blob: 58771b787463a9cadc7558c254df7246215439c9 [file] [log] [blame]
Jeff Thompsonef2d5a42013-08-22 19:09:24 -07001// return_type_traits.hpp -- Boost Lambda Library ---------------------------
2
3// Copyright (C) 1999, 2000 Jaakko Jarvi (jaakko.jarvi@cs.utu.fi)
4//
5// Distributed under the Boost Software License, Version 1.0. (See
6// accompanying file LICENSE_1_0.txt or copy at
7// http://www.boost.org/LICENSE_1_0.txt)
8//
9// For more information, see www.boost.org
10
11
12#ifndef BOOST_LAMBDA_RETURN_TYPE_TRAITS_HPP
13#define BOOST_LAMBDA_RETURN_TYPE_TRAITS_HPP
14
15#include "ndnboost/mpl/has_xxx.hpp"
16
17#include <cstddef> // needed for the ptrdiff_t
18
19namespace ndnboost {
20namespace lambda {
21
22using ::ndnboost::type_traits::ice_and;
23using ::ndnboost::type_traits::ice_or;
24using ::ndnboost::type_traits::ice_not;
25
26// Much of the type deduction code for standard arithmetic types
27// from Gary Powell
28
29 // different arities:
30template <class Act, class A1> struct return_type_1; // 1-ary actions
31template <class Act, class A1, class A2> struct return_type_2; // 2-ary
32template <class Act, class Args> struct return_type_N; // >3- ary
33
34template <class Act, class A1> struct return_type_1_prot;
35template <class Act, class A1, class A2> struct return_type_2_prot; // 2-ary
36template <class Act, class A1> struct return_type_N_prot; // >3-ary
37
38
39namespace detail {
40
41template<class> class return_type_deduction_failure {};
42
43 // In some cases return type deduction should fail (an invalid lambda
44 // expression). Sometimes the lambda expression can be ok, the return type
45 // just is not deducible (user defined operators). Then return type deduction
46 // should never be entered at all, and the use of ret<> does this.
47 // However, for nullary lambda functors, return type deduction is always
48 // entered, and there seems to be no way around this.
49
50 // (the return type is part of the prototype of the non-template
51 // operator()(). The prototype is instantiated, even though the body
52 // is not.)
53
54 // So, in the case the return type deduction should fail, it should not
55 // fail directly, but rather result in a valid but wrong return type,
56 // causing a compile time error only if the function is really called.
57
58
59
60} // end detail
61
62
63
64// return_type_X_prot classes --------------------------------------------
65// These classes are the first layer that gets instantiated from the
66// lambda_functor_base sig templates. It will check whether
67// the action is protectable and one of arguments is "protected" or its
68// evaluation will otherwise result in another lambda functor.
69// If this is a case, the result type will be another lambda functor.
70
71// The arguments are always non-reference types, except for comma action
72// where the right argument can be a reference too. This is because it
73// matters (in the builtin case) whether the argument is an lvalue or
74// rvalue: int i; i, 1 -> rvalue; 1, i -> lvalue
75
76template <class Act, class A> struct return_type_1_prot {
77public:
78 typedef typename
79 detail::IF<
80 // is_protectable<Act>::value && is_lambda_functor<A>::value,
81 ice_and<is_protectable<Act>::value, is_lambda_functor<A>::value>::value,
82 lambda_functor<
83 lambda_functor_base<
84 Act,
85 tuple<typename detail::remove_reference_and_cv<A>::type>
86 >
87 >,
88 typename return_type_1<Act, A>::type
89 >::RET type;
90};
91
92 // take care of the unavoidable instantiation for nullary case
93template<class Act> struct return_type_1_prot<Act, null_type> {
94 typedef null_type type;
95};
96
97// Unary actions (result from unary operators)
98// do not have a default return type.
99template<class Act, class A> struct return_type_1 {
100 typedef typename
101 detail::return_type_deduction_failure<return_type_1> type;
102};
103
104
105namespace detail {
106
107 template <class T>
108 class protect_conversion {
109 typedef typename ndnboost::remove_reference<T>::type non_ref_T;
110 public:
111
112 // add const to rvalues, so that all rvalues are stored as const in
113 // the args tuple
114 typedef typename detail::IF_type<
115// ndnboost::is_reference<T>::value && !ndnboost::is_const<non_ref_T>::value,
116 ice_and<ndnboost::is_reference<T>::value,
117 ice_not<ndnboost::is_const<non_ref_T>::value>::value>::value,
118 detail::identity_mapping<T>,
119 const_copy_argument<non_ref_T> // handles funtion and array
120 >::type type; // types correctly
121 };
122
123} // end detail
124
125template <class Act, class A, class B> struct return_type_2_prot {
126
127// experimental feature
128 // We may have a lambda functor as a result type of a subexpression
129 // (if protect) has been used.
