blob: d4376b71f33e386cc30fd188cc457965864f0cbe [file] [log] [blame]
/* -*- Mode:C++; c-file-style:"gnu"; indent-tabs-mode:nil; -*- */
/*
* Copyright (c) 2016-2023, Regents of the University of California,
* Colorado State University,
* University Pierre & Marie Curie, Sorbonne University.
*
* This file is part of ndn-tools (Named Data Networking Essential Tools).
* See AUTHORS.md for complete list of ndn-tools authors and contributors.
*
* ndn-tools is free software: you can redistribute it and/or modify it under the terms
* of the GNU General Public License as published by the Free Software Foundation,
* either version 3 of the License, or (at your option) any later version.
*
* ndn-tools is distributed in the hope that it will be useful, but WITHOUT ANY WARRANTY;
* without even the implied warranty of MERCHANTABILITY or FITNESS FOR A PARTICULAR
* PURPOSE. See the GNU General Public License for more details.
*
* You should have received a copy of the GNU General Public License along with
* ndn-tools, e.g., in COPYING.md file. If not, see <http://www.gnu.org/licenses/>.
*
* See AUTHORS.md for complete list of ndn-cxx authors and contributors.
*
* @author Shuo Yang
* @author Weiwei Liu
* @author Chavoosh Ghasemi
* @author Klaus Schneider
*/
#include "pipeline-interests-adaptive.hpp"
#include "data-fetcher.hpp"
#include <iomanip>
namespace ndn::chunks {
PipelineInterestsAdaptive::PipelineInterestsAdaptive(Face& face,
RttEstimatorWithStats& rttEstimator,
const Options& opts)
: PipelineInterests(face, opts)
, m_cwnd(m_options.initCwnd)
, m_ssthresh(m_options.initSsthresh)
, m_rttEstimator(rttEstimator)
, m_scheduler(m_face.getIoContext())
{
}
PipelineInterestsAdaptive::~PipelineInterestsAdaptive()
{
cancel();
}
void
PipelineInterestsAdaptive::doRun()
{
if (allSegmentsReceived()) {
cancel();
if (!m_options.isQuiet) {
printSummary();
}
return;
}
// schedule the event to check retransmission timer
m_checkRtoEvent = m_scheduler.schedule(m_options.rtoCheckInterval, [this] { checkRto(); });
schedulePackets();
}
void
PipelineInterestsAdaptive::doCancel()
{
m_checkRtoEvent.cancel();
m_segmentInfo.clear();
}
void
PipelineInterestsAdaptive::checkRto()
{
if (isStopping())
return;
bool hasTimeout = false;
uint64_t highTimeoutSeg = 0;
for (auto& entry : m_segmentInfo) {
SegmentInfo& segInfo = entry.second;
if (segInfo.state != SegmentState::InRetxQueue) { // skip segments already in the retx queue
auto timeElapsed = time::steady_clock::now() - segInfo.timeSent;
if (timeElapsed > segInfo.rto) { // timer expired?
m_nTimeouts++;
hasTimeout = true;
highTimeoutSeg = std::max(highTimeoutSeg, entry.first);
enqueueForRetransmission(entry.first);
}
}
}
if (hasTimeout) {
recordTimeout(highTimeoutSeg);
schedulePackets();
}
// schedule the next check after predefined interval
m_checkRtoEvent = m_scheduler.schedule(m_options.rtoCheckInterval, [this] { checkRto(); });
}
void
PipelineInterestsAdaptive::sendInterest(uint64_t segNo, bool isRetransmission)
{
if (isStopping())
return;
if (m_hasFinalBlockId && segNo > m_lastSegmentNo)
return;
if (!isRetransmission && m_hasFailure)
return;
if (m_options.isVerbose) {
std::cerr << (isRetransmission ? "Retransmitting" : "Requesting")
<< " segment #" << segNo << "\n";
}
if (isRetransmission) {
// keep track of retx count for this segment
auto ret = m_retxCount.emplace(segNo, 1);
if (!ret.second) { // not the first retransmission
m_retxCount[segNo] += 1;
if (m_options.maxRetriesOnTimeoutOrNack != DataFetcher::MAX_RETRIES_INFINITE &&
m_retxCount[segNo] > m_options.maxRetriesOnTimeoutOrNack) {
return handleFail(segNo, "Reached the maximum number of retries (" +
to_string(m_options.maxRetriesOnTimeoutOrNack) +
") while retrieving segment #" + to_string(segNo));
}
if (m_options.isVerbose) {
std::cerr << "# of retries for segment #" << segNo
<< " is " << m_retxCount[segNo] << "\n";
}
}
}
auto interest = Interest()
.setName(Name(m_prefix).appendSegment(segNo))
.setMustBeFresh(m_options.mustBeFresh)
.setInterestLifetime(m_options.interestLifetime);
