Jeff Thompson | 86b6d64 | 2013-10-17 15:01:56 -0700 | [diff] [blame] | 1 | /* boost random/uniform_smallint.hpp header file |
| 2 | * |
| 3 | * Copyright Jens Maurer 2000-2001 |
| 4 | * Distributed under the Boost Software License, Version 1.0. (See |
| 5 | * accompanying file LICENSE_1_0.txt or copy at |
| 6 | * http://www.boost.org/LICENSE_1_0.txt) |
| 7 | * |
| 8 | * See http://www.boost.org for most recent version including documentation. |
| 9 | * |
| 10 | * $Id: uniform_smallint.hpp 71018 2011-04-05 21:27:52Z steven_watanabe $ |
| 11 | * |
| 12 | * Revision history |
| 13 | * 2001-04-08 added min<max assertion (N. Becker) |
| 14 | * 2001-02-18 moved to individual header files |
| 15 | */ |
| 16 | |
| 17 | #ifndef NDNBOOST_RANDOM_UNIFORM_SMALLINT_HPP |
| 18 | #define NDNBOOST_RANDOM_UNIFORM_SMALLINT_HPP |
| 19 | |
| 20 | #include <istream> |
| 21 | #include <iosfwd> |
| 22 | #include <ndnboost/assert.hpp> |
| 23 | #include <ndnboost/config.hpp> |
| 24 | #include <ndnboost/limits.hpp> |
| 25 | #include <ndnboost/type_traits/is_integral.hpp> |
| 26 | #include <ndnboost/random/detail/config.hpp> |
| 27 | #include <ndnboost/random/detail/operators.hpp> |
| 28 | #include <ndnboost/random/detail/signed_unsigned_tools.hpp> |
| 29 | #include <ndnboost/random/uniform_01.hpp> |
| 30 | #include <ndnboost/detail/workaround.hpp> |
| 31 | |
| 32 | namespace ndnboost { |
| 33 | namespace random { |
| 34 | |
| 35 | // uniform integer distribution on a small range [min, max] |
| 36 | |
| 37 | /** |
| 38 | * The distribution function uniform_smallint models a \random_distribution. |
| 39 | * On each invocation, it returns a random integer value uniformly distributed |
| 40 | * in the set of integer numbers {min, min+1, min+2, ..., max}. It assumes |
| 41 | * that the desired range (max-min+1) is small compared to the range of the |
| 42 | * underlying source of random numbers and thus makes no attempt to limit |
| 43 | * quantization errors. |
| 44 | * |
| 45 | * Let \f$r_{\mathtt{out}} = (\mbox{max}-\mbox{min}+1)\f$ the desired range of |
| 46 | * integer numbers, and |
| 47 | * let \f$r_{\mathtt{base}}\f$ be the range of the underlying source of random |
| 48 | * numbers. Then, for the uniform distribution, the theoretical probability |
| 49 | * for any number i in the range \f$r_{\mathtt{out}}\f$ will be |
| 50 | * \f$\displaystyle p_{\mathtt{out}}(i) = \frac{1}{r_{\mathtt{out}}}\f$. |
| 51 | * Likewise, assume a uniform distribution on \f$r_{\mathtt{base}}\f$ for |
| 52 | * the underlying source of random numbers, i.e. |
| 53 | * \f$\displaystyle p_{\mathtt{base}}(i) = \frac{1}{r_{\mathtt{base}}}\f$. |
| 54 | * Let \f$p_{\mathtt{out\_s}}(i)\f$ denote the random |
| 55 | * distribution generated by @c uniform_smallint. Then the sum over all |
| 56 | * i in \f$r_{\mathtt{out}}\f$ of |
| 57 | * \f$\displaystyle |
| 58 | * \left(\frac{p_{\mathtt{out\_s}}(i)}{p_{\mathtt{out}}(i)} - 1\right)^2\f$ |
| 59 | * shall not exceed |
| 60 | * \f$\displaystyle \frac{r_{\mathtt{out}}}{r_{\mathtt{base}}^2} |
| 61 | * (r_{\mathtt{base}} \mbox{ mod } r_{\mathtt{out}}) |
| 62 | * (r_{\mathtt{out}} - r_{\mathtt{base}} \mbox{ mod } r_{\mathtt{out}})\f$. |
| 63 | * |
| 64 | * The template parameter IntType shall denote an integer-like value type. |
