blob: 4eaafb22cc455e7992735644821eebdab36eb2b0 [file] [log] [blame]
/* -*- Mode:C++; c-file-style:"gnu"; indent-tabs-mode:nil; -*- */
/**
* Copyright (c) 2014-2015, Regents of the University of California,
* Arizona Board of Regents,
* Colorado State University,
* University Pierre & Marie Curie, Sorbonne University,
* Washington University in St. Louis,
* Beijing Institute of Technology,
* The University of Memphis.
*
* This file is part of NFD (Named Data Networking Forwarding Daemon).
* See AUTHORS.md for complete list of NFD authors and contributors.
*
* NFD is free software: you can redistribute it and/or modify it under the terms
* of the GNU General Public License as published by the Free Software Foundation,
* either version 3 of the License, or (at your option) any later version.
*
* NFD is distributed in the hope that it will be useful, but WITHOUT ANY WARRANTY;
* without even the implied warranty of MERCHANTABILITY or FITNESS FOR A PARTICULAR
* PURPOSE. See the GNU General Public License for more details.
*
* You should have received a copy of the GNU General Public License along with
* NFD, e.g., in COPYING.md file. If not, see <http://www.gnu.org/licenses/>.
*/
#include "face/udp-channel.hpp"
#include "face/udp-face.hpp"
#include "face/udp-factory.hpp"
#include "core/network-interface.hpp"
#include "tests/test-common.hpp"
#include "tests/limited-io.hpp"
#include "face-history.hpp"
namespace nfd {
namespace tests {
BOOST_FIXTURE_TEST_SUITE(FaceUdp, BaseFixture)
BOOST_AUTO_TEST_CASE(GetChannels)
{
UdpFactory factory;
BOOST_REQUIRE_EQUAL(factory.getChannels().empty(), true);
std::vector<shared_ptr<const Channel> > expectedChannels;
expectedChannels.push_back(factory.createChannel("127.0.0.1", "20070"));
expectedChannels.push_back(factory.createChannel("127.0.0.1", "20071"));
expectedChannels.push_back(factory.createChannel("::1", "20071"));
std::list<shared_ptr<const Channel> > channels = factory.getChannels();
for (std::list<shared_ptr<const Channel> >::const_iterator i = channels.begin();
i != channels.end(); ++i)
{
std::vector<shared_ptr<const Channel> >::iterator pos =
std::find(expectedChannels.begin(), expectedChannels.end(), *i);
BOOST_REQUIRE(pos != expectedChannels.end());
expectedChannels.erase(pos);
}
BOOST_CHECK_EQUAL(expectedChannels.size(), 0);
}
class FactoryErrorCheck : protected BaseFixture
{
public:
bool
isTheSameMulticastEndpoint(const UdpFactory::Error& e) {
return strcmp(e.what(),
"Cannot create the requested UDP unicast channel, local "
"endpoint is already allocated for a UDP multicast face") == 0;
}
bool
isNotMulticastAddress(const UdpFactory::Error& e) {
return strcmp(e.what(),
"Cannot create the requested UDP multicast face, "
"the multicast group given as input is not a multicast address") == 0;
}
bool
isTheSameUnicastEndpoint(const UdpFactory::Error& e) {
return strcmp(e.what(),
"Cannot create the requested UDP multicast face, local "
"endpoint is already allocated for a UDP unicast channel") == 0;
}
bool
isLocalEndpointOnDifferentGroup(const UdpFactory::Error& e) {
return strcmp(e.what(),