SegmentInfo& segInfo = m_segmentInfo[segNo];
segInfo.interestHdl = m_face.expressInterest(interest,
FORWARD_TO_MEM_FN(handleData),
FORWARD_TO_MEM_FN(handleNack),
FORWARD_TO_MEM_FN(handleLifetimeExpiration));
segInfo.timeSent = time::steady_clock::now();
segInfo.rto = m_rttEstimator.getEstimatedRto();
m_nInFlight++;
m_nSent++;
if (isRetransmission) {
segInfo.state = SegmentState::Retransmitted;
m_nRetransmitted++;
}
else {
m_highInterest = segNo;
segInfo.state = SegmentState::FirstTimeSent;
}
}
void
PipelineInterestsAdaptive::schedulePackets()
{
BOOST_ASSERT(m_nInFlight >= 0);
auto availableWindowSize = static_cast<int64_t>(m_cwnd) - m_nInFlight;
while (availableWindowSize > 0) {
if (!m_retxQueue.empty()) { // do retransmission first
uint64_t retxSegNo = m_retxQueue.front();
m_retxQueue.pop();
if (m_segmentInfo.count(retxSegNo) == 0) {
m_nSkippedRetx++;
continue;
}
// the segment is still in the map, that means it needs to be retransmitted
sendInterest(retxSegNo, true);
}
else { // send next segment
sendInterest(getNextSegmentNo(), false);
}
availableWindowSize--;
}
}
void
PipelineInterestsAdaptive::handleData(const Interest& interest, const Data& data)
{
if (isStopping())
return;
// Interest was expressed with CanBePrefix=false
BOOST_ASSERT(data.getName().equals(interest.getName()));
if (!m_hasFinalBlockId && data.getFinalBlock()) {
m_lastSegmentNo = data.getFinalBlock()->toSegment();
m_hasFinalBlockId = true;
cancelInFlightSegmentsGreaterThan(m_lastSegmentNo);
if (m_hasFailure && m_lastSegmentNo >= m_failedSegNo) {
// previously failed segment is part of the content
return onFailure(m_failureReason);
}
else {
m_hasFailure = false;
}
}
uint64_t recvSegNo = getSegmentFromPacket(data);
auto segIt = m_segmentInfo.find(recvSegNo);
if (segIt == m_segmentInfo.end()) {
return; // ignore already-received segment
}
SegmentInfo& segInfo = segIt->second;
time::nanoseconds rtt = time::steady_clock::now() - segInfo.timeSent;
if (m_options.isVerbose) {
std::cerr << "Received segment #" << recvSegNo
<< ", rtt=" << rtt.count() / 1e6 << "ms"
<< ", rto=" << segInfo.rto.count() / 1e6 << "ms\n";
}
m_highData = std::max(m_highData, recvSegNo);
// for segments in retx queue, we must not decrement m_nInFlight
// because it was already decremented when the segment timed out
if (segInfo.state != SegmentState::InRetxQueue) {
m_nInFlight--;
}
// upon finding congestion mark, decrease the window size
// without retransmitting any packet
if (data.getCongestionMark() > 0) {
m_nCongMarks++;
if (!m_options.ignoreCongMarks) {
if (m_options.disableCwa || m_highData > m_recPoint) {
m_recPoint = m_highInterest; // react to only one congestion event (timeout or congestion mark)
// per RTT (conservative window adaptation)
m_nMarkDecr++;
decreaseWindow();
if (m_options.isVerbose) {
std::cerr << "Received congestion mark, value = " << data.getCongestionMark()
<< ", new cwnd = " << m_cwnd << "\n";
}
}
}
else {
increaseWindow();
}
}
else {
increaseWindow();
}
onData(data);
// do not sample RTT for retransmitted segments
if ((segInfo.state == SegmentState::FirstTimeSent ||
segInfo.state == SegmentState::InRetxQueue) &&
m_retxCount.count(recvSegNo) == 0) {
auto nExpectedSamples = std::max<int64_t>((m_nInFlight + 1) >> 1, 1);
BOOST_ASSERT(nExpectedSamples > 0);
m_rttEstimator.addMeasurement(rtt, static_cast<size_t>(nExpectedSamples));
afterRttMeasurement({recvSegNo, rtt,
m_rttEstimator.getSmoothedRtt(),
m_rttEstimator.getRttVariation(),
m_rttEstimator.getEstimatedRto()});
}
// remove the entry associated with the received segment
m_segmentInfo.erase(segIt);
if (allSegmentsReceived()) {
cancel();
if (!m_options.isQuiet) {
printSummary();
}
}
else {
schedulePackets();
}
}
void
PipelineInterestsAdaptive::handleNack(const Interest& interest, const lp::Nack& nack)
{
if (isStopping())
return;
if (m_options.isVerbose)
std::cerr << "Received Nack with reason " << nack.getReason()
<< " for Interest " << interest << "\n";
uint64_t segNo = getSegmentFromPacket(interest);
switch (nack.getReason()) {
case lp::NackReason::DUPLICATE:
// ignore duplicates
break;
case lp::NackReason::CONGESTION:
// treated the same as timeout for now
enqueueForRetransmission(segNo);
recordTimeout(segNo);
schedulePackets();
break;
default:
handleFail(segNo, "Could not retrieve data for " + interest.getName().toUri() +
", reason: " + boost::lexical_cast<std::string>(nack.getReason()));
break;
}
}
void
PipelineInterestsAdaptive::handleLifetimeExpiration(const Interest& interest)
{
if (isStopping())
return;
m_nTimeouts++;
uint64_t segNo = getSegmentFromPacket(interest);
enqueueForRetransmission(segNo);
recordTimeout(segNo);
schedulePackets();
}
void
PipelineInterestsAdaptive::recordTimeout(uint64_t segNo)
{
if (m_options.disableCwa || segNo > m_recPoint) {
// interests that are still outstanding during a timeout event
// should not trigger another window decrease later (bug #5202)
m_recPoint = m_highInterest;
decreaseWindow();
m_rttEstimator.backoffRto();
m_nLossDecr++;
if (m_options.isVerbose) {
std::cerr << "Packet loss event, new cwnd = " << m_cwnd
<< ", ssthresh = " << m_ssthresh << "\n";
}
}
}
void
PipelineInterestsAdaptive::enqueueForRetransmission(uint64_t segNo)
{
BOOST_ASSERT(m_nInFlight > 0);
m_nInFlight--;
m_retxQueue.push(segNo);
m_segmentInfo.at(segNo).state = SegmentState::InRetxQueue;
}
void
PipelineInterestsAdaptive::handleFail(uint64_t segNo, const std::string& reason)
{
if (isStopping())
return;
// if the failed segment is definitely part of the content, raise a fatal error
if (m_hasFinalBlockId && segNo <= m_lastSegmentNo)
return onFailure(reason);
if (!m_hasFinalBlockId) {
m_segmentInfo.erase(segNo);
m_nInFlight--;
if (m_segmentInfo.empty()) {
onFailure("Fetching terminated but no final segment number has been found");
}
else {
cancelInFlightSegmentsGreaterThan(segNo);
m_hasFailure = true;
m_failedSegNo = segNo;
m_failureReason = reason;
}
}
}
void
PipelineInterestsAdaptive::cancelInFlightSegmentsGreaterThan(uint64_t segNo)
{
for (auto it = m_segmentInfo.begin(); it != m_segmentInfo.end();) {
// cancel fetching all segments that follow
if (it->first > segNo) {
it = m_segmentInfo.erase(it);
m_nInFlight--;
}
else {
++it;
}
}
}
void
PipelineInterestsAdaptive::printOptions() const
{
PipelineInterests::printOptions();
std::cerr
<< "\tInitial congestion window size = " << m_options.initCwnd << "\n"
<< "\tInitial slow start threshold = " << m_options.initSsthresh << "\n"
<< "\tAdditive increase step = " << m_options.aiStep << "\n"
<< "\tMultiplicative decrease factor = " << m_options.mdCoef << "\n"
<< "\tRTO check interval = " << m_options.rtoCheckInterval << "\n"
<< "\tReact to congestion marks = " << (m_options.ignoreCongMarks ? "no" : "yes") << "\n"
<< "\tConservative window adaptation = " << (m_options.disableCwa ? "no" : "yes") << "\n"
<< "\tResetting window to " << (m_options.resetCwndToInit ?
"initial value" : "ssthresh") << " upon loss event\n";
}
void
PipelineInterestsAdaptive::printSummary() const
{
PipelineInterests::printSummary();
std::cerr << "Congestion marks: " << m_nCongMarks << " (caused " << m_nMarkDecr << " window decreases)\n"
<< "Timeouts: " << m_nTimeouts << " (caused " << m_nLossDecr << " window decreases)\n"
<< "Retransmitted segments: " << m_nRetransmitted
<< " (" << (m_nSent == 0 ? 0 : (m_nRetransmitted * 100.0 / m_nSent)) << "%)"
<< ", skipped: " << m_nSkippedRetx << "\n"
<< "RTT ";
if (m_rttEstimator.getMinRtt() == time::nanoseconds::max() ||
m_rttEstimator.getMaxRtt() == time::nanoseconds::min()) {
std::cerr << "stats unavailable\n";
}
else {
std::cerr << "min/avg/max = " << std::fixed << std::setprecision(3)
<< m_rttEstimator.getMinRtt().count() / 1e6 << "/"
<< m_rttEstimator.getAvgRtt().count() / 1e6 << "/"
<< m_rttEstimator.getMaxRtt().count() / 1e6 << " ms\n";
}
}
std::ostream&
operator<<(std::ostream& os, SegmentState state)
{
switch (state) {
case SegmentState::FirstTimeSent:
os << "FirstTimeSent";
break;
case SegmentState::InRetxQueue:
os << "InRetxQueue";
break;
case SegmentState::Retransmitted:
os << "Retransmitted";
break;
}
return os;
}
} // namespace ndn::chunks