| 65 | * |
| 66 | * @xmlnote |
| 67 | * The property above is the square sum of the relative differences |
| 68 | * in probabilities between the desired uniform distribution |
| 69 | * \f$p_{\mathtt{out}}(i)\f$ and the generated distribution |
| 70 | * \f$p_{\mathtt{out\_s}}(i)\f$. |
| 71 | * The property can be fulfilled with the calculation |
| 72 | * \f$(\mbox{base\_rng} \mbox{ mod } r_{\mathtt{out}})\f$, as follows: |
| 73 | * Let \f$r = r_{\mathtt{base}} \mbox{ mod } r_{\mathtt{out}}\f$. |
| 74 | * The base distribution on \f$r_{\mathtt{base}}\f$ is folded onto the |
| 75 | * range \f$r_{\mathtt{out}}\f$. The numbers i < r have assigned |
| 76 | * \f$\displaystyle |
| 77 | * \left\lfloor\frac{r_{\mathtt{base}}}{r_{\mathtt{out}}}\right\rfloor+1\f$ |
| 78 | * numbers of the base distribution, the rest has only \f$\displaystyle |
| 79 | * \left\lfloor\frac{r_{\mathtt{base}}}{r_{\mathtt{out}}}\right\rfloor\f$. |
| 80 | * Therefore, |
| 81 | * \f$\displaystyle p_{\mathtt{out\_s}}(i) = |
| 82 | * \left(\left\lfloor\frac{r_{\mathtt{base}}} |
| 83 | * {r_{\mathtt{out}}}\right\rfloor+1\right) / |
| 84 | * r_{\mathtt{base}}\f$ for i < r and \f$\displaystyle p_{\mathtt{out\_s}}(i) = |
| 85 | * \left\lfloor\frac{r_{\mathtt{base}}} |
| 86 | * {r_{\mathtt{out}}}\right\rfloor/r_{\mathtt{base}}\f$ otherwise. |
| 87 | * Substituting this in the |
| 88 | * above sum formula leads to the desired result. |
| 89 | * @endxmlnote |
| 90 | * |
| 91 | * Note: The upper bound for |
| 92 | * \f$(r_{\mathtt{base}} \mbox{ mod } r_{\mathtt{out}}) |
| 93 | * (r_{\mathtt{out}} - r_{\mathtt{base}} \mbox{ mod } r_{\mathtt{out}})\f$ is |
| 94 | * \f$\displaystyle \frac{r_{\mathtt{out}}^2}{4}\f$. Regarding the upper bound |
| 95 | * for the square sum of the relative quantization error of |
| 96 | * \f$\displaystyle \frac{r_\mathtt{out}^3}{4r_{\mathtt{base}}^2}\f$, it |
| 97 | * seems wise to either choose \f$r_{\mathtt{base}}\f$ so that |
| 98 | * \f$r_{\mathtt{base}} > 10r_{\mathtt{out}}^2\f$ or ensure that |
| 99 | * \f$r_{\mathtt{base}}\f$ is |
| 100 | * divisible by \f$r_{\mathtt{out}}\f$. |
| 101 | */ |
| 102 | template<class IntType = int> |
| 103 | class uniform_smallint |
| 104 | { |
| 105 | public: |
| 106 | typedef IntType input_type; |
| 107 | typedef IntType result_type; |
| 108 | |
| 109 | class param_type |
| 110 | { |
| 111 | public: |
| 112 | |
| 113 | typedef uniform_smallint distribution_type; |
| 114 | |
| 115 | /** constructs the parameters of a @c uniform_smallint distribution. */ |
| 116 | param_type(IntType min_arg = 0, IntType max_arg = 9) |
| 117 | : _min(min_arg), _max(max_arg) |
| 118 | { |
| 119 | NDNBOOST_ASSERT(_min <= _max); |
| 120 | } |
| 121 | |
| 122 | /** Returns the minimum value. */ |
| 123 | IntType a() const { return _min; } |
| 124 | /** Returns the maximum value. */ |
| 125 | IntType b() const { return _max; } |
| 126 | |
| 127 | |
| 128 | /** Writes the parameters to a @c std::ostream. */ |
| 129 | NDNBOOST_RANDOM_DETAIL_OSTREAM_OPERATOR(os, param_type, parm) |
| 130 | { |
| 131 | os << parm._min << " " << parm._max; |
| 132 | return os; |
| 133 | } |
| 134 | |
| 135 | /** Reads the parameters from a @c std::istream. */ |
| 136 | NDNBOOST_RANDOM_DETAIL_ISTREAM_OPERATOR(is, param_type, parm) |
