peizhen guo | 410e0e1 | 2014-08-12 13:24:14 -0700 | [diff] [blame^] | 1 | /* -*- Mode:C++; c-file-style:"gnu"; indent-tabs-mode:nil; -*- */ |
| 2 | /** |
| 3 | * Copyright (c) 2014, Regents of the University of California |
| 4 | * |
| 5 | * This file is part of NSL (NDN Signature Logger). |
| 6 | * See AUTHORS.md for complete list of NSL authors and contributors. |
| 7 | * |
| 8 | * NSL is free software: you can redistribute it and/or modify it under the terms |
| 9 | * of the GNU General Public License as published by the Free Software Foundation, |
| 10 | * either version 3 of the License, or (at your option) any later version. |
| 11 | * |
| 12 | * NSL is distributed in the hope that it will be useful, but WITHOUT ANY WARRANTY; |
| 13 | * without even the implied warranty of MERCHANTABILITY or FITNESS FOR A PARTICULAR |
| 14 | * PURPOSE. See the GNU General Public License for more details. |
| 15 | * |
| 16 | * You should have received a copy of the GNU General Public License along with |
| 17 | * NSL, e.g., in COPYING.md file. If not, see <http://www.gnu.org/licenses/>. |
| 18 | * |
| 19 | * @author Peizhen Guo <patrick.guopz@gmail.com> |
| 20 | */ |
| 21 | |
| 22 | #include "merkle-tree-cache.hpp" |
| 23 | |
| 24 | |
| 25 | |
| 26 | namespace nsl { |
| 27 | |
| 28 | typedef std::map<Index, int>::iterator tree_iter; |
| 29 | typedef std::map<uint64_t, ndn::ConstBufferPtr>::iterator leaf_iter; |
| 30 | |
| 31 | Index |
| 32 | MerkleTreeCache::findSubTree(Index nodeIndex) |
| 33 | { |
| 34 | if(nodeIndex.level % 6 == 0 && nodeIndex.level != 0) |
| 35 | { |
| 36 | return nodeIndex; |
| 37 | } |
| 38 | else |
| 39 | { |
| 40 | uint8_t step = (uint64_t(nodeIndex.level / 6) + 1) * 6 - nodeIndex.level; |
| 41 | for (int i = 0; i < step; i++) |
| 42 | { |
| 43 | nodeIndex.number -= nodeIndex.number % int(pow(2, nodeIndex.level + 1)); |
| 44 | nodeIndex.level += 1; |
| 45 | } |
| 46 | return nodeIndex; |
| 47 | } |
| 48 | } |
| 49 | |
| 50 | Index |
| 51 | MerkleTreeCache::getParentRootIndex(Index thisRootIndex) |
| 52 | { |
| 53 | Index parentIndex; |
| 54 | parentIndex.number = thisRootIndex.number; |
| 55 | parentIndex.level = thisRootIndex.level; |
| 56 | for (int i = 0; i < 6; i++) |
| 57 | { |
| 58 | parentIndex.number -= parentIndex.number%int(pow(2, parentIndex.level + 1)); |
| 59 | parentIndex.level += 1; |
| 60 | } |
| 61 | return parentIndex; |
| 62 | } |
| 63 | |
| 64 | |
| 65 | void |
| 66 | MerkleTreeCache::removeSubTree() |
| 67 | { |
| 68 | if (doesCacheFull() > 1) |
| 69 | { |
| 70 | // find out the least recent used subtree |
| 71 | tree_iter _i = m_timeFromLastUse.begin(); |
| 72 | int idle_time_max = -1; |
| 73 | Index rm_index_max = _i->first; |
| 74 | int idle_time_min = _i->second; |
| 75 | Index rm_index_min = _i->first; |
| 76 | for (_i = m_timeFromLastUse.begin(); _i != m_timeFromLastUse.end(); _i++) |
| 77 | { |
| 78 | if (_i->second > idle_time_max && m_cachedTree[_i->first]->getRemainPosition() == 0) |
