Ashlesh Gawande | 6c86e30 | 2019-09-17 22:27:05 -0500 | [diff] [blame^] | 1 | # -*- Mode:python; c-file-style:"gnu"; indent-tabs-mode:nil -*- */ |
Saurab Dulal | 8ae870a | 2018-07-31 05:17:49 +0000 | [diff] [blame] | 2 | # |
| 3 | # Copyright (C) 2015-2019, The University of Memphis |
| 4 | # |
| 5 | # This file is part of Mini-NDN. |
| 6 | # See AUTHORS.md for a complete list of Mini-NDN authors and contributors. |
| 7 | # |
| 8 | # Mini-NDN is free software: you can redistribute it and/or modify |
| 9 | # it under the terms of the GNU General Public License as published by |
| 10 | # the Free Software Foundation, either version 3 of the License, or |
| 11 | # (at your option) any later version. |
| 12 | # |
| 13 | # Mini-NDN is distributed in the hope that it will be useful, |
| 14 | # but WITHOUT ANY WARRANTY; without even the implied warranty of |
| 15 | # MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the |
| 16 | # GNU General Public License for more details. |
| 17 | # |
| 18 | # You should have received a copy of the GNU General Public License |
| 19 | # along with Mini-NDN, e.g., in COPYING.md file. |
| 20 | # If not, see <http://www.gnu.org/licenses/>. |
| 21 | |
Ashlesh Gawande | 6c86e30 | 2019-09-17 22:27:05 -0500 | [diff] [blame^] | 22 | # IMPORTANT! This feature is in highly experimental phase and may go several changes |
| 23 | # in future |
| 24 | |
Saurab Dulal | 8ae870a | 2018-07-31 05:17:49 +0000 | [diff] [blame] | 25 | ''' |
| 26 | This module will compute link state, hyperbolic and geohyperbolic |
| 27 | routes and their costs from the given Mini-NDN topology |
| 28 | ''' |
| 29 | |
| 30 | import heapq |
Saurab Dulal | 8ae870a | 2018-07-31 05:17:49 +0000 | [diff] [blame] | 31 | from math import sin, cos, sinh, cosh, acos, acosh |
| 32 | import json |
| 33 | import operator |
Ashlesh Gawande | 6c86e30 | 2019-09-17 22:27:05 -0500 | [diff] [blame^] | 34 | from collections import defaultdict |
Saurab Dulal | 8ae870a | 2018-07-31 05:17:49 +0000 | [diff] [blame] | 35 | |
Ashlesh Gawande | 6c86e30 | 2019-09-17 22:27:05 -0500 | [diff] [blame^] | 36 | from mininet.log import info, debug, error, warn |
| 37 | from minindn.helpers.nfdc import Nfdc as nfdc |
Saurab Dulal | 8ae870a | 2018-07-31 05:17:49 +0000 | [diff] [blame] | 38 | |
| 39 | UNKNOWN_DISTANCE = -1 |
| 40 | HYPERBOLIC_COST_ADJUSTMENT_FACTOR = 1000 |
| 41 | |
Ashlesh Gawande | 6c86e30 | 2019-09-17 22:27:05 -0500 | [diff] [blame^] | 42 | def dijkstra(graph, start, end, ignoredNode=None): |
| 43 | """ |
| 44 | Compute shortest path and cost from a given source to a destination |
| 45 | using Dijkstra algorithm |
| 46 | |
| 47 | :param Graph graph: given network topology/graph |
| 48 | :param Start start: source node in a given network graph/topology |
| 49 | :end End end: destination node in a given network graph/topology |
| 50 | :param Node ignoredNode: node to ignore computing shortest path from |
| 51 | """ |
| 52 | queue = [(0, start, [])] |
| 53 | seen = set() |
| 54 | while True: |
| 55 | (cost, v, path) = heapq.heappop(queue) |
| 56 | if v not in seen: |
| 57 | path = path + [v] |
| 58 | seen.add(v) |
| 59 | if v == end: |