"Cannot create the requested UDP multicast face, local "
"endpoint is already allocated for a UDP multicast face "
"on a different multicast group") == 0;
}
};
BOOST_FIXTURE_TEST_CASE(ChannelMapUdp, FactoryErrorCheck)
{
using boost::asio::ip::udp;
UdpFactory factory = UdpFactory();
//to instantiate multicast face on a specific ip address, change interfaceIp
std::string interfaceIp = "0.0.0.0";
shared_ptr<UdpChannel> channel1 = factory.createChannel("127.0.0.1", "20070");
shared_ptr<UdpChannel> channel1a = factory.createChannel("127.0.0.1", "20070");
BOOST_CHECK_EQUAL(channel1, channel1a);
BOOST_CHECK_EQUAL(channel1->getUri().toString(), "udp4://127.0.0.1:20070");
shared_ptr<UdpChannel> channel2 = factory.createChannel("127.0.0.1", "20071");
BOOST_CHECK_NE(channel1, channel2);
shared_ptr<UdpChannel> channel3 = factory.createChannel(interfaceIp, "20070");
shared_ptr<UdpChannel> channel4 = factory.createChannel("::1", "20071");
BOOST_CHECK_NE(channel2, channel4);
BOOST_CHECK_EQUAL(channel4->getUri().toString(), "udp6://[::1]:20071");
//same endpoint of a unicast channel
BOOST_CHECK_EXCEPTION(factory.createMulticastFace(interfaceIp, "224.0.0.1", "20070"),
UdpFactory::Error, isTheSameUnicastEndpoint);
auto multicastFace1 = factory.createMulticastFace(interfaceIp, "224.0.0.1", "20072");
auto multicastFace1a = factory.createMulticastFace(interfaceIp, "224.0.0.1", "20072");
BOOST_CHECK_EQUAL(multicastFace1, multicastFace1a);
BOOST_CHECK_EQUAL(multicastFace1->isLocal(), false);
BOOST_CHECK_EQUAL(multicastFace1->getPersistency(), ndn::nfd::FACE_PERSISTENCY_PERSISTENT);
BOOST_CHECK_EQUAL(multicastFace1->isMultiAccess(), true);
//same endpoint of a multicast face
BOOST_CHECK_EXCEPTION(factory.createChannel(interfaceIp, "20072"),
UdpFactory::Error, isTheSameMulticastEndpoint);
//same multicast endpoint, different group
BOOST_CHECK_EXCEPTION(factory.createMulticastFace(interfaceIp, "224.0.0.42", "20072"),
UdpFactory::Error, isLocalEndpointOnDifferentGroup);
BOOST_CHECK_EXCEPTION(factory.createMulticastFace(interfaceIp, "192.168.10.15", "20025"),
UdpFactory::Error, isNotMulticastAddress);
// //Test commented because it required to be run in a machine that can resolve ipv6 query
// shared_ptr<UdpChannel> channel1v6 = factory.createChannel(//"::1",
// "fe80::5e96:9dff:fe7d:9c8d%en1",
// //"fe80::aa54:b2ff:fe08:27b8%wlan0",
// "20070");
//
// //the creation of multicastFace2 works properly. It has been disable because it needs an IP address of
// //an available network interface (different from the first one used)
// shared_ptr<MulticastUdpFace> multicastFace2 = factory.createMulticastFace("192.168.1.17",
// "224.0.0.1",
// "20073");
// BOOST_CHECK_NE(multicastFace1, multicastFace2);
//
//
// //ipv6 - work in progress
// shared_ptr<MulticastUdpFace> multicastFace3 = factory.createMulticastFace("fe80::5e96:9dff:fe7d:9c8d%en1",
// "FF01:0:0:0:0:0:0:2",
// "20073");
//
// shared_ptr<MulticastUdpFace> multicastFace4 = factory.createMulticastFace("fe80::aa54:b2ff:fe08:27b8%wlan0",
// "FF01:0:0:0:0:0:0:2",
// "20073");
//
// BOOST_CHECK_EQUAL(multicastFace3, multicastFace4);
