Jeff Thompson | a28eed8 | 2013-08-22 16:21:10 -0700 | [diff] [blame] | 1 | <?xml version="1.0" encoding="utf-8"?> |
| 2 | <!-- |
| 3 | Copyright (c) 2002 Douglas Gregor <doug.gregor -at- gmail.com> |
| 4 | |
| 5 | Distributed under the Boost Software License, Version 1.0. |
| 6 | (See accompanying file LICENSE_1_0.txt or copy at |
| 7 | http://www.boost.org/LICENSE_1_0.txt) |
| 8 | --> |
| 9 | <!DOCTYPE library PUBLIC "-//Boost//DTD BoostBook XML V1.0//EN" |
| 10 | "http://www.boost.org/tools/boostbook/dtd/boostbook.dtd"> |
| 11 | <section xmlns:xi="http://www.w3.org/2001/XInclude" id="function.tutorial" |
| 12 | last-revision="$Date: 2009-07-12 09:13:35 -0700 (Sun, 12 Jul 2009) $"> |
| 13 | <title>Tutorial</title> |
| 14 | |
| 15 | <using-namespace name="boost"/> |
| 16 | |
| 17 | <para> Boost.Function has two syntactical forms: the preferred form |
| 18 | and the portable form. The preferred form fits more closely with the |
| 19 | C++ language and reduces the number of separate template parameters |
| 20 | that need to be considered, often improving readability; however, the |
| 21 | preferred form is not supported on all platforms due to compiler |
| 22 | bugs. The compatible form will work on all compilers supported by |
| 23 | Boost.Function. Consult the table below to determine which syntactic |
| 24 | form to use for your compiler. |
| 25 | |
| 26 | <informaltable> |
| 27 | <tgroup cols="2" align="left"> |
| 28 | <thead> |
| 29 | <row> |
| 30 | <entry>Preferred syntax</entry> |
| 31 | <entry>Portable syntax</entry> |
| 32 | </row> |
| 33 | </thead> |
| 34 | <tbody> |
| 35 | <row> |
| 36 | <entry> |
| 37 | <itemizedlist spacing="compact"> |
| 38 | <listitem><simpara>GNU C++ 2.95.x, 3.0.x and later versions</simpara></listitem> |
| 39 | <listitem><simpara>Comeau C++ 4.2.45.2</simpara></listitem> |
| 40 | <listitem><simpara>SGI MIPSpro 7.3.0</simpara></listitem> |
| 41 | <listitem><simpara>Intel C++ 5.0, 6.0</simpara></listitem> |
| 42 | <listitem><simpara>Compaq's cxx 6.2</simpara></listitem> |
| 43 | <listitem><simpara>Microsoft Visual C++ 7.1 and later versions</simpara></listitem> |
| 44 | </itemizedlist> |
| 45 | </entry> |
| 46 | <entry> |
| 47 | <itemizedlist spacing="compact"> |
| 48 | <listitem><simpara><emphasis>Any compiler supporting the preferred syntax</emphasis></simpara></listitem> |
| 49 | <listitem><simpara>Microsoft Visual C++ 6.0, 7.0</simpara></listitem> |
| 50 | <listitem><simpara>Borland C++ 5.5.1</simpara></listitem> |
| 51 | <listitem><simpara>Sun WorkShop 6 update 2 C++ 5.3</simpara></listitem> |
| 52 | <listitem><simpara>Metrowerks CodeWarrior 8.1</simpara></listitem> |
| 53 | </itemizedlist> |
| 54 | </entry> |
| 55 | </row> |
| 56 | </tbody> |
| 57 | </tgroup> |
| 58 | </informaltable> |
| 59 | |
| 60 | </para> |
| 61 | |
| 62 | <para> If your compiler does not appear in this list, please try the preferred syntax and report your results to the Boost list so that we can keep this table up-to-date.</para> |
| 63 | |
| 64 | <using-class name="boost::function"/> |
| 65 | |
| 66 | <section> |
| 67 | <title>Basic Usage</title> <para> A function wrapper is defined simply |
| 68 | by instantiating the <computeroutput>function</computeroutput> class |
| 69 | template with the desired return type and argument types, formulated |
| 70 | as a C++ function type. Any number of arguments may be supplied, up to |
| 71 | some implementation-defined limit (10 is the default maximum). The |
| 72 | following declares a function object wrapper |
| 73 | <computeroutput>f</computeroutput> that takes two |
| 74 | <computeroutput>int</computeroutput> parameters and returns a |
| 75 | <computeroutput>float</computeroutput>: |
| 76 | |
| 77 | <informaltable> |
| 78 | <tgroup cols="2" align="left"> |
| 79 | <thead> |
| 80 | <row> |
| 81 | <entry>Preferred syntax</entry> |
| 82 | <entry>Portable syntax</entry> |
| 83 | </row> |
| 84 | </thead> |
| 85 | <tbody> |
| 86 | <row> |
| 87 | <entry> |
| 88 | <programlisting name="function.tutorial.arith.cxx98"><classname>boost::function</classname><float (int x, int y)> f;</programlisting> |
