blob: 3e2d51865ecbe0c7a1028ef4954f2bae479f3002 [file] [log] [blame]
/* -*- Mode:C++; c-file-style:"gnu"; indent-tabs-mode:nil; -*- */
/**
* Copyright (c) 2013-2015 Regents of the University of California.
*
* This file is part of ndn-cxx library (NDN C++ library with eXperimental eXtensions).
*
* ndn-cxx library is free software: you can redistribute it and/or modify it under the
* terms of the GNU Lesser General Public License as published by the Free Software
* Foundation, either version 3 of the License, or (at your option) any later version.
*
* ndn-cxx library is distributed in the hope that it will be useful, but WITHOUT ANY
* WARRANTY; without even the implied warranty of MERCHANTABILITY or FITNESS FOR A
* PARTICULAR PURPOSE. See the GNU Lesser General Public License for more details.
*
* You should have received copies of the GNU General Public License and GNU Lesser
* General Public License along with ndn-cxx, e.g., in COPYING.md file. If not, see
* <http://www.gnu.org/licenses/>.
*
* See AUTHORS.md for complete list of ndn-cxx authors and contributors.
*
* @author Alexander Afanasyev <http://lasr.cs.ucla.edu/afanasyev/index.html>
*/
#include "block.hpp"
#include "block-helpers.hpp"
#include "tlv.hpp"
#include "encoding-buffer.hpp"
#include "buffer-stream.hpp"
#include <boost/lexical_cast.hpp>
#include <boost/asio/buffer.hpp>
namespace ndn {
#if NDN_CXX_HAVE_IS_NOTHROW_MOVE_CONSTRUCTIBLE
static_assert(std::is_nothrow_move_constructible<Block>::value,
"Block must be MoveConstructible with noexcept");
#endif // NDN_CXX_HAVE_IS_NOTHROW_MOVE_CONSTRUCTIBLE
#if NDN_CXX_HAVE_IS_NOTHROW_MOVE_ASSIGNABLE
static_assert(std::is_nothrow_move_assignable<Block>::value,
"Block must be MoveAssignable with noexcept");
#endif // NDN_CXX_HAVE_IS_NOTHROW_MOVE_ASSIGNABLE
const size_t MAX_SIZE_OF_BLOCK_FROM_STREAM = MAX_NDN_PACKET_SIZE;
Block::Block()
: m_type(std::numeric_limits<uint32_t>::max())
{
}
Block::Block(const EncodingBuffer& buffer)
: m_buffer(const_cast<EncodingBuffer&>(buffer).getBuffer())
, m_begin(buffer.begin())
, m_end(buffer.end())
, m_size(m_end - m_begin)
{
m_value_begin = m_begin;
m_value_end = m_end;
m_type = tlv::readType(m_value_begin, m_value_end);
uint64_t length = tlv::readVarNumber(m_value_begin, m_value_end);
if (length != static_cast<uint64_t>(m_value_end - m_value_begin))
{
BOOST_THROW_EXCEPTION(tlv::Error("TLV length doesn't match buffer length"));
}
}
Block::Block(const ConstBufferPtr& wire,
uint32_t type,
const Buffer::const_iterator& begin, const Buffer::const_iterator& end,
const Buffer::const_iterator& valueBegin, const Buffer::const_iterator& valueEnd)
: m_buffer(wire)
, m_type(type)
, m_begin(begin)
, m_end(end)
, m_size(m_end - m_begin)
, m_value_begin(valueBegin)
, m_value_end(valueEnd)
{
}
Block::Block(const ConstBufferPtr& buffer)
: m_buffer(buffer)
, m_begin(m_buffer->begin())
, m_end(m_buffer->end())
, m_size(m_end - m_begin)
{
m_value_begin = m_begin;
m_value_end = m_end;
m_type = tlv::readType(m_value_begin, m_value_end);
uint64_t length = tlv::readVarNumber(m_value_begin, m_value_end);
if (length != static_cast<uint64_t>(m_value_end - m_value_begin))
{
BOOST_THROW_EXCEPTION(tlv::Error("TLV length doesn't match buffer length"));
}
}
Block::Block(const ConstBufferPtr& buffer,
const Buffer::const_iterator& begin, const Buffer::const_iterator& end,
bool verifyLength/* = true*/)
: m_buffer(buffer)
, m_begin(begin)
, m_end(end)
, m_size(m_end - m_begin)
{
m_value_begin = m_begin;
m_value_end = m_end;
m_type = tlv::readType(m_value_begin, m_value_end);