//
// shared_ptr<MulticastUdpFace> multicastFace5 = factory.createMulticastFace("::1",
// "FF01:0:0:0:0:0:0:2",
// "20073");
//
// BOOST_CHECK_NE(multicastFace3, multicastFace5);
//
// //same local ipv6 endpoint for a different multicast group
// BOOST_CHECK_THROW(factory.createMulticastFace("fe80::aa54:b2ff:fe08:27b8%wlan0",
// "FE01:0:0:0:0:0:0:2",
// "20073"),
// UdpFactory::Error);
//
// //same local ipv6 (expect for th port number) endpoint for a different multicast group
// BOOST_CHECK_THROW(factory.createMulticastFace("fe80::aa54:b2ff:fe08:27b8%wlan0",
// "FE01:0:0:0:0:0:0:2",
// "20075"),
// UdpFactory::Error);
//
// BOOST_CHECK_THROW(factory.createMulticastFace("fa80::20a:9dff:fef6:12ff",
// "FE12:0:0:0:0:0:0:2",
// "20075"),
// UdpFactory::Error);
//
// //not a multicast ipv6
// BOOST_CHECK_THROW(factory.createMulticastFace("fa80::20a:9dff:fef6:12ff",
// "A112:0:0:0:0:0:0:2",
// "20075"),
// UdpFactory::Error);
}
class FaceCreateFixture : protected BaseFixture
{
public:
void
ignore()
{
}
void
checkError(const std::string& errorActual, const std::string& errorExpected)
{
BOOST_CHECK_EQUAL(errorActual, errorExpected);
}
void
failIfError(const std::string& errorActual)
{
BOOST_FAIL("No error expected, but got: [" << errorActual << "]");
}
};
BOOST_FIXTURE_TEST_CASE(FaceCreate, FaceCreateFixture)
{
UdpFactory factory = UdpFactory();
factory.createFace(FaceUri("udp4://127.0.0.1:6363"),
bind(&FaceCreateFixture::ignore, this),
bind(&FaceCreateFixture::checkError, this, _1,
"No channels available to connect to 127.0.0.1:6363"));
factory.createChannel("127.0.0.1", "20071");
factory.createFace(FaceUri("udp4://127.0.0.1:20070"),
bind(&FaceCreateFixture::ignore, this),
bind(&FaceCreateFixture::failIfError, this, _1));
}
class EndToEndIpv4
{
public:
static const std::string
getScheme()
{
return "udp4";
}
static const std::string
getLocalIp()
{
return "127.0.0.1";
}
static const std::string
getPort1()
{
return "20071";
}
static const std::string
getPort2()
{
return "20072";
}
static const std::string
getPort3()
{
return "20073";
}
static const FaceUri
getFaceUri1()
{
return FaceUri("udp4://127.0.0.1:20071");
}
static const FaceUri
getFaceUri2()
{
return FaceUri("udp4://127.0.0.1:20072");
}
static const FaceUri
getFaceUri3()
{
return FaceUri("udp4://127.0.0.1:20073");
}
};
class EndToEndIpv6
{
public:
static const std::string
getScheme()
{
return "udp6";
}
static const std::string
getLocalIp()
{
return "::1";
}
static const std::string
getPort1()
{
return "20071";
}
static const std::string
getPort2()
{
return "20072";
}
static const std::string
getPort3()
{
return "20073";
}
static const FaceUri
getFaceUri1()
{
return FaceUri("udp6://[::1]:20071");
}
static const FaceUri
getFaceUri2()
{
return FaceUri("udp6://[::1]:20072");
}
static const FaceUri
getFaceUri3()
{
return FaceUri("udp6://[::1]:20073");
}
};
typedef boost::mpl::list<EndToEndIpv4, EndToEndIpv6> EndToEndAddresses;
// end to end communication
BOOST_AUTO_TEST_CASE_TEMPLATE(EndToEnd, A, EndToEndAddresses)
{
LimitedIo limitedIo;
UdpFactory factory;