| 79 | { |
| 80 | idle_time_max = _i->second; |
| 81 | rm_index_max = _i->first; |
| 82 | } |
| 83 | if (_i->second < idle_time_min) |
| 84 | { |
| 85 | idle_time_min = _i->second; |
| 86 | rm_index_min = _i->first; |
| 87 | } |
| 88 | } |
| 89 | |
| 90 | // refresh the timer |
| 91 | for (_i = m_timeFromLastUse.begin(); _i != m_timeFromLastUse.end(); _i++) |
| 92 | { |
| 93 | _i->second -= idle_time_min; |
| 94 | } |
| 95 | // update to database and remove subtree from cache and timer,only when there is full subtree |
| 96 | if (m_cachedTree[rm_index_max]->getRemainPosition() == 0 && idle_time_max >= 0) |
| 97 | { |
| 98 | m_database.addSubTree(m_cachedTree[rm_index_max]); |
| 99 | m_cachedTree.erase(rm_index_max); |
| 100 | m_timeFromLastUse.erase(rm_index_max); |
| 101 | } |
| 102 | } |
| 103 | } |
| 104 | |
| 105 | void |
| 106 | MerkleTreeCache::removeLeaf() |
| 107 | { |
| 108 | if (doesCacheFull() % 2 != 0) |
| 109 | { |
| 110 | // randomly pick a old leaf to remove |
| 111 | leaf_iter _i = m_leavesData.begin(); |
| 112 | while (_i->first == m_nLeaves - 1) |
| 113 | { |
| 114 | _i++; |
| 115 | } |
| 116 | m_database.addLeafInfo(_i->first, _i->second); |
| 117 | m_leavesData.erase(_i->first); |
| 118 | } |
| 119 | } |
| 120 | |
| 121 | |
| 122 | |
| 123 | |
| 124 | |
| 125 | // Do not have to deal with NOT-IN-MEMORY issue because not full tree will not in database |
| 126 | void |
| 127 | MerkleTreeCache::addLeaf(Leaf newLeaf) |
| 128 | { |
| 129 | ndn::ConstBufferPtr data = newLeaf.getData(); |
| 130 | removeLeaf(); // test whether is full, if so, delete an old item |
| 131 | m_leavesData[newLeaf.getIndex().number] = data; |
| 132 | Index leafIndex = newLeaf.getIndex(); |
| 133 | ndn::ConstBufferPtr hash = newLeaf.getHash(); |
| 134 | |
| 135 | Index subTreeRoot = findSubTree(leafIndex); |
| 136 | if (m_nLeaves > 0) |
| 137 | { |
| 138 | // Not full so that always in memory |
| 139 | m_cachedTree[subTreeRoot]->addNode(hash); |
| 140 | m_nLeaves += 1; |
| 141 | } |
| 142 | else |
| 143 | { |
| 144 | SubTreePtr newTree(new SubTree(subTreeRoot, |
| 145 | ndn::bind(&MerkleTreeCache::update, this, |
| 146 | subTreeRoot, _1, _2))); |
| 147 | newTree->addNode(hash); |
| 148 | removeSubTree(); |
| 149 | m_cachedTree[subTreeRoot] = newTree; |
| 150 | m_nLeaves = 1; |
| 151 | m_nLevels = 1; |
| 152 | } |
| 153 | |
| 154 | for (tree_iter _i = m_timeFromLastUse.begin(); _i != m_timeFromLastUse.end(); _i++) |
| 155 | { |
| 156 | _i->second += 1; |
| 157 | } |
| 158 | m_timeFromLastUse[subTreeRoot] = 0; // if not exist, automatically create one and set to 0 |
| 159 | } |
| 160 | |
| 161 | |
| 162 | // Deal with loading from database |
| 163 | // database update |
| 164 | // consider add to database when a subtree is full |
| 165 | void |
| 166 | MerkleTreeCache::update(Index subRootIndex, uint8_t subRemainNum, ndn::ConstBufferPtr subRootHash) |
| 167 | { |
| 168 | if ((subRootIndex.level / 6) < m_nLevels) |