| 60 | debug("Distance from {} to {} is {}".format(start, end, cost)) |
| 61 | return cost, path |
| 62 | for (_next, c) in graph[v].items(): |
| 63 | if _next != ignoredNode: # Ignore path going via ignoreNode |
| 64 | heapq.heappush(queue, (cost + c, _next, path)) |
| 65 | |
| 66 | if not queue: # return if no path exist from source - destination except via ignoreNode |
| 67 | debug("Distance from {} to {} is {}".format(start, end, cost)) |
| 68 | return cost, None |
| 69 | |
| 70 | def calculateAngularDistance(angleVectorI, angleVectorJ): |
| 71 | """ |
| 72 | For hyperbolic/geohyperbolic routing algorithm, this function computes angular distance between |
| 73 | two nodes. A node can have two or more than two angular coordinates. |
| 74 | |
| 75 | :param AngleVectorI angleVectorI: list of angular coordinate of a give node I |
| 76 | :param AngleVectorJ angleVectorJ: list of angular coordinate of a give node J |
| 77 | |
| 78 | ref: https://en.wikipedia.org/wiki/N-sphere#Spherical_coordinates |
| 79 | |
| 80 | """ |
| 81 | innerProduct = 0.0 |
| 82 | if len(angleVectorI) != len(angleVectorJ): |
| 83 | error("Angle vector sizes do not match") |
| 84 | return UNKNOWN_DISTANCE |
| 85 | |
| 86 | # Calculate x0 of the vectors |
| 87 | x0i = cos(angleVectorI[0]) |
| 88 | x0j = cos(angleVectorJ[0]) |
| 89 | |
| 90 | # Calculate xn of the vectors |
| 91 | xni = sin(angleVectorI[len(angleVectorI) - 1]) |
| 92 | xnj = sin(angleVectorJ[len(angleVectorJ) - 1]) |
| 93 | |
| 94 | # Do the aggregation of the (n-1) coordinates (if there is more than one angle) |
| 95 | # i.e contraction of all (n-1)-dimensional angular coordinates to one variable |
| 96 | for k in range(0, len(angleVectorI)-1): |
| 97 | xni *= sin(angleVectorI[k]) |
| 98 | xnj *= sin(angleVectorJ[k]) |
| 99 | |
| 100 | innerProduct += (x0i * x0j) + (xni * xnj) |
| 101 | |
| 102 | if len(angleVectorI) > 1: |
| 103 | for m in range(1, len(angleVectorI)): |
| 104 | # Calculate euclidean coordinates given the angles and assuming R_sphere = 1 |
| 105 | xmi = cos(angleVectorI[m]) |
| 106 | xmj = cos(angleVectorJ[m]) |
| 107 | for l in range(0, m): |
| 108 | xmi *= sin(angleVectorI[l]) |
| 109 | xmj *= sin(angleVectorJ[l]) |
| 110 | |
| 111 | innerProduct += xmi * xmj |
| 112 | |
| 113 | # ArcCos of the inner product gives the angular distance |
| 114 | # between two points on a d-dimensional sphere |
| 115 | angularDist = acos(innerProduct) |
| 116 | debug("Angular distance from {} to {} is {}".format(angleVectorI, angleVectorJ, angularDist)) |
| 117 | return angularDist |
| 118 | |
| 119 | def getHyperbolicDistance(sourceNode, destNode): |
| 120 | """ |
| 121 | Return hyperbolic or geohyperbolic distance between two nodes. The distance is computed |
| 122 | on the basis of following algorithm/mathematics |
| 123 | ref: https://en.wikipedia.org/wiki/Hyperbolic_geometry |
| 124 | """ |
| 125 | r1 = [key for key in sourceNode][0] |
| 126 | r2 = [key for key in destNode][0] |
| 127 | |
| 128 | zeta = 1.0 |
| 129 | dtheta = calculateAngularDistance(sourceNode[r1], destNode[r2]) |
| 130 | hyperbolicDistance = (1./zeta) * acosh(cosh(zeta * r1) * cosh(zeta * r2) -\ |