shared_ptr<UdpChannel> channel1 = factory.createChannel(A::getLocalIp(), A::getPort1());
// face1 (on channel1) connects to face2 (on channel2, to be created)
shared_ptr<Face> face1;
unique_ptr<FaceHistory> history1;
factory.createFace(A::getFaceUri2(),
[&] (shared_ptr<Face> newFace) {
face1 = newFace;
history1.reset(new FaceHistory(*face1, limitedIo));
limitedIo.afterOp();
},
[] (const std::string& reason) { BOOST_ERROR(reason); });
limitedIo.run(1, time::seconds(1));
BOOST_REQUIRE(face1 != nullptr);
BOOST_CHECK_EQUAL(face1->getRemoteUri(), A::getFaceUri2());
BOOST_CHECK_EQUAL(face1->getLocalUri(), A::getFaceUri1());
BOOST_CHECK_EQUAL(face1->isLocal(), false); // UdpFace is never local
BOOST_CHECK_EQUAL(face1->getCounters().getNInBytes(), 0);
BOOST_CHECK_EQUAL(face1->getCounters().getNOutBytes(), 0);
// channel2 creation must be after face1 creation,
// otherwise channel2's endpoint would be prohibited
shared_ptr<UdpChannel> channel2 = factory.createChannel(A::getLocalIp(), A::getPort2());
shared_ptr<Face> face2;
unique_ptr<FaceHistory> history2;
channel2->listen([&] (shared_ptr<Face> newFace) {
BOOST_CHECK(face2 == nullptr);
face2 = newFace;
history2.reset(new FaceHistory(*face2, limitedIo));
limitedIo.afterOp();
},
[] (const std::string& reason) { BOOST_ERROR(reason); });
limitedIo.run(1, time::seconds(1));
BOOST_CHECK(face2 == nullptr); // face2 shouldn't be created until face1 sends something
shared_ptr<Interest> interest1 = makeInterest("/I1");
shared_ptr<Interest> interest2 = makeInterest("/I2");
shared_ptr<Data> data1 = makeData("/D1");
shared_ptr<Data> data2 = makeData("/D2");
// face1 sends to channel2, creates face2
face1->sendInterest(*interest1);
face1->sendData(*data1);
face1->sendData(*data1);
face1->sendData(*data1);
size_t nBytesSent1 = interest1->wireEncode().size() + 3 * data1->wireEncode().size();
limitedIo.run(5, time::seconds(1)); // 1 accept, 4 receives
BOOST_REQUIRE(face2 != nullptr);
BOOST_CHECK_EQUAL(face2->getRemoteUri(), A::getFaceUri1());
BOOST_CHECK_EQUAL(face2->getLocalUri(), A::getFaceUri2());
BOOST_CHECK_EQUAL(face2->isLocal(), false); // UdpFace is never local
BOOST_CHECK_EQUAL(face2->getCounters().getNInBytes(), nBytesSent1);
BOOST_CHECK_EQUAL(face2->getCounters().getNOutBytes(), 0);
BOOST_REQUIRE_EQUAL(history2->receivedInterests.size(), 1);
BOOST_CHECK_EQUAL(history2->receivedInterests.front().getName(), interest1->getName());
BOOST_REQUIRE_EQUAL(history2->receivedData.size(), 3);
BOOST_CHECK_EQUAL(history2->receivedData.front().getName(), data1->getName());
// face2 sends to face1
face2->sendInterest(*interest2);
face2->sendInterest(*interest2);
face2->sendInterest(*interest2);
face2->sendData(*data2);
size_t nBytesSent2 = 3 * interest2->wireEncode().size() + data2->wireEncode().size();
limitedIo.run(4, time::seconds(1)); // 4 receives
BOOST_REQUIRE_EQUAL(history1->receivedInterests.size(), 3);
BOOST_CHECK_EQUAL(history1->receivedInterests.front().getName(), interest2->getName());
BOOST_REQUIRE_EQUAL(history1->receivedData.size(), 1);
BOOST_CHECK_EQUAL(history1->receivedData.front().getName(), data2->getName());