| 89 | </entry> |
| 90 | <entry> |
| 91 | <programlisting name="function.tutorial.arith.portable"><classname alt="functionN">boost::function2</classname><float, int, int> f;</programlisting> |
| 92 | </entry> |
| 93 | </row> |
| 94 | </tbody> |
| 95 | </tgroup> |
| 96 | </informaltable> |
| 97 | </para> |
| 98 | |
| 99 | <para> By default, function object wrappers are empty, so we can create a |
| 100 | function object to assign to <computeroutput>f</computeroutput>: |
| 101 | |
| 102 | <programlisting name="function.tutorial.int_div">struct int_div { |
| 103 | float operator()(int x, int y) const { return ((float)x)/y; }; |
| 104 | };</programlisting> |
| 105 | <programlisting name="function.tutorial.use_int_div">f = int_div();</programlisting> |
| 106 | </para> |
| 107 | |
| 108 | <para> Now we can use <computeroutput>f</computeroutput> to execute |
| 109 | the underlying function object |
| 110 | <computeroutput>int_div</computeroutput>: |
| 111 | |
| 112 | <programlisting name="function.tutorial.call_int_div">std::cout << f(5, 3) << std::endl;</programlisting> |
| 113 | </para> |
| 114 | |
| 115 | <para> We are free to assign any compatible function object to |
| 116 | <computeroutput>f</computeroutput>. If |
| 117 | <computeroutput>int_div</computeroutput> had been declared to take two |
| 118 | <computeroutput>long</computeroutput> operands, the implicit |
| 119 | conversions would have been applied to the arguments without any user |
| 120 | interference. The only limit on the types of arguments is that they be |
| 121 | CopyConstructible, so we can even use references and arrays: |
| 122 | |
| 123 | <informaltable> |
| 124 | <tgroup cols="1" align="left"> |
| 125 | <thead><row><entry>Preferred syntax</entry></row></thead> |
| 126 | <tbody> |
| 127 | <row> |
| 128 | <entry> |
| 129 | <programlisting name="function.tutorial.sum_avg_decl.cxx98"><classname>boost::function</classname><void (int values[], int n, int& sum, float& avg)> sum_avg;</programlisting> |
| 130 | </entry> |
| 131 | </row> |
| 132 | </tbody> |
| 133 | </tgroup> |
| 134 | </informaltable> |
| 135 | <informaltable> |
| 136 | <tgroup cols="1" align="left"> |
| 137 | <thead><row><entry>Portable syntax</entry></row></thead> |
| 138 | <tbody> |
| 139 | <row> |
| 140 | <entry> |
| 141 | <programlisting name="function.tutorial.sum_avg_decl.portable"><classname alt="functionN">boost::function4</classname><void, int*, int, int&, float&> sum_avg;</programlisting> |
| 142 | </entry> |
| 143 | </row> |
| 144 | </tbody> |
| 145 | </tgroup> |
| 146 | </informaltable> |
| 147 | |
| 148 | <programlisting name="function.tutorial.sum_avg">void do_sum_avg(int values[], int n, int& sum, float& avg) |
| 149 | { |
| 150 | sum = 0; |
| 151 | for (int i = 0; i < n; i++) |
| 152 | sum += values[i]; |
| 153 | avg = (float)sum / n; |
| 154 | }</programlisting> |
| 155 | |
| 156 | |
| 157 | <programlisting name="function.tutorial.use_sum_avg">sum_avg = &do_sum_avg;</programlisting> |
| 158 | </para> |
| 159 | |
| 160 | <para> Invoking a function object wrapper that does not actually |
| 161 | contain a function object is a precondition violation, much like |
| 162 | trying to call through a null function pointer, and will throw a <classname>bad_function_call</classname> exception). We can check for an |
| 163 | empty function object wrapper by using it in a boolean context (it evaluates <computeroutput>true</computeroutput> if the wrapper is not empty) or compare it against <computeroutput>0</computeroutput>. For instance: |
| 164 | <programlisting name="function.tutorial.check_empty">if (f) |
| 165 | std::cout << f(5, 3) << std::endl; |
| 166 | else |
| 167 | std::cout << "f has no target, so it is unsafe to call" << std::endl;</programlisting> |
| 168 | </para> |
| 169 | |
| 170 | <para> Alternatively, |
| 171 | <computeroutput><methodname>empty</methodname>()</computeroutput> |
| 172 | method will return whether or not the wrapper is empty. </para> |
| 173 | |
| 174 | <para> Finally, we can clear out a function target by assigning it to <computeroutput>0</computeroutput> or by calling the <computeroutput><methodname>clear</methodname>()</computeroutput> member function, e.g., |