| 131 | sinh(zeta * r1) * sinh(zeta * r2) * cos(dtheta)) |
| 132 | |
| 133 | debug("Distance from {} to {} is {}".format(sourceNode, destNode, hyperbolicDistance)) |
| 134 | return hyperbolicDistance |
| 135 | |
| 136 | class _CalculateRoutes(object): |
Saurab Dulal | 8ae870a | 2018-07-31 05:17:49 +0000 | [diff] [blame] | 137 | """ |
| 138 | Creates a route calculation object, which is used to compute routes from a node to |
| 139 | every other nodes in a given topology topology using hyperbolic or geohyperbolic |
| 140 | routing algorithm |
| 141 | |
| 142 | :param NetObject netObj: Mininet net object |
| 143 | :param RoutingType routingType: (optional) Routing algorithm, link-state or hr etc |
| 144 | """ |
| 145 | def __init__(self, netObj, routingType): |
| 146 | self.adjacenctMatrix = defaultdict(dict) |
| 147 | self.nodeDict = defaultdict(dict) |
| 148 | self.routingType = routingType |
| 149 | for host in netObj.hosts: |
Ashlesh Gawande | 6c86e30 | 2019-09-17 22:27:05 -0500 | [diff] [blame^] | 150 | if 'radius' in host.params['params']: |
| 151 | radius = float(host.params['params']['radius']) |
| 152 | else: |
| 153 | radius = 0.0 |
| 154 | if 'angles' in host.params['params']: |
| 155 | angles = [float(x) for x in host.params['params']['angle'].split(',')] |
| 156 | else: |
| 157 | angles = 0.0 |
Saurab Dulal | 8ae870a | 2018-07-31 05:17:49 +0000 | [diff] [blame] | 158 | self.nodeDict[host.name][radius] = angles |
| 159 | |
Ashlesh Gawande | 6c86e30 | 2019-09-17 22:27:05 -0500 | [diff] [blame^] | 160 | for link in netObj.topo.links(withInfo=True): |
| 161 | linkDelay = int(link[2]['delay'].replace("ms", "")) |
| 162 | self.adjacenctMatrix[link[0]][link[1]] = linkDelay |
| 163 | self.adjacenctMatrix[link[1]][link[0]] = linkDelay |
Saurab Dulal | 8ae870a | 2018-07-31 05:17:49 +0000 | [diff] [blame] | 164 | |
| 165 | def getNestedDictionary(self): |
| 166 | return defaultdict(self.getNestedDictionary) |
| 167 | |
| 168 | def getRoutes(self, nFaces): |
| 169 | resultMatrix = self.getNestedDictionary() |
| 170 | routes = defaultdict(list) |
| 171 | |
| 172 | if self.routingType == "link-state": |
| 173 | if nFaces == 1: |
| 174 | resultMatrix = self.computeDijkastra() # only best routes. |
| 175 | else: |
| 176 | resultMatrix = self.computeDijkastraAll() # all possible routes |
| 177 | elif self.routingType == "hr": |
| 178 | # Note: For hyperbolic, only way to find the best routes is by computing all possible |
| 179 | # routes and getting the best one. |
| 180 | resultMatrix = self.computeHyperbolic() |
| 181 | else: |
| 182 | info("Routing type not supported\n") |
| 183 | return [] |
| 184 | |
| 185 | for node in resultMatrix: |
| 186 | for destinationNode in resultMatrix[node]: |
| 187 | # Sort node - destination via neighbor based on their cost |
| 188 | tempDict = resultMatrix[node][destinationNode] |
| 189 | shortedTempDict = sorted(tempDict.items(), key=operator.itemgetter(1)) |
| 190 | # nFaces option gets n-best faces based on shortest distance, default is all |
| 191 | if nFaces == 0: |
| 192 | for item in shortedTempDict: |
| 193 | viaNeighbor = item[0] |
| 194 | cost = item[1] |