// counters
const FaceCounters& counters1 = face1->getCounters();
BOOST_CHECK_EQUAL(counters1.getNInInterests(), 3);
BOOST_CHECK_EQUAL(counters1.getNInDatas(), 1);
BOOST_CHECK_EQUAL(counters1.getNOutInterests(), 1);
BOOST_CHECK_EQUAL(counters1.getNOutDatas(), 3);
BOOST_CHECK_EQUAL(counters1.getNInBytes(), nBytesSent2);
BOOST_CHECK_EQUAL(counters1.getNOutBytes(), nBytesSent1);
const FaceCounters& counters2 = face2->getCounters();
BOOST_CHECK_EQUAL(counters2.getNInInterests(), 1);
BOOST_CHECK_EQUAL(counters2.getNInDatas(), 3);
BOOST_CHECK_EQUAL(counters2.getNOutInterests(), 3);
BOOST_CHECK_EQUAL(counters2.getNOutDatas(), 1);
BOOST_CHECK_EQUAL(counters2.getNInBytes(), nBytesSent1);
BOOST_CHECK_EQUAL(counters2.getNOutBytes(), nBytesSent2);
}
// channel accepting multiple incoming connections
BOOST_AUTO_TEST_CASE_TEMPLATE(MultipleAccepts, A, EndToEndAddresses)
{
LimitedIo limitedIo;
UdpFactory factory;
// channel1 is listening
shared_ptr<UdpChannel> channel1 = factory.createChannel(A::getLocalIp(), A::getPort1());
std::vector<shared_ptr<Face>> faces1;
channel1->listen([&] (shared_ptr<Face> newFace) {
faces1.push_back(newFace);
limitedIo.afterOp();
},
[] (const std::string& reason) { BOOST_ERROR(reason); });
// face2 (on channel2) connects to channel1
shared_ptr<UdpChannel> channel2 = factory.createChannel(A::getLocalIp(), A::getPort2());
BOOST_CHECK_NE(channel1, channel2);
shared_ptr<Face> face2;
boost::asio::ip::address ipAddress2 = boost::asio::ip::address::from_string(A::getLocalIp());
udp::Endpoint endpoint2(ipAddress2, boost::lexical_cast<uint16_t>(A::getPort1()));
channel2->connect(endpoint2,
[&] (shared_ptr<Face> newFace) {
face2 = newFace;
limitedIo.afterOp();
},
[] (const std::string& reason) { BOOST_ERROR(reason); });
limitedIo.run(1, time::seconds(1)); // 1 create (on channel2)
BOOST_REQUIRE(face2 != nullptr);
BOOST_CHECK_EQUAL(faces1.size(), 0); // channel1 won't create face until face2 sends something
// face3 (on channel3) connects to channel1
shared_ptr<UdpChannel> channel3 = factory.createChannel(A::getLocalIp(), A::getPort3());
BOOST_CHECK_NE(channel1, channel3);
shared_ptr<Face> face3;
boost::asio::ip::address ipAddress3 = boost::asio::ip::address::from_string(A::getLocalIp());
udp::Endpoint endpoint3(ipAddress3, boost::lexical_cast<uint16_t>(A::getPort1()));
channel3->connect(endpoint3,
[&] (shared_ptr<Face> newFace) {
face3 = newFace;
limitedIo.afterOp();
},
[] (const std::string& reason) { BOOST_ERROR(reason); });
limitedIo.run(1, time::seconds(1)); // 1 create (on channel3)
BOOST_REQUIRE(face3 != nullptr);
BOOST_CHECK_EQUAL(faces1.size(), 0); // channel1 won't create face until face3 sends something
// face2 sends to channel1
shared_ptr<Interest> interest2 = makeInterest("/I2");
face2->sendInterest(*interest2);
limitedIo.run(1, time::milliseconds(100)); // 1 accept (on channel1)
BOOST_REQUIRE_EQUAL(faces1.size(), 1);
BOOST_CHECK_EQUAL(channel1->size(), 1);
BOOST_CHECK_EQUAL(faces1.at(0)->getRemoteUri(), A::getFaceUri2());
// face3 sends to channel1
shared_ptr<Data> data3 = makeData("/D3");
face3->sendData(*data3);