uint64_t length = tlv::readVarNumber(m_value_begin, m_value_end);
if (verifyLength) {
if (length != static_cast<uint64_t>(std::distance(m_value_begin, m_value_end))) {
BOOST_THROW_EXCEPTION(tlv::Error("TLV length doesn't match buffer length"));
}
}
}
Block::Block(const Block& block,
const Buffer::const_iterator& begin, const Buffer::const_iterator& end,
bool verifyLength/* = true*/)
: m_buffer(block.m_buffer)
, m_begin(begin)
, m_end(end)
, m_size(m_end - m_begin)
{
if (!(m_buffer->begin() <= begin && begin <= m_buffer->end()) ||
!(m_buffer->begin() <= end && end <= m_buffer->end())) {
BOOST_THROW_EXCEPTION(Error("begin/end iterators do not point to the underlying buffer of the block"));
}
m_value_begin = m_begin;
m_value_end = m_end;
m_type = tlv::readType(m_value_begin, m_value_end);
uint64_t length = tlv::readVarNumber(m_value_begin, m_value_end);
if (verifyLength) {
if (length != static_cast<uint64_t>(std::distance(m_value_begin, m_value_end))) {
BOOST_THROW_EXCEPTION(tlv::Error("TLV length doesn't match buffer length"));
}
}
}
Block::Block(const uint8_t* buffer, size_t maxlength)
{
const uint8_t* tmp_begin = buffer;
const uint8_t* tmp_end = buffer + maxlength;
m_type = tlv::readType(tmp_begin, tmp_end);
uint64_t length = tlv::readVarNumber(tmp_begin, tmp_end);
if (length > static_cast<uint64_t>(tmp_end - tmp_begin))
{
BOOST_THROW_EXCEPTION(tlv::Error("Not enough data in the buffer to fully parse TLV"));
}
m_buffer = make_shared<Buffer>(buffer, (tmp_begin - buffer) + length);
m_begin = m_buffer->begin();
m_end = m_buffer->end();
m_size = m_end - m_begin;
m_value_begin = m_buffer->begin() + (tmp_begin - buffer);
m_value_end = m_buffer->end();
}
Block::Block(const void* bufferX, size_t maxlength)
{
const uint8_t* buffer = reinterpret_cast<const uint8_t*>(bufferX);
const uint8_t* tmp_begin = buffer;
const uint8_t* tmp_end = buffer + maxlength;
m_type = tlv::readType(tmp_begin, tmp_end);
uint64_t length = tlv::readVarNumber(tmp_begin, tmp_end);
if (length > static_cast<uint64_t>(tmp_end - tmp_begin))
{
BOOST_THROW_EXCEPTION(tlv::Error("Not enough data in the buffer to fully parse TLV"));
}
m_buffer = make_shared<Buffer>(buffer, (tmp_begin - buffer) + length);
m_begin = m_buffer->begin();
m_end = m_buffer->end();
m_size = m_end - m_begin;
m_value_begin = m_buffer->begin() + (tmp_begin - buffer);
m_value_end = m_buffer->end();
}
Block::Block(uint32_t type)
: m_type(type)
{
}
Block::Block(uint32_t type, const ConstBufferPtr& value)
: m_buffer(value)
, m_type(type)
, m_begin(m_buffer->end())
, m_end(m_buffer->end())
, m_value_begin(m_buffer->begin())
, m_value_end(m_buffer->end())
{
m_size = tlv::sizeOfVarNumber(m_type) + tlv::sizeOfVarNumber(value_size()) + value_size();
}
Block::Block(uint32_t type, const Block& value)
: m_buffer(value.m_buffer)
, m_type(type)
, m_begin(m_buffer->end())
, m_end(m_buffer->end())
, m_value_begin(value.begin())
, m_value_end(value.end())
{
m_size = tlv::sizeOfVarNumber(m_type) + tlv::sizeOfVarNumber(value_size()) + value_size();
}
Block
Block::fromStream(std::istream& is)
{
std::istream_iterator<uint8_t> begin(is >> std::noskipws);
std::istream_iterator<uint8_t> end;
uint32_t type = tlv::readType(begin, end);
uint64_t length = tlv::readVarNumber(begin, end);
if (length == 0) {
return makeEmptyBlock(type);
}
if (length > MAX_SIZE_OF_BLOCK_FROM_STREAM)
BOOST_THROW_EXCEPTION(tlv::Error("Length of block from stream is too large"));
// We may still have some problem here, if some exception happens,
// we may completely lose all the bytes extracted from the stream.