| 137 | { |
| 138 | is >> parm._min >> std::ws >> parm._max; |
| 139 | return is; |
| 140 | } |
| 141 | |
| 142 | /** Returns true if the two sets of parameters are equal. */ |
| 143 | NDNBOOST_RANDOM_DETAIL_EQUALITY_OPERATOR(param_type, lhs, rhs) |
| 144 | { return lhs._min == rhs._min && lhs._max == rhs._max; } |
| 145 | |
| 146 | /** Returns true if the two sets of parameters are different. */ |
| 147 | NDNBOOST_RANDOM_DETAIL_INEQUALITY_OPERATOR(param_type) |
| 148 | |
| 149 | private: |
| 150 | IntType _min; |
| 151 | IntType _max; |
| 152 | }; |
| 153 | |
| 154 | /** |
| 155 | * Constructs a @c uniform_smallint. @c min and @c max are the |
| 156 | * lower and upper bounds of the output range, respectively. |
| 157 | */ |
| 158 | explicit uniform_smallint(IntType min_arg = 0, IntType max_arg = 9) |
| 159 | : _min(min_arg), _max(max_arg) {} |
| 160 | |
| 161 | /** |
| 162 | * Constructs a @c uniform_smallint from its parameters. |
| 163 | */ |
| 164 | explicit uniform_smallint(const param_type& parm) |
| 165 | : _min(parm.a()), _max(parm.b()) {} |
| 166 | |
| 167 | /** Returns the minimum value of the distribution. */ |
| 168 | result_type a() const { return _min; } |
| 169 | /** Returns the maximum value of the distribution. */ |
| 170 | result_type b() const { return _max; } |
| 171 | /** Returns the minimum value of the distribution. */ |
| 172 | result_type min NDNBOOST_PREVENT_MACRO_SUBSTITUTION () const { return _min; } |
| 173 | /** Returns the maximum value of the distribution. */ |
| 174 | result_type max NDNBOOST_PREVENT_MACRO_SUBSTITUTION () const { return _max; } |
| 175 | |
| 176 | /** Returns the parameters of the distribution. */ |
| 177 | param_type param() const { return param_type(_min, _max); } |
| 178 | /** Sets the parameters of the distribution. */ |
| 179 | void param(const param_type& parm) |
| 180 | { |
| 181 | _min = parm.a(); |
| 182 | _max = parm.b(); |
| 183 | } |
| 184 | |
| 185 | /** |
| 186 | * Effects: Subsequent uses of the distribution do not depend |
| 187 | * on values produced by any engine prior to invoking reset. |
| 188 | */ |
| 189 | void reset() { } |
| 190 | |
| 191 | /** Returns a value uniformly distributed in the range [min(), max()]. */ |
| 192 | template<class Engine> |
| 193 | result_type operator()(Engine& eng) const |
| 194 | { |
| 195 | typedef typename Engine::result_type base_result; |
| 196 | return generate(eng, ndnboost::is_integral<base_result>()); |
| 197 | } |
| 198 | |
| 199 | /** Returns a value uniformly distributed in the range [param.a(), param.b()]. */ |
| 200 | template<class Engine> |
| 201 | result_type operator()(Engine& eng, const param_type& parm) const |
| 202 | { return uniform_smallint(parm)(eng); } |
| 203 | |
| 204 | /** Writes the distribution to a @c std::ostream. */ |
| 205 | NDNBOOST_RANDOM_DETAIL_OSTREAM_OPERATOR(os, uniform_smallint, ud) |
| 206 | { |
| 207 | os << ud._min << " " << ud._max; |
| 208 | return os; |
| 209 | } |
| 210 | |
| 211 | /** Reads the distribution from a @c std::istream. */ |
| 212 | NDNBOOST_RANDOM_DETAIL_ISTREAM_OPERATOR(is, uniform_smallint, ud) |
| 213 | { |
| 214 | is >> ud._min >> std::ws >> ud._max; |
| 215 | return is; |
| 216 | } |
| 217 | |
| 218 | /** |