| 175 | <programlisting name="function.tutorial.clear">f = 0;</programlisting> |
| 176 | </para> |
| 177 | |
| 178 | </section> |
| 179 | |
| 180 | <section> |
| 181 | <title>Free functions</title> |
| 182 | <para> Free function pointers can be considered singleton function objects with const function call operators, and can therefore be directly used with the function object wrappers: |
| 183 | <programlisting name="function.tutorial.mul_ints">float mul_ints(int x, int y) { return ((float)x) * y; }</programlisting> |
| 184 | <programlisting name="function.tutorial.use_mul_ints">f = &mul_ints;</programlisting> |
| 185 | </para> |
| 186 | |
| 187 | <para> Note that the <computeroutput>&</computeroutput> isn't really necessary unless you happen to be using Microsoft Visual C++ version 6. </para> |
| 188 | </section> |
| 189 | |
| 190 | <section> |
| 191 | <title>Member functions</title> |
| 192 | |
| 193 | <para> In many systems, callbacks often call to member functions of a |
| 194 | particular object. This is often referred to as "argument binding", |
| 195 | and is beyond the scope of Boost.Function. The use of member functions |
| 196 | directly, however, is supported, so the following code is valid: |
| 197 | |
| 198 | <programlisting name="function.tutorial.X">struct X { |
| 199 | int foo(int); |
| 200 | };</programlisting> |
| 201 | |
| 202 | <informaltable> |
| 203 | <tgroup cols="2" align="left"> |
| 204 | <thead> |
| 205 | <row> |
| 206 | <entry>Preferred syntax</entry> |
| 207 | <entry>Portable syntax</entry> |
| 208 | </row> |
| 209 | </thead> |
| 210 | <tbody> |
| 211 | <row> |
| 212 | <entry> |
| 213 | <programlisting name="function.tutorial.mem_fun.cxx98"><classname>boost::function</classname><int (X*, int)> f; |
| 214 | |
| 215 | f = &X::foo; |
| 216 | |
| 217 | X x; |
| 218 | f(&x, 5);</programlisting> |
| 219 | </entry> |
| 220 | <entry> |
| 221 | <programlisting name="function.tutorial.mem_fun.portable"><classname alt="functionN">boost::function2</classname><int, X*, int> f; |
| 222 | |
| 223 | f = &X::foo; |
| 224 | |
| 225 | X x; |
| 226 | f(&x, 5);</programlisting> |
| 227 | </entry> |
| 228 | </row> |
| 229 | </tbody> |
| 230 | </tgroup> |
| 231 | </informaltable> |
| 232 | </para> |
| 233 | |
| 234 | <para> Several libraries exist that support argument binding. Three such libraries are summarized below: |
| 235 | <itemizedlist> |
| 236 | <listitem> <para><libraryname>Bind</libraryname>. This library allows binding of |
| 237 | arguments for any function object. It is lightweight and very |
| 238 | portable.</para></listitem> |
| 239 | |
| 240 | <listitem> <para>The C++ Standard library. Using |
| 241 | <computeroutput>std::bind1st</computeroutput> and |
| 242 | <computeroutput>std::mem_fun</computeroutput> together one can bind |
| 243 | the object of a pointer-to-member function for use with |
| 244 | Boost.Function: |
| 245 | |
| 246 | <informaltable> |
| 247 | <tgroup cols="2" align="left"> |
| 248 | <thead> |
| 249 | <row> |
| 250 | <entry>Preferred syntax</entry> |
| 251 | <entry>Portable syntax</entry> |
| 252 | </row> |
| 253 | </thead> |
| 254 | <tbody> |
| 255 | <row> |
| 256 | <entry> |
| 257 | <programlisting name="function.tutorial.std_bind.cxx98"> <classname>boost::function</classname><int (int)> f; |
| 258 | X x; |
| 259 | f = std::bind1st( |
| 260 | std::mem_fun(&X::foo), &x); |
| 261 | f(5); // Call x.foo(5)</programlisting> |
| 262 | </entry> |
| 263 | <entry> |
| 264 | <programlisting name="function.tutorial.std_bind.portable"> <classname alt="functionN">boost::function1</classname><int, int> f; |
| 265 | X x; |
| 266 | f = std::bind1st( |
| 267 | std::mem_fun(&X::foo), &x); |
| 268 | f(5); // Call x.foo(5)</programlisting> |
| 269 | </entry> |
| 270 | </row> |
| 271 | </tbody> |
| 272 | </tgroup> |
| 273 | </informaltable> |
| 274 | </para> |
| 275 | </listitem> |
| 276 | |
