blob: 6be5e5ceca0df7ebed6975d62cb5a6bf8af34060 [file] [log] [blame]
/* -*- Mode:C++; c-file-style:"gnu"; indent-tabs-mode:nil; -*- */
/**
* Copyright (c) 2011-2015 Regents of the University of California.
*
* This file is part of ndnSIM. See AUTHORS for complete list of ndnSIM authors and
* contributors.
*
* ndnSIM is free software: you can redistribute it and/or modify it under the terms
* of the GNU General Public License as published by the Free Software Foundation,
* either version 3 of the License, or (at your option) any later version.
*
* ndnSIM is distributed in the hope that it will be useful, but WITHOUT ANY WARRANTY;
* without even the implied warranty of MERCHANTABILITY or FITNESS FOR A PARTICULAR
* PURPOSE. See the GNU General Public License for more details.
*
* You should have received a copy of the GNU General Public License along with
* ndnSIM, e.g., in COPYING.md file. If not, see <http://www.gnu.org/licenses/>.
**/
// ndn-simple-mpi.cpp
#include "ns3/core-module.h"
#include "ns3/network-module.h"
#include "ns3/point-to-point-module.h"
#include "ns3/ndnSIM-module.h"
#include "ns3/mpi-interface.h"
#ifdef NS3_MPI
#include <mpi.h>
#else
#error "ndn-simple-mpi scenario can be compiled only if NS3_MPI is enabled"
#endif
namespace ns3 {
/**
* This scenario simulates a very simple network topology using mpi:
*
*
* +----------+ 1 Mbps +----------+
* | consumer | <------------> | producer |
* +----------+ 10ms +----------+
*
*
* Consumer requests data from producer with frequency 10 interests per second
* (interests contain constantly increasing sequence number).
*
* For every received interest, producer replies with a data packet, containing
* 1024 bytes of virtual payload.
*
* To run scenario and see what is happening, use the following command:
*
* NS_LOG=ndn.Consumer:ndn.Producer mpirun -np 2 ./waf --run=ndn-simple-mpi
*
* The default parallel synchronization strategy implemented in the
* DistributedSimulatorImpl class is based on a globally synchronized algorithm
* using an MPI collective operation to synchronize simulation time across all LPs.
* A second synchronization strategy based on local communication and null messages
* is implemented in the NullMessageSimulatorImpl class, For the null message strategy
* the global all to all gather is not required; LPs only need to communication with
* LPs that have shared point-to-point links. The algorithm to use is controlled by
* which the ns-3 global value SimulatorImplementationType.
*
* The strategy can be selected according to the value of nullmsg. If nullmsg is true,
* then the local communication strategy is selected. If nullmsg is false, then the
* globally synchronized strategy is selected. This parameter can be passed either
* as a command line argument or by directly modifying the simulation scenario.
*
*/
int
main(int argc, char* argv[])
{
// setting default parameters for PointToPoint links and channels
Config::SetDefault("ns3::PointToPointNetDevice::DataRate", StringValue("1Gbps"));
Config::SetDefault("ns3::PointToPointChannel::Delay", StringValue("1ms"));
Config::SetDefault("ns3::QueueBase::MaxSize", StringValue("10p"));
bool nullmsg = false;
// Read optional command-line parameters (e.g., enable visualizer with ./waf --run=<> --visualize
CommandLine cmd;
cmd.AddValue("nullmsg", "Enable the use of null-message synchronization", nullmsg);
cmd.Parse(argc, argv);
// Distributed simulation setup; by default use granted time window algorithm.
if (nullmsg) {
GlobalValue::Bind("SimulatorImplementationType",
StringValue("ns3::NullMessageSimulatorImpl"));
}
else {
GlobalValue::Bind("SimulatorImplementationType",
StringValue("ns3::DistributedSimulatorImpl"));
}
// Enable parallel simulator with the command line arguments
MpiInterface::Enable(&argc, &argv);
uint32_t systemId = MpiInterface::GetSystemId();
uint32_t systemCount = MpiInterface::GetSize();
if (systemCount != 2) {
std::cout << "Simulation will run on a single processor only" << std::endl
<< "To run using MPI, run" << std::endl
<< " mpirun -np 2 ./waf --run=ndn-simple-mpi" << std::endl;
}
// Creating nodes
// consumer node is associated with system id 0
Ptr<Node> node1 = CreateObject<Node>(0);
// producer node is associated with system id 1 (or 0 when running on single CPU)
Ptr<Node> node2 = CreateObject<Node>(systemCount == 2 ? 1 : 0);
// Connecting nodes using a link
PointToPointHelper p2p;
p2p.Install(node1, node2);
// Install NDN stack on all nodes
ndn::StackHelper ndnHelper;
ndnHelper.InstallAll();
ndn::FibHelper::AddRoute(node1, "/prefix/1", node2, 1);
ndn::FibHelper::AddRoute(node2, "/prefix/2", node1, 1);
// Installing applications
ndn::AppHelper consumerHelper("ns3::ndn::ConsumerCbr");
consumerHelper.SetAttribute("Frequency", StringValue("100")); // 10 interests a second
ndn::AppHelper producerHelper("ns3::ndn::Producer");
producerHelper.SetAttribute("PayloadSize", StringValue("1024"));
// Run consumer application on the first processor only (if running on 2 CPUs)
if (systemCount != 2 || systemId == 0) {
consumerHelper.SetPrefix("/prefix/1"); // request /prefix/1/*
consumerHelper.Install(node1);
producerHelper.SetPrefix("/prefix/2"); // serve /prefix/2/*
producerHelper.Install(node1);
ndn::L3RateTracer::Install(node1, "node1.txt", Seconds(0.5));
}
// Run consumer application on the second processor only (if running on 2 CPUs)
if (systemCount != 2 || systemId == 1) {
// Producer
consumerHelper.SetPrefix("/prefix/2"); // request /prefix/2/*
consumerHelper.Install(node2);
producerHelper.SetPrefix("/prefix/1"); // serve /prefix/1/*
producerHelper.Install(node2);
ndn::L3RateTracer::Install(node2, "node2.txt", Seconds(0.5));
}
Simulator::Stop(Seconds(400.0));
Simulator::Run();
Simulator::Destroy();
MpiInterface::Disable();
return 0;
}
} // namespace ns3
int
main(int argc, char* argv[])
{
return ns3::main(argc, argv);
}