limitedIo.run(1, time::milliseconds(100)); // 1 accept (on channel1)
BOOST_REQUIRE_EQUAL(faces1.size(), 2);
BOOST_CHECK_EQUAL(channel1->size(), 2);
BOOST_CHECK_EQUAL(faces1.at(1)->getRemoteUri(), A::getFaceUri3());
}
// manually close a face
BOOST_AUTO_TEST_CASE_TEMPLATE(ManualClose, A, EndToEndAddresses)
{
LimitedIo limitedIo;
UdpFactory factory;
shared_ptr<UdpChannel> channel1 = factory.createChannel(A::getLocalIp(), A::getPort1());
shared_ptr<Face> face1;
unique_ptr<FaceHistory> history1;
factory.createFace(A::getFaceUri2(),
[&] (shared_ptr<Face> newFace) {
face1 = newFace;
history1.reset(new FaceHistory(*face1, limitedIo));
limitedIo.afterOp();
},
[] (const std::string& reason) { BOOST_ERROR(reason); });
limitedIo.run(1, time::milliseconds(100));
BOOST_REQUIRE(face1 != nullptr);
BOOST_CHECK_EQUAL(channel1->size(), 1);
face1->close();
getGlobalIoService().poll();
BOOST_CHECK_EQUAL(history1->failures.size(), 1);
BOOST_CHECK_EQUAL(channel1->size(), 0);
}
// automatically close an idle incoming face
BOOST_AUTO_TEST_CASE_TEMPLATE(IdleClose, A, EndToEndAddresses)
{
LimitedIo limitedIo;
UdpFactory factory;
// channel1 is listening
shared_ptr<UdpChannel> channel1 = factory.createChannel(A::getLocalIp(), A::getPort1(),
time::seconds(2));
shared_ptr<Face> face1;
unique_ptr<FaceHistory> history1;
channel1->listen([&] (shared_ptr<Face> newFace) {
BOOST_CHECK(face1 == nullptr);
face1 = newFace;
history1.reset(new FaceHistory(*face1, limitedIo));
limitedIo.afterOp();
},
[] (const std::string& reason) { BOOST_ERROR(reason); });
// face2 (on channel2) connects to channel1
shared_ptr<UdpChannel> channel2 = factory.createChannel(A::getLocalIp(), A::getPort2(),
time::seconds(2));
shared_ptr<Face> face2;
unique_ptr<FaceHistory> history2;
boost::asio::ip::address ipAddress = boost::asio::ip::address::from_string(A::getLocalIp());
udp::Endpoint endpoint(ipAddress, boost::lexical_cast<uint16_t>(A::getPort1()));
channel2->connect(endpoint,
[&] (shared_ptr<Face> newFace) {
face2 = newFace;
history2.reset(new FaceHistory(*face2, limitedIo));
limitedIo.afterOp();
},
[] (const std::string& reason) { BOOST_ERROR(reason); });
limitedIo.run(1, time::milliseconds(100)); // 1 create (on channel2)
BOOST_REQUIRE(face2 != nullptr);
BOOST_CHECK_EQUAL(face2->getPersistency(), ndn::nfd::FACE_PERSISTENCY_PERSISTENT);
BOOST_CHECK_EQUAL(face2->isMultiAccess(), false);
// face2 sends to channel1, creates face1
shared_ptr<Interest> interest2 = makeInterest("/I2");
face2->sendInterest(*interest2);
limitedIo.run(2, time::seconds(1)); // 1 accept (on channel1), 1 receive (on face1)
BOOST_CHECK_EQUAL(channel1->size(), 1);
BOOST_REQUIRE(face1 != nullptr);
BOOST_CHECK_EQUAL(face1->getPersistency(), ndn::nfd::FACE_PERSISTENCY_ON_DEMAND);
BOOST_CHECK_EQUAL(face1->isMultiAccess(), false);
limitedIo.defer(time::seconds(1));
BOOST_CHECK_EQUAL(history1->failures.size(), 0); // face1 is not idle
BOOST_CHECK_EQUAL(history2->failures.size(), 0); // face2 is outgoing face and never closed
limitedIo.defer(time::seconds(4));
BOOST_CHECK_EQUAL(history1->failures.size(), 1); // face1 is idle and automatically closed