char buf[MAX_SIZE_OF_BLOCK_FROM_STREAM];
buf[0] = *begin;
is.read(buf + 1, length - 1);
if (length != static_cast<uint64_t>(is.gcount()) + 1) {
BOOST_THROW_EXCEPTION(tlv::Error("Not enough data in the buffer to fully parse TLV"));
}
return makeBinaryBlock(type, buf, length);
}
std::tuple<bool, Block>
Block::fromBuffer(ConstBufferPtr buffer, size_t offset)
{
Buffer::const_iterator tempBegin = buffer->begin() + offset;
uint32_t type;
bool isOk = tlv::readType(tempBegin, buffer->end(), type);
if (!isOk)
return std::make_tuple(false, Block());
uint64_t length;
isOk = tlv::readVarNumber(tempBegin, buffer->end(), length);
if (!isOk)
return std::make_tuple(false, Block());
if (length > static_cast<uint64_t>(buffer->end() - tempBegin))
return std::make_tuple(false, Block());
return std::make_tuple(true, Block(buffer, type,
buffer->begin() + offset, tempBegin + length,
tempBegin, tempBegin + length));
}
std::tuple<bool, Block>
Block::fromBuffer(const uint8_t* buffer, size_t maxSize)
{
const uint8_t* tempBegin = buffer;
const uint8_t* tempEnd = buffer + maxSize;
uint32_t type = 0;
bool isOk = tlv::readType(tempBegin, tempEnd, type);
if (!isOk)
return std::make_tuple(false, Block());
uint64_t length;
isOk = tlv::readVarNumber(tempBegin, tempEnd, length);
if (!isOk)
return std::make_tuple(false, Block());
if (length > static_cast<uint64_t>(tempEnd - tempBegin))
return std::make_tuple(false, Block());
BufferPtr sharedBuffer = make_shared<Buffer>(buffer, tempBegin + length);
return std::make_tuple(true,
Block(sharedBuffer, type,
sharedBuffer->begin(), sharedBuffer->end(),
sharedBuffer->begin() + (tempBegin - buffer), sharedBuffer->end()));
}
void
Block::reset()
{
m_buffer.reset(); // reset of the shared_ptr
m_subBlocks.clear(); // remove all parsed subelements
m_type = std::numeric_limits<uint32_t>::max();
m_begin = m_end = m_value_begin = m_value_end = Buffer::const_iterator();
}
void
Block::resetWire()
{
m_buffer.reset(); // reset of the shared_ptr
// keep subblocks
// keep type
m_begin = m_end = m_value_begin = m_value_end = Buffer::const_iterator();
}
void
Block::parse() const
{
if (!m_subBlocks.empty() || value_size() == 0)
return;
Buffer::const_iterator begin = value_begin();
Buffer::const_iterator end = value_end();
while (begin != end)
{
Buffer::const_iterator element_begin = begin;
uint32_t type = tlv::readType(begin, end);
uint64_t length = tlv::readVarNumber(begin, end);
if (length > static_cast<uint64_t>(end - begin))
{
m_subBlocks.clear();
BOOST_THROW_EXCEPTION(tlv::Error("TLV length exceeds buffer length"));
}
Buffer::const_iterator element_end = begin + length;
m_subBlocks.push_back(Block(m_buffer,
type,
element_begin, element_end,
begin, element_end));
begin = element_end;
// don't do recursive parsing, just the top level
}
}
void
Block::encode()
{
if (hasWire())
return;
OBufferStream os;
tlv::writeVarNumber(os, type());
if (hasValue())
{
tlv::writeVarNumber(os, value_size());
os.write(reinterpret_cast<const char*>(value()), value_size());
}
else if (m_subBlocks.size() == 0)
{
tlv::writeVarNumber(os, 0);
}
else
{
size_t valueSize = 0;
for (element_const_iterator i = m_subBlocks.begin(); i != m_subBlocks.end(); ++i) {
valueSize += i->size();
}
tlv::writeVarNumber(os, valueSize);
for (element_const_iterator i = m_subBlocks.begin(); i != m_subBlocks.end(); ++i) {
if (i->hasWire())
os.write(reinterpret_cast<const char*>(i->wire()), i->size());
else if (i->hasValue()) {
tlv::writeVarNumber(os, i->type());
tlv::writeVarNumber(os, i->value_size());
os.write(reinterpret_cast<const char*>(i->value()), i->value_size());
}
else
BOOST_THROW_EXCEPTION(Error("Underlying value buffer is empty"));
}
}
// now assign correct block
m_buffer = os.buf();
m_begin = m_buffer->begin();
m_end = m_buffer->end();
m_size = m_end - m_begin;
m_value_begin = m_buffer->begin();
m_value_end = m_buffer->end();
tlv::readType(m_value_begin, m_value_end);
tlv::readVarNumber(m_value_begin, m_value_end);
}
const Block&
Block::get(uint32_t type) const
{
element_const_iterator it = this->find(type);