| 277 | <listitem><para>The <libraryname>Lambda</libraryname> library. This library provides a powerful composition mechanism to construct function objects that uses very natural C++ syntax. Lambda requires a compiler that is reasonably conformant to the C++ standard. </para></listitem> |
| 278 | </itemizedlist> |
| 279 | </para> |
| 280 | |
| 281 | </section> |
| 282 | |
| 283 | <section> |
| 284 | <title>References to Function Objects</title> <para> In some cases it is |
| 285 | expensive (or semantically incorrect) to have Boost.Function clone a |
| 286 | function object. In such cases, it is possible to request that |
| 287 | Boost.Function keep only a reference to the actual function |
| 288 | object. This is done using the <computeroutput>ref</computeroutput> |
| 289 | and <computeroutput>cref</computeroutput> functions to wrap a |
| 290 | reference to a function object: |
| 291 | |
| 292 | <informaltable> |
| 293 | <tgroup cols="2" align="left"> |
| 294 | <thead> |
| 295 | <row> |
| 296 | <entry>Preferred syntax</entry> |
| 297 | <entry>Portable syntax</entry> |
| 298 | </row> |
| 299 | </thead> |
| 300 | <tbody> |
| 301 | <row> |
| 302 | <entry> |
| 303 | <programlisting name="function.tutorial.ref.cxx98">stateful_type a_function_object; |
| 304 | <classname>boost::function</classname><int (int)> f; |
| 305 | f = <functionname>boost::ref</functionname>(a_function_object); |
| 306 | |
| 307 | <classname>boost::function</classname><int (int)> f2(f);</programlisting> |
| 308 | </entry> |
| 309 | <entry> |
| 310 | <programlisting name="function.tutorial.ref.portable">stateful_type a_function_object; |
| 311 | <classname alt="functionN">boost::function1</classname><int, int> f; |
| 312 | f = <functionname>boost::ref</functionname>(a_function_object); |
| 313 | |
| 314 | <classname alt="functionN">boost::function1</classname><int, int> f2(f);</programlisting> |
| 315 | </entry> |
| 316 | </row> |
| 317 | </tbody> |
| 318 | </tgroup> |
| 319 | </informaltable> |
| 320 | </para> |
| 321 | |
| 322 | <para> Here, <computeroutput>f</computeroutput> will not make a copy |
| 323 | of <computeroutput>a_function_object</computeroutput>, nor will |
| 324 | <computeroutput>f2</computeroutput> when it is targeted to |
| 325 | <computeroutput>f</computeroutput>'s reference to |
| 326 | <computeroutput>a_function_object</computeroutput>. Additionally, when |
| 327 | using references to function objects, Boost.Function will not throw |
| 328 | exceptions during assignment or construction. |
| 329 | </para> |
| 330 | </section> |
| 331 | |
| 332 | <section> |
| 333 | <title>Comparing Boost.Function function objects</title> |
| 334 | |
| 335 | <para>Function object wrappers can be compared via <code>==</code> |
| 336 | or <code>!=</code> against any function object that can be stored |
| 337 | within the wrapper. If the function object wrapper contains a |
| 338 | function object of that type, it will be compared against the given |
| 339 | function object (which must be either be |
| 340 | <conceptname>EqualityComparable</conceptname> or have an overloaded <functionname>boost::function_equal</functionname>). For instance:</para> |
| 341 | |
| 342 | <programlisting name="function.tutorial.compare">int compute_with_X(X*, int); |
| 343 | |
| 344 | f = &X::foo; |
| 345 | assert(f == &X::foo); |
| 346 | assert(&compute_with_X != f);</programlisting> |
| 347 | |
| 348 | <para>When comparing against an instance of |
| 349 | <code><classname>reference_wrapper</classname></code>, the address |
| 350 | of the object in the |
| 351 | <code><classname>reference_wrapper</classname></code> is compared |
| 352 | against the address of the object stored by the function object |
| 353 | wrapper:</para> |
| 354 | |
| 355 | <programlisting name="function.tutorial.compare-ref">a_stateful_object so1, so2; |
| 356 | f = <functionname>boost::ref</functionname>(so1); |
| 357 | assert(f == <functionname>boost::ref</functionname>(so1)); |
| 358 | assert(f == so1); <emphasis>// Only if a_stateful_object is <conceptname>EqualityComparable</conceptname></emphasis> |
| 359 | assert(f != <functionname>boost::ref</functionname>(so2));</programlisting> |
| 360 | |
| 361 | </section> |
| 362 | |
| 363 | </section> |
| 364 | |