BOOST_CHECK_EQUAL(channel1->size(), 0);
BOOST_CHECK_EQUAL(history2->failures.size(), 0); // face2 is outgoing face and never closed
}
class FakeNetworkInterfaceFixture : public BaseFixture
{
public:
FakeNetworkInterfaceFixture()
{
using namespace boost::asio::ip;
auto fakeInterfaces = make_shared<std::vector<NetworkInterfaceInfo>>();
fakeInterfaces->push_back(
NetworkInterfaceInfo {0, "eth0",
ethernet::Address::fromString("3e:15:c2:8b:65:00"),
{address_v4::from_string("0.0.0.0")},
{address_v6::from_string("::")},
address_v4(),
IFF_UP});
fakeInterfaces->push_back(
NetworkInterfaceInfo {1, "eth0",
ethernet::Address::fromString("3e:15:c2:8b:65:00"),
{address_v4::from_string("192.168.2.1"), address_v4::from_string("192.168.2.2")},
{},
address_v4::from_string("192.168.2.255"),
0});
fakeInterfaces->push_back(
NetworkInterfaceInfo {2, "eth1",
ethernet::Address::fromString("3e:15:c2:8b:65:00"),
{address_v4::from_string("198.51.100.1")},
{address_v6::from_string("2001:db8::2"), address_v6::from_string("2001:db8::3")},
address_v4::from_string("198.51.100.255"),
IFF_MULTICAST | IFF_BROADCAST | IFF_UP});
setDebugNetworkInterfaces(fakeInterfaces);
}
~FakeNetworkInterfaceFixture()
{
setDebugNetworkInterfaces(nullptr);
}
};
BOOST_FIXTURE_TEST_CASE(Bug2292, FakeNetworkInterfaceFixture)
{
using namespace boost::asio::ip;
UdpFactory factory;
factory.prohibitEndpoint(udp::Endpoint(address_v4::from_string("192.168.2.1"), 1024));
BOOST_REQUIRE_EQUAL(factory.m_prohibitedEndpoints.size(), 1);
BOOST_CHECK((factory.m_prohibitedEndpoints ==
std::set<udp::Endpoint> {
udp::Endpoint(address_v4::from_string("192.168.2.1"), 1024),
}));
factory.m_prohibitedEndpoints.clear();
factory.prohibitEndpoint(udp::Endpoint(address_v6::from_string("2001:db8::1"), 2048));
BOOST_REQUIRE_EQUAL(factory.m_prohibitedEndpoints.size(), 1);
BOOST_CHECK((factory.m_prohibitedEndpoints ==
std::set<udp::Endpoint> {
udp::Endpoint(address_v6::from_string("2001:db8::1"), 2048),
}));
factory.m_prohibitedEndpoints.clear();
factory.prohibitEndpoint(udp::Endpoint(address_v4(), 1024));
BOOST_REQUIRE_EQUAL(factory.m_prohibitedEndpoints.size(), 6);
BOOST_CHECK((factory.m_prohibitedEndpoints ==
std::set<udp::Endpoint> {
udp::Endpoint(address_v4::from_string("192.168.2.1"), 1024),
udp::Endpoint(address_v4::from_string("192.168.2.2"), 1024),
udp::Endpoint(address_v4::from_string("198.51.100.1"), 1024),
udp::Endpoint(address_v4::from_string("198.51.100.255"), 1024),
udp::Endpoint(address_v4::from_string("255.255.255.255"), 1024),
udp::Endpoint(address_v4::from_string("0.0.0.0"), 1024)
}));
factory.m_prohibitedEndpoints.clear();
factory.prohibitEndpoint(udp::Endpoint(address_v6(), 2048));
BOOST_REQUIRE_EQUAL(factory.m_prohibitedEndpoints.size(), 3);
BOOST_CHECK((factory.m_prohibitedEndpoints ==
std::set<udp::Endpoint> {
udp::Endpoint(address_v6::from_string("2001:db8::2"), 2048),
udp::Endpoint(address_v6::from_string("2001:db8::3"), 2048),
udp::Endpoint(address_v6::from_string("::"), 2048),
}));
}
BOOST_AUTO_TEST_SUITE_END()
} // namespace tests
} // namespace nfd