if (it != m_subBlocks.end())
return *it;
BOOST_THROW_EXCEPTION(Error("(Block::get) Requested a non-existed type [" +
boost::lexical_cast<std::string>(type) + "] from Block"));
}
Block::element_const_iterator
Block::find(uint32_t type) const
{
return std::find_if(m_subBlocks.begin(), m_subBlocks.end(),
[type] (const Block& subBlock) { return subBlock.type() == type; });
}
void
Block::remove(uint32_t type)
{
resetWire();
auto it = std::remove_if(m_subBlocks.begin(), m_subBlocks.end(),
[type] (const Block& subBlock) { return subBlock.type() == type; });
m_subBlocks.resize(it - m_subBlocks.begin());
}
Block
Block::blockFromValue() const
{
if (value_size() == 0)
BOOST_THROW_EXCEPTION(Error("Underlying value buffer is empty"));
Buffer::const_iterator begin = value_begin(),
end = value_end();
Buffer::const_iterator element_begin = begin;
uint32_t type = tlv::readType(begin, end);
uint64_t length = tlv::readVarNumber(begin, end);
if (length != static_cast<uint64_t>(end - begin))
BOOST_THROW_EXCEPTION(tlv::Error("TLV length mismatches buffer length"));
return Block(m_buffer,
type,
element_begin, end,
begin, end);
}
Block::operator boost::asio::const_buffer() const
{
return boost::asio::const_buffer(wire(), size());
}
bool
Block::empty() const
{
return m_type == std::numeric_limits<uint32_t>::max();
}
bool
Block::hasWire() const
{
return m_buffer && (m_begin != m_end);
}
Buffer::const_iterator
Block::begin() const
{
if (!hasWire())
BOOST_THROW_EXCEPTION(Error("Underlying wire buffer is empty"));
return m_begin;
}
Buffer::const_iterator
Block::end() const
{
if (!hasWire())
BOOST_THROW_EXCEPTION(Error("Underlying wire buffer is empty"));
return m_end;
}
const uint8_t*
Block::wire() const
{
if (!hasWire())
BOOST_THROW_EXCEPTION(Error("(Block::wire) Underlying wire buffer is empty"));
return &*m_begin;
}
size_t
Block::size() const
{
if (hasWire() || hasValue()) {
return m_size;
}
else
BOOST_THROW_EXCEPTION(Error("Block size cannot be determined (undefined block size)"));
}
bool
Block::hasValue() const
{
return static_cast<bool>(m_buffer);
}
const uint8_t*
Block::value() const
{
if (!hasValue())
return 0;
return &*m_value_begin;
}
size_t
Block::value_size() const
{
if (!hasValue())
return 0;
return m_value_end - m_value_begin;
}
Block::element_iterator
Block::erase(Block::element_const_iterator position)
{
resetWire();
#ifdef NDN_CXX_HAVE_VECTOR_INSERT_ERASE_CONST_ITERATOR
return m_subBlocks.erase(position);
#else
element_iterator it = m_subBlocks.begin();
std::advance(it, std::distance(m_subBlocks.cbegin(), position));
return m_subBlocks.erase(it);
#endif
}
Block::element_iterator
Block::erase(Block::element_const_iterator first, Block::element_const_iterator last)
{
resetWire();
#ifdef NDN_CXX_HAVE_VECTOR_INSERT_ERASE_CONST_ITERATOR
return m_subBlocks.erase(first, last);
#else
element_iterator itStart = m_subBlocks.begin();
element_iterator itEnd = m_subBlocks.begin();
std::advance(itStart, std::distance(m_subBlocks.cbegin(), first));
std::advance(itEnd, std::distance(m_subBlocks.cbegin(), last));
return m_subBlocks.erase(itStart, itEnd);
#endif
}
void
Block::push_back(const Block& element)
{
resetWire();
m_subBlocks.push_back(element);
}
Block::element_iterator
Block::insert(Block::element_const_iterator pos, const Block& element)
{
resetWire();
#ifdef NDN_CXX_HAVE_VECTOR_INSERT_ERASE_CONST_ITERATOR
return m_subBlocks.insert(pos, element);
#else
element_iterator it = m_subBlocks.begin();
std::advance(it, std::distance(m_subBlocks.cbegin(), pos));
return m_subBlocks.insert(it, element);
#endif
}
Block::element_const_iterator
Block::elements_begin() const
{
return m_subBlocks.begin();
}
Block::element_const_iterator
Block::elements_end() const
{
return m_subBlocks.end();
}
size_t
Block::elements_size() const
{
return m_subBlocks.size();
}
bool
Block::operator!=(const Block& other) const
{
return !this->operator==(other);
}
bool
Block::operator==(const Block& other) const
{
return this->size() == other.size() &&
std::equal(this->begin(), this->end(), other.begin());
}
} // namespace ndn