| 169 | { |
| 170 | Index parentRoot = getParentRootIndex(subRootIndex); |
| 171 | |
| 172 | // bring in memory if parentRoot not in |
| 173 | if (m_cachedTree.count(parentRoot) <= 0) |
| 174 | { |
| 175 | loadSubTreeFromDatabase(parentRoot); |
| 176 | } |
| 177 | m_cachedTree[parentRoot]->updateLeafHash(subRootIndex, subRootHash); |
| 178 | m_timeFromLastUse[parentRoot] = 0; |
| 179 | } |
| 180 | |
| 181 | if (subRemainNum == 0) // add the current full subtree into the database |
| 182 | { |
| 183 | Index parentRoot = getParentRootIndex(subRootIndex); |
| 184 | if ((subRootIndex.level / 6) >= m_nLevels) // if it is the top subtree |
| 185 | { |
| 186 | SubTreePtr newTree(new SubTree(parentRoot, |
| 187 | ndn::bind(&MerkleTreeCache::update, this, |
| 188 | parentRoot, _1, _2))); |
| 189 | removeSubTree(); |
| 190 | m_cachedTree[parentRoot] = newTree; |
| 191 | m_nLevels += 1; |
| 192 | m_timeFromLastUse[parentRoot] = 0; |
| 193 | m_cachedTree[parentRoot]->updateLeafHash(subRootIndex, subRootHash); |
| 194 | } |
| 195 | Index newRoot; |
| 196 | newRoot.level = subRootIndex.level; |
| 197 | newRoot.number = subRootIndex.number + int(pow(2, subRootIndex.level)); |
| 198 | // whether the updated subtree is already full, |
| 199 | // but its child subtree is not full. |
| 200 | // To avoid create multiple sibling new subtree |
| 201 | if (m_cachedTree.count(newRoot) == 0) |
| 202 | { |
| 203 | SubTreePtr newTree(new SubTree(newRoot, |
| 204 | ndn::bind(&MerkleTreeCache::update, this, |
| 205 | newRoot, _1, _2))); |
| 206 | removeSubTree(); |
| 207 | m_cachedTree[newRoot] = newTree; |
| 208 | m_timeFromLastUse[newRoot] = 0; |
| 209 | } |
| 210 | } |
| 211 | } |
| 212 | |
| 213 | |
| 214 | NodePtr |
| 215 | MerkleTreeCache::queryNode(Index nodeIndex) |
| 216 | { |
| 217 | // update timer |
| 218 | for (tree_iter _i = m_timeFromLastUse.begin(); _i != m_timeFromLastUse.end(); _i++) |
| 219 | { |
| 220 | _i->second += 1; |
| 221 | } |
| 222 | |
| 223 | Index rootIndex = findSubTree(nodeIndex); |
| 224 | ndn::ConstBufferPtr hash; |
| 225 | if (m_cachedTree.count(rootIndex) == 0) |
| 226 | { |
| 227 | loadSubTreeFromDatabase(rootIndex); |
| 228 | } |
| 229 | hash = m_cachedTree[rootIndex]->getHash(nodeIndex); |
| 230 | |
| 231 | if (nodeIndex.level == 0) |
| 232 | { |
| 233 | if (m_leavesData.count(nodeIndex.number) == 0) |
| 234 | { |
| 235 | loadLeafFromDatabase(nodeIndex.number); |
| 236 | } |
| 237 | NodePtr node_ptr(new Leaf(m_leavesData[nodeIndex.number], |
| 238 | nodeIndex.number, nodeIndex.level, 0)); |
| 239 | node_ptr->setHash(hash); |
| 240 | return node_ptr; |
| 241 | } |
| 242 | else |
| 243 | { |
| 244 | NodePtr node_ptr(new IntermediateNode(nodeIndex.number, nodeIndex.level, 0)); |
| 245 | node_ptr->setHash(hash); |
| 246 | ((IntermediateNode*)node_ptr.get())->setIsFull(m_nLeaves); |
| 247 | return node_ptr; |
| 248 | } |
| 249 | } |
| 250 | |
| 251 | |
| 252 | bool |
