self.getNestedDictionary() |
| 133 | nodeNames = self.getNodeNames() |
| 134 | for node in nodeNames: |
| 135 | others = list(set(nodeNames) - set(node)) |
| 136 | for destinationNode in others: |
| 137 | cost, path = dijkstra(self.adjacenctMatrix, node, destinationNode) |
| 138 | viaNeighbor = path[1] |
| 139 | distanceMatrix[node][destinationNode][viaNeighbor] = cost |
| 140 | |
| 141 | debug("Shortest Distance Matrix: {}".format(json.dumps(distanceMatrix))) |
| 142 | return distanceMatrix |
| 143 | |
| 144 | def computeDijkastraAll(self): |
| 145 | """ |
| 146 | Multi-path Dijkastra computation: Compute all the shortest paths from nodes to the |
| 147 | destinations via all of its neighbors individually. And fills the distanceMatrixViaNeighbor |
| 148 | with a corresponding source to its destination cost |
| 149 | |
| 150 | Important: distanceMatrixViaNeighbor represents the shortest distance from a source to a |
| 151 | destination via specific neighbors |
| 152 | """ |
| 153 | distanceMatrixViaNeighbor = self.getNestedDictionary() |
| 154 | nodeNames = self.getNodeNames() |
| 155 | for node in nodeNames: |
| 156 | neighbors = [k for k in self.adjacenctMatrix[node]] |
| 157 | for viaNeighbor in neighbors: |
| 158 | directCost = self.adjacenctMatrix[node][viaNeighbor] |
| 159 | distanceMatrixViaNeighbor[node][viaNeighbor][viaNeighbor] = directCost |
| 160 | others = list(set(nodeNames) - set(viaNeighbor) - set(node)) |
| 161 | for destinationNode in others: |
| 162 | nodeNeighborCost = self.adjacenctMatrix[node][viaNeighbor] |
| 163 | # path variable is not used for now |
| 164 | cost, path = dijkstra(self.adjacenctMatrix, viaNeighbor, destinationNode, node) |
| 165 | if cost != 0 and path != None: |
| 166 | totalCost = cost + nodeNeighborCost |
| 167 | distanceMatrixViaNeighbor[node][destinationNode][viaNeighbor] = totalCost |
| 168 | |
| 169 | debug("Shortest Distance Matrix: {}".format(json.dumps(distanceMatrixViaNeighbor))) |
| 170 | return distanceMatrixViaNeighbor |
| 171 | |
| 172 | def dijkstra(graph, start, end, ignoredNode = None): |
| 173 | """ |
| 174 | Compute shortest path and cost from a given source to a destination |
| 175 | using Dijkstra algorithm |
| 176 | |
| 177 | :param Graph graph: given network topology/graph |
| 178 | :param Start start: source node in a given network graph/topology |
| 179 | :end End end: destination node in a given network graph/topology |
| 180 | :param Node ignoredNode: node to ignore computing shortest path from |
| 181 | """ |
| 182 | queue = [(0, start, [])] |
| 183 | seen = set() |
| 184 | while True: |
| 185 | (cost, v, path) = heapq.heappop(queue) |
| 186 | if v not in seen: |
| 187 | path = path + [v] |
| 188 | seen.add(v) |
| 189 | if v == end: |
| 190 | debug("Distance from {} to {} is {}".format(start, end, cost)) |
| 191 | return cost, path |
| 192 | for (_next, c) in graph[v].iteritems(): |
| 193 | if _next != ignoredNode: # Ignore path going via ignoreNode |
| 194 | heapq.heappush(queue, (cost + c, _next, path)) |
| 195 | |
| 196 | if not queue: # return if no path exist from source - destination except via ignoreNode |
| 197 | debug("Distance from {} to {} is {}".format(start, end, cost)) |
| 198 | return cost, None |
| 199 | |
| 200 | def calculateAngularDistance(angleVectorI, angleVectorJ): |
| 201 | """ |
| 202 | For hyperbolic/geohyperbolic routing algorithm, this function computes angular distance between |
| 203 | two nodes. A node can have two or more than two angular coordinates. |
| 204 | |
| 205 | :param AngleVectorI angleVectorI: list of angular coordinate of a give node I |
| 206 | :param AngleVectorJ angleVectorJ: list of angular coordinate of a give node J |
| 207 | |
| 208 | ref: https://en.wikipedia.org/wiki/N-sphere#Spherical_coordinates |
| 209 | |
| 210 | """ |
| 211 | innerProduct = 0.0 |
| 212 | if len(angleVectorI) != len(angleVectorJ): |
| 213 | error("Angle vector sizes do not match") |
| 214 | return UNKNOWN_DISTANCE |
| 215 | |
| 216 | # Calculate x0 of the vectors |
| 217 | x0i = cos(angleVectorI[0]) |
| 218 | x0j = cos(angleVectorJ[0]) |
| 219 | |
| 220 | # Calculate xn of the vectors |
| 221 | xni = sin(angleVectorI[len(angleVectorI) - 1]) |
| 222 | xnj = sin(angleVectorJ[len(angleVectorJ) - 1]) |
| 223 | |
| 224 | # Do the aggregation of the (n-1) coordinates (if there is more than one angle) |
| 225 | # i.e contraction of all (n-1)-dimensional angular coordinates to one variable |
| 226 | for k in range(0, len(angleVectorI)-1): |
| 227 | xni *= sin(angleVectorI[k]) |
| 228 | xnj *= sin(angleVectorJ[k]) |
| 229 | |
| 230 | innerProduct += (x0i * x0j) + (xni * xnj) |
| 231 | |
| 232 | if (len(angleVectorI) > 1): |
| 233 | for m in range(1, len(angleVectorI)): |
| 234 | # Calculate euclidean coordinates given the angles and assuming R_sphere = 1 |
| 235 | xmi = cos(angleVectorI[m]) |
| 236 | xmj = cos(angleVectorJ[m]) |
| 237 | for l in range (0, m): |
| 238 | xmi *= sin(angleVectorI[l]) |
| 239 | xmj *= sin(angleVectorJ[l]) |
| 240 | |
| 241 | innerProduct += xmi * xmj |
| 242 | |
| 243 | # ArcCos of the inner product gives the angular distance |
| 244 | # between two points on a d-dimensional sphere |
| 245 | angularDist = acos(innerProduct) |
| 246 | debug("Angular distance from {} to {} is {}".format(angleVectorI, angleVectorJ, angularDist)) |
| 247 | return angularDist |
| 248 | |
| 249 | def getHyperbolicDistance(sourceNode, destNode): |
| 250 | """ |
| 251 | Return hyperbolic or geohyperbolic distance between two nodes. The distance is computed |
| 252 | on the basis of following algorithm/mathematics |
| 253 | ref: https://en.wikipedia.org/wiki/Hyperbolic_geometry |
| 254 | """ |
| 255 | r1 = [key for key in sourceNode][0] |
| 256 | r2 = [key for key in destNode][0] |
| 257 | |
| 258 | zeta = 1.0 |
| 259 | dtheta = calculateAngularDistance(sourceNode[r1], destNode[r2]) |
| 260 | hyperbolicDistance = (1./zeta) * acosh(cosh(zeta * r1) * cosh(zeta * r2) -\ |
| 261 | sinh(zeta * r1) * sinh(zeta * r2) * cos(dtheta)) |
| 262 | |
| 263 | debug("Distance from {} to {} is {}".format(sourceNode, destNode, hyperbolicDistance)) |
| 264 | return hyperbolicDistance |