| 195 | routes[node].append([destinationNode, str(cost), viaNeighbor]) |
| 196 | else: |
| 197 | for index, item in enumerate(shortedTempDict): |
| 198 | if index >= nFaces: |
| 199 | break |
| 200 | viaNeighbor = item[0] |
| 201 | cost = item[1] |
| 202 | routes[node].append([destinationNode, str(cost), viaNeighbor]) |
| 203 | |
| 204 | debug("-routes----", routes) |
| 205 | return routes |
| 206 | |
| 207 | def getNodeNames(self): |
| 208 | return [k for k in self.nodeDict] |
| 209 | |
| 210 | def computeHyperbolic(self): |
| 211 | paths = self.getNestedDictionary() |
| 212 | nodeNames = self.getNodeNames() |
| 213 | for node in self.nodeDict: |
| 214 | neighbors = [k for k in self.adjacenctMatrix[node]] |
| 215 | for viaNeighbor in neighbors: |
| 216 | others = list(set(nodeNames) - set(viaNeighbor) - set(node)) |
| 217 | paths[node][viaNeighbor][viaNeighbor] = 0 |
| 218 | # Compute distance from neighbors to no-neighbors |
| 219 | for destinationNode in others: |
| 220 | hyperbolicDistance = getHyperbolicDistance(self.nodeDict[viaNeighbor], |
| 221 | self.nodeDict[destinationNode]) |
| 222 | hyperbolicCost = int(HYPERBOLIC_COST_ADJUSTMENT_FACTOR \ |
| 223 | * round(hyperbolicDistance, 6)) |
| 224 | paths[node][destinationNode][viaNeighbor] = hyperbolicCost |
| 225 | |
| 226 | debug("Shortest Distance Matrix: {}".format(json.dumps(paths))) |
| 227 | return paths |
| 228 | |
| 229 | def computeDijkastra(self): |
| 230 | """ |
| 231 | Dijkstra computation: Compute all the shortest paths from nodes to the destinations. |
| 232 | And fills the distance matrix with the corresponding source to destination cost |
| 233 | """ |
| 234 | distanceMatrix = self.getNestedDictionary() |
| 235 | nodeNames = self.getNodeNames() |
| 236 | for node in nodeNames: |
| 237 | others = list(set(nodeNames) - set(node)) |
| 238 | for destinationNode in others: |
| 239 | cost, path = dijkstra(self.adjacenctMatrix, node, destinationNode) |
| 240 | viaNeighbor = path[1] |
| 241 | distanceMatrix[node][destinationNode][viaNeighbor] = cost |
| 242 | |
| 243 | debug("Shortest Distance Matrix: {}".format(json.dumps(distanceMatrix))) |
| 244 | return distanceMatrix |
| 245 | |
| 246 | def computeDijkastraAll(self): |
| 247 | """ |
| 248 | Multi-path Dijkastra computation: Compute all the shortest paths from nodes to the |
| 249 | destinations via all of its neighbors individually. And fills the distanceMatrixViaNeighbor |
| 250 | with a corresponding source to its destination cost |
| 251 | |
| 252 | Important: distanceMatrixViaNeighbor represents the shortest distance from a source to a |
| 253 | destination via specific neighbors |
| 254 | """ |
| 255 | distanceMatrixViaNeighbor = self.getNestedDictionary() |
| 256 | nodeNames = self.getNodeNames() |
| 257 | for node in nodeNames: |
| 258 | neighbors = [k for k in self.adjacenctMatrix[node]] |
| 259 | for viaNeighbor in neighbors: |
| 260 | directCost = self.adjacenctMatrix[node][viaNeighbor] |
| 261 | distanceMatrixViaNeighbor[node][viaNeighbor][viaNeighbor] = directCost |
| 262 | others = list(set(nodeNames) - set(viaNeighbor) - set(node)) |
| 263 | for destinationNode in others: |
