blob: 5e88f7c1ffda7dd673856d39fe0f683991b3db7f [file] [log] [blame]
/* -*- Mode:C++; c-file-style:"gnu"; indent-tabs-mode:nil; -*- */
/*
* Copyright (c) 2016-2018, Arizona Board of Regents.
*
* This file is part of ndn-tools (Named Data Networking Essential Tools).
* See AUTHORS.md for complete list of ndn-tools authors and contributors.
*
* ndn-tools is free software: you can redistribute it and/or modify it under the terms
* of the GNU General Public License as published by the Free Software Foundation,
* either version 3 of the License, or (at your option) any later version.
*
* ndn-tools is distributed in the hope that it will be useful, but WITHOUT ANY WARRANTY;
* without even the implied warranty of MERCHANTABILITY or FITNESS FOR A PARTICULAR
* PURPOSE. See the GNU General Public License for more details.
*
* You should have received a copy of the GNU General Public License along with
* ndn-tools, e.g., in COPYING.md file. If not, see <http://www.gnu.org/licenses/>.
*
* See AUTHORS.md for complete list of ndn-cxx authors and contributors.
*
* @author Shuo Yang
* @author Weiwei Liu
* @author Chavoosh Ghasemi
*/
#include "aimd-rtt-estimator.hpp"
#include <cmath>
#include <limits>
namespace ndn {
namespace chunks {
namespace aimd {
RttEstimator::RttEstimator(const Options& options)
: m_options(options)
, m_sRtt(std::numeric_limits<double>::quiet_NaN())
, m_rttVar(std::numeric_limits<double>::quiet_NaN())
, m_rto(m_options.initialRto.count())
, m_rttMin(std::numeric_limits<double>::max())
, m_rttMax(std::numeric_limits<double>::min())
, m_rttAvg(0.0)
, m_nRttSamples(0)
{
if (m_options.isVerbose) {
std::cerr << m_options;
}
}
void
RttEstimator::addMeasurement(uint64_t segNo, Milliseconds rtt, size_t nExpectedSamples)
{
BOOST_ASSERT(nExpectedSamples > 0);
if (m_nRttSamples == 0) { // first measurement
m_sRtt = rtt;
m_rttVar = m_sRtt / 2;
m_rto = m_sRtt + m_options.k * m_rttVar;
}
else {
double alpha = m_options.alpha / nExpectedSamples;
double beta = m_options.beta / nExpectedSamples;
m_rttVar = (1 - beta) * m_rttVar + beta * time::abs(m_sRtt - rtt);
m_sRtt = (1 - alpha) * m_sRtt + alpha * rtt;
m_rto = m_sRtt + m_options.k * m_rttVar;
}
m_rto = ndn::clamp(m_rto, m_options.minRto, m_options.maxRto);
afterRttMeasurement({segNo, rtt, m_sRtt, m_rttVar, m_rto});
m_rttAvg = (m_nRttSamples * m_rttAvg + rtt.count()) / (m_nRttSamples + 1);
m_rttMax = std::max(rtt.count(), m_rttMax);
m_rttMin = std::min(rtt.count(), m_rttMin);
m_nRttSamples++;
}
void
RttEstimator::backoffRto()
{
m_rto = ndn::clamp(m_rto * m_options.rtoBackoffMultiplier,
m_options.minRto, m_options.maxRto);
}
std::ostream&
operator<<(std::ostream& os, const RttEstimator::Options& options)
{
os << "RTT estimator parameters:\n"
<< "\tAlpha = " << options.alpha << "\n"
<< "\tBeta = " << options.beta << "\n"
<< "\tK = " << options.k << "\n"
<< "\tInitial RTO = " << options.initialRto << "\n"
<< "\tMin RTO = " << options.minRto << "\n"
<< "\tMax RTO = " << options.maxRto << "\n";
return os;
}
} // namespace aimd
} // namespace chunks
} // namespace ndn