| 219 | * Returns true if the two distributions will produce identical |
| 220 | * sequences of values given equal generators. |
| 221 | */ |
| 222 | NDNBOOST_RANDOM_DETAIL_EQUALITY_OPERATOR(uniform_smallint, lhs, rhs) |
| 223 | { return lhs._min == rhs._min && lhs._max == rhs._max; } |
| 224 | |
| 225 | /** |
| 226 | * Returns true if the two distributions may produce different |
| 227 | * sequences of values given equal generators. |
| 228 | */ |
| 229 | NDNBOOST_RANDOM_DETAIL_INEQUALITY_OPERATOR(uniform_smallint) |
| 230 | |
| 231 | private: |
| 232 | |
| 233 | // \cond show_private |
| 234 | template<class Engine> |
| 235 | result_type generate(Engine& eng, ndnboost::mpl::true_) const |
| 236 | { |
| 237 | // equivalent to (eng() - eng.min()) % (_max - _min + 1) + _min, |
| 238 | // but guarantees no overflow. |
| 239 | typedef typename Engine::result_type base_result; |
| 240 | typedef typename ndnboost::make_unsigned<base_result>::type base_unsigned; |
| 241 | typedef typename ndnboost::make_unsigned<result_type>::type range_type; |
| 242 | range_type range = random::detail::subtract<result_type>()(_max, _min); |
| 243 | base_unsigned base_range = |
| 244 | random::detail::subtract<result_type>()((eng.max)(), (eng.min)()); |
| 245 | base_unsigned val = |
| 246 | random::detail::subtract<base_result>()(eng(), (eng.min)()); |
| 247 | if(range >= base_range) { |
| 248 | return ndnboost::random::detail::add<range_type, result_type>()( |
| 249 | static_cast<range_type>(val), _min); |
| 250 | } else { |
| 251 | base_unsigned modulus = static_cast<base_unsigned>(range) + 1; |
| 252 | return ndnboost::random::detail::add<range_type, result_type>()( |
| 253 | static_cast<range_type>(val % modulus), _min); |
| 254 | } |
| 255 | } |
| 256 | |
| 257 | template<class Engine> |
| 258 | result_type generate(Engine& eng, ndnboost::mpl::false_) const |
| 259 | { |
| 260 | typedef typename Engine::result_type base_result; |
| 261 | typedef typename ndnboost::make_unsigned<result_type>::type range_type; |
| 262 | range_type range = random::detail::subtract<result_type>()(_max, _min); |
| 263 | base_result val = ndnboost::uniform_01<base_result>()(eng); |
| 264 | // what is the worst that can possibly happen here? |
| 265 | // base_result may not be able to represent all the values in [0, range] |
| 266 | // exactly. If this happens, it will cause round off error and we |
| 267 | // won't be able to produce all the values in the range. We don't |
| 268 | // care about this because the user has already told us not to by |
| 269 | // using uniform_smallint. However, we do need to be careful |
| 270 | // to clamp the result, or floating point rounding can produce |
| 271 | // an out of range result. |
| 272 | range_type offset = static_cast<range_type>(val * (static_cast<base_result>(range) + 1)); |
| 273 | if(offset > range) return _max; |
| 274 | return ndnboost::random::detail::add<range_type, result_type>()(offset , _min); |
| 275 | } |
| 276 | // \endcond |
| 277 | |
| 278 | result_type _min; |
| 279 | result_type _max; |
| 280 | }; |
| 281 | |
| 282 | } // namespace random |
| 283 | |
| 284 | using random::uniform_smallint; |
| 285 | |
| 286 | } // namespace ndnboost |
| 287 | |
| 288 | #endif // NDNBOOST_RANDOM_UNIFORM_SMALLINT_HPP |