| 264 | nodeNeighborCost = self.adjacenctMatrix[node][viaNeighbor] |
| 265 | # path variable is not used for now |
| 266 | cost, path = dijkstra(self.adjacenctMatrix, viaNeighbor, destinationNode, node) |
| 267 | if cost != 0 and path != None: |
| 268 | totalCost = cost + nodeNeighborCost |
| 269 | distanceMatrixViaNeighbor[node][destinationNode][viaNeighbor] = totalCost |
| 270 | |
| 271 | debug("Shortest Distance Matrix: {}".format(json.dumps(distanceMatrixViaNeighbor))) |
| 272 | return distanceMatrixViaNeighbor |
| 273 | |
Ashlesh Gawande | 6c86e30 | 2019-09-17 22:27:05 -0500 | [diff] [blame^] | 274 | class NdnRoutingHelper(object): |
Saurab Dulal | 8ae870a | 2018-07-31 05:17:49 +0000 | [diff] [blame] | 275 | """ |
Ashlesh Gawande | 6c86e30 | 2019-09-17 22:27:05 -0500 | [diff] [blame^] | 276 | This module is a helper class which helps to create face and register routes |
| 277 | to NFD from a given node to all of its neighbors. |
Saurab Dulal | 8ae870a | 2018-07-31 05:17:49 +0000 | [diff] [blame] | 278 | |
Ashlesh Gawande | 6c86e30 | 2019-09-17 22:27:05 -0500 | [diff] [blame^] | 279 | :param NetObject netObject: Mininet net object |
| 280 | :param FaceType faceType: UDP, Ethernet etc. |
| 281 | :param Routing routingType: (optional) Routing algorithm, link-state or hr etc |
Saurab Dulal | 8ae870a | 2018-07-31 05:17:49 +0000 | [diff] [blame] | 282 | |
| 283 | """ |
Ashlesh Gawande | 6c86e30 | 2019-09-17 22:27:05 -0500 | [diff] [blame^] | 284 | def __init__(self, netObject, faceType=nfdc.PROTOCOL_UDP, routingType="link-state"): |
| 285 | self.net = netObject |
| 286 | self.faceType = faceType |
| 287 | self.routingType = routingType |
| 288 | self.routes = [] |
| 289 | self.namePrefixes = {host_name.name: [] for host_name in self.net.hosts} |
| 290 | self.routeObject = _CalculateRoutes(self.net, self.routingType) |
Saurab Dulal | 8ae870a | 2018-07-31 05:17:49 +0000 | [diff] [blame] | 291 | |
Ashlesh Gawande | 6c86e30 | 2019-09-17 22:27:05 -0500 | [diff] [blame^] | 292 | def globalRoutingHelperHandler(self): |
| 293 | for host in self.net.hosts: |
| 294 | neighborIPs = self.getNeighbor(host) |
| 295 | self.createFaces(host, neighborIPs) |
| 296 | self.routeAdd(host, neighborIPs) |
Saurab Dulal | 8ae870a | 2018-07-31 05:17:49 +0000 | [diff] [blame] | 297 | |
Ashlesh Gawande | 6c86e30 | 2019-09-17 22:27:05 -0500 | [diff] [blame^] | 298 | info('Processed all the routes to NFD\n') |
Saurab Dulal | 8ae870a | 2018-07-31 05:17:49 +0000 | [diff] [blame] | 299 | |
Ashlesh Gawande | 6c86e30 | 2019-09-17 22:27:05 -0500 | [diff] [blame^] | 300 | def addOrigin(self, nodes, prefix): |
| 301 | """ |
| 302 | Add prefix/s as origin on node/s |
Saurab Dulal | 8ae870a | 2018-07-31 05:17:49 +0000 | [diff] [blame] | 303 | |
Ashlesh Gawande | 6c86e30 | 2019-09-17 22:27:05 -0500 | [diff] [blame^] | 304 | :param Prefix prefix: Prefix that is originated by node/s (as producer) for this prefix |
| 305 | :param Nodes nodes: List of nodes from net object |
| 306 | """ |
| 307 | for node in nodes: |
| 308 | self.namePrefixes[node.name] = prefix |
Saurab Dulal | 8ae870a | 2018-07-31 05:17:49 +0000 | [diff] [blame] | 309 | |