| 253 | MerkleTreeCache::doesNodeExist(Index nodeIndex) |
| 254 | { |
| 255 | Index rootIndex = findSubTree(nodeIndex); |
| 256 | if (m_cachedTree.count(rootIndex) > 0) |
| 257 | { |
| 258 | return true; |
| 259 | } |
| 260 | else |
| 261 | { |
| 262 | bool result = m_database.doesSubTreeExist(rootIndex); |
| 263 | return result; |
| 264 | } |
| 265 | } |
| 266 | |
| 267 | |
| 268 | |
| 269 | SubTreePtr |
| 270 | MerkleTreeCache::decoding(std::string subTreeInfo) |
| 271 | { |
| 272 | uint64_t seq = 0; |
| 273 | unsigned char tmp = 0; |
| 274 | for (int i = 7; i >= 0; i--) |
| 275 | { |
| 276 | tmp = subTreeInfo[i]; |
| 277 | seq += tmp; |
| 278 | seq = seq << 8; |
| 279 | } |
| 280 | seq = seq >> 8; |
| 281 | uint64_t lev = 0; |
| 282 | for (int i = 15; i >= 8; i--) |
| 283 | { |
| 284 | tmp = subTreeInfo[i]; |
| 285 | lev += tmp; |
| 286 | lev = lev << 8; |
| 287 | } |
| 288 | lev = lev >> 8; |
| 289 | Index rootIndex; |
| 290 | rootIndex.number = seq; |
| 291 | rootIndex.level = lev; |
| 292 | SubTreePtr newTree(new SubTree(rootIndex, |
| 293 | ndn::bind(&MerkleTreeCache::update, this, |
| 294 | rootIndex, _1, _2))); |
| 295 | uint8_t remain = subTreeInfo[16]; // not useful |
| 296 | if (remain == 0) |
| 297 | { |
| 298 | std::vector<ndn::BufferPtr> hashes; |
| 299 | for (int i = 0; i < 127; i++) |
| 300 | { |
| 301 | ndn::Buffer buf; |
| 302 | for(int j = 17 + 32 * i; j < 49 + 32 * i; j++) |
| 303 | { |
| 304 | buf.push_back(subTreeInfo[j]); |
| 305 | } |
| 306 | ndn::BufferPtr thisBuf = ndn::make_shared<ndn::Buffer>(buf); |
| 307 | hashes.push_back(thisBuf); |
| 308 | } |
| 309 | newTree->resumeFromString(remain, hashes); |
| 310 | return newTree; |
| 311 | } |
| 312 | else |
| 313 | { |
| 314 | std::vector<ndn::BufferPtr> hashes; |
| 315 | uint8_t lastNo = 126 - remain; |
| 316 | for (int i = 63; i <= lastNo; i++) |
| 317 | { |
| 318 | ndn::Buffer buf; |
| 319 | for(int j = 17 + 32 * i; j < 49 + 32 * i; j++) |
| 320 | { |
| 321 | buf.push_back(subTreeInfo[j]); |
| 322 | } |
| 323 | ndn::BufferPtr thisBuf = ndn::make_shared<ndn::Buffer>(buf); |
| 324 | hashes.push_back(thisBuf); |
| 325 | } |
| 326 | newTree->resumeFromString(remain, hashes); |
| 327 | return newTree; |
| 328 | } |
| 329 | } |
| 330 | |
| 331 | |
| 332 | void |
| 333 | MerkleTreeCache::loadSubTreeFromDatabase(Index rootIndex) |
| 334 | { |
| 335 | // Detect the cache limitation |
| 336 | removeSubTree(); |
| 337 | std::string tmp_str = m_database.getSubTree(rootIndex); |
| 338 | SubTreePtr newtree = decoding(tmp_str); |
| 339 | m_cachedTree[rootIndex] = newtree; |
| 340 | m_timeFromLastUse[rootIndex] = 0; |
| 341 | } |
| 342 | |
| 343 | void |
| 344 | MerkleTreeCache::loadLeafFromDatabase(uint64_t sequence) |
| 345 | { |
| 346 | // Detect the cache limitation |
| 347 | removeLeaf(); |
| 348 | ndn::ConstBufferPtr newleaf = m_database.getLeafInfo(sequence); |
| 349 | m_leavesData[sequence] = newleaf; |
| 350 | } |
| 351 | |
| 352 | |
| 353 | } // namespace nsl |