Ashlesh Gawande | 6c86e30 | 2019-09-17 22:27:05 -0500 | [diff] [blame^] | 310 | def calculateNPossibleRoutes(self, nFaces=0): |
| 311 | """ |
| 312 | By default, calculates all possible routes i.e. routes via all the faces of a node. |
| 313 | pass nFaces if want to compute routes via n number of faces. e.g. 2. For larger topology |
| 314 | the computation might take huge amount of time. |
Saurab Dulal | 8ae870a | 2018-07-31 05:17:49 +0000 | [diff] [blame] | 315 | |
Ashlesh Gawande | 6c86e30 | 2019-09-17 22:27:05 -0500 | [diff] [blame^] | 316 | :param int nFaces: (optional) number of faces to consider while computing routes. Default |
| 317 | i.e. nFaces = 0 will compute all possible routes |
Saurab Dulal | 8ae870a | 2018-07-31 05:17:49 +0000 | [diff] [blame] | 318 | |
Ashlesh Gawande | 6c86e30 | 2019-09-17 22:27:05 -0500 | [diff] [blame^] | 319 | """ |
| 320 | self.routes = self.routeObject.getRoutes(nFaces) |
| 321 | if self.routes: |
| 322 | self.globalRoutingHelperHandler() |
| 323 | else: |
| 324 | warn("Route computation failed\n") |
Saurab Dulal | 8ae870a | 2018-07-31 05:17:49 +0000 | [diff] [blame] | 325 | |
Ashlesh Gawande | 6c86e30 | 2019-09-17 22:27:05 -0500 | [diff] [blame^] | 326 | def calculateRoutes(self): |
| 327 | # Calculate shortest path for every node |
| 328 | self.calculateNPossibleRoutes(nFaces=1) |
Saurab Dulal | 8ae870a | 2018-07-31 05:17:49 +0000 | [diff] [blame] | 329 | |
Ashlesh Gawande | 6c86e30 | 2019-09-17 22:27:05 -0500 | [diff] [blame^] | 330 | def createFaces(self, node, neighborIPs): |
| 331 | for ip in neighborIPs.values(): |
| 332 | nfdc.createFace(node, ip, self.faceType) |
Saurab Dulal | 8ae870a | 2018-07-31 05:17:49 +0000 | [diff] [blame] | 333 | |
Ashlesh Gawande | 6c86e30 | 2019-09-17 22:27:05 -0500 | [diff] [blame^] | 334 | def routeAdd(self, node, neighborIPs): |
| 335 | """ |
| 336 | Add route from a node to its neighbors for each prefix/s advertised by destination node |
| 337 | |
| 338 | :param Node node: source node (Mininet net.host) |
| 339 | :param IP neighborIPs: IP addresses of neighbors |
| 340 | """ |
| 341 | neighbors = self.routes[node.name] |
| 342 | for route in neighbors: |
| 343 | destination = route[0] |
| 344 | cost = int(route[1]) |
| 345 | nextHop = route[2] |
| 346 | defaultPrefix = "/ndn/{}-site/{}".format(destination, destination) |
| 347 | prefixes = [defaultPrefix] + self.namePrefixes[destination] |
| 348 | for prefix in prefixes: |
| 349 | # Register routes to all the available destination name prefix/s |
| 350 | nfdc.registerRoute(node, prefix, neighborIPs[nextHop], \ |
| 351 | nfdc.PROTOCOL_UDP, cost=cost) |
| 352 | @staticmethod |
| 353 | def getNeighbor(node): |
| 354 | # Nodes to IP mapping |
| 355 | neighborIPs = defaultdict() |
| 356 | for intf in node.intfList(): |
| 357 | link = intf.link |
| 358 | if link: |
| 359 | node1, node2 = link.intf1.node, link.intf2.node |
| 360 | |
| 361 | if node1 == node: |
| 362 | other = node2 |
| 363 | ip = other.IP(str(link.intf2)) |
| 364 | else: |
| 365 | other = node1 |
| 366 | ip = other.IP(str(link.intf1)) |
| 367 | |
| 368 | # Used later to create faces |
| 369 | neighborIPs[other.name] = ip |
| 370 | return neighborIPs |