130 // Thus, if one of the parameter types is a lambda functor, the result
131 // is a lambda functor as well.
132 // We need to make a conservative choise here.
133 // The resulting lambda functor stores all const reference arguments as
134 // const copies. References to non-const are stored as such.
135 // So if the source of the argument is a const open argument, a bound
136 // argument stored as a const reference, or a function returning a
137 // const reference, that information is lost. There is no way of
138 // telling apart 'real const references' from just 'LL internal
139 // const references' (or it would be really hard)
140
141 // The return type is a subclass of lambda_functor, which has a converting
142 // copy constructor. It can copy any lambda functor, that has the same
143 // action type and code, and a copy compatible argument tuple.
144
145
146 typedef typename ndnboost::remove_reference<A>::type non_ref_A;
147 typedef typename ndnboost::remove_reference<B>::type non_ref_B;
148
149typedef typename
150 detail::IF<
151// is_protectable<Act>::value &&
152// (is_lambda_functor<A>::value || is_lambda_functor<B>::value),
153 ice_and<is_protectable<Act>::value,
154 ice_or<is_lambda_functor<A>::value,
155 is_lambda_functor<B>::value>::value>::value,
156 lambda_functor<
157 lambda_functor_base<
158 Act,
159 tuple<typename detail::protect_conversion<A>::type,
160 typename detail::protect_conversion<B>::type>
161 >
162 >,
163 typename return_type_2<Act, non_ref_A, non_ref_B>::type
164 >::RET type;
165};
166
167 // take care of the unavoidable instantiation for nullary case
168template<class Act> struct return_type_2_prot<Act, null_type, null_type> {
169 typedef null_type type;
170};
171 // take care of the unavoidable instantiation for nullary case
172template<class Act, class Other> struct return_type_2_prot<Act, Other, null_type> {
173 typedef null_type type;
174};
175 // take care of the unavoidable instantiation for nullary case
176template<class Act, class Other> struct return_type_2_prot<Act, null_type, Other> {
177 typedef null_type type;
178};
179
180 // comma is a special case, as the user defined operator can return
181 // an lvalue (reference) too, hence it must be handled at this level.
182template<class A, class B>
183struct return_type_2_comma
184{
185 typedef typename ndnboost::remove_reference<A>::type non_ref_A;
186 typedef typename ndnboost::remove_reference<B>::type non_ref_B;
187
188typedef typename
189 detail::IF<
190// is_protectable<other_action<comma_action> >::value && // it is protectable
191// (is_lambda_functor<A>::value || is_lambda_functor<B>::value),
192 ice_and<is_protectable<other_action<comma_action> >::value, // it is protectable
193 ice_or<is_lambda_functor<A>::value,
194 is_lambda_functor<B>::value>::value>::value,
195 lambda_functor<
196 lambda_functor_base<
197 other_action<comma_action>,
198 tuple<typename detail::protect_conversion<A>::type,
199 typename detail::protect_conversion<B>::type>
200 >
201 >,
202 typename
203 return_type_2<other_action<comma_action>, non_ref_A, non_ref_B>::type
204 >::RET type1;
205
206 // if no user defined return_type_2 (or plain_return_type_2) specialization
207 // matches, then return the righthand argument
208 typedef typename
209 detail::IF<
210 ndnboost::is_same<type1, detail::unspecified>::value,
211 B,
212 type1
213 >::RET type;
214
215};
216
217
218 // currently there are no protectable actions with > 2 args
219
220template<class Act, class Args> struct return_type_N_prot {
221 typedef typename return_type_N<Act, Args>::type type;
222};
223
224 // take care of the unavoidable instantiation for nullary case
225template<class Act> struct return_type_N_prot<Act, null_type> {
226 typedef null_type type;
227};
228
229// handle different kind of actions ------------------------
230
231 // use the return type given in the bind invocation as bind<Ret>(...)
232template<int I, class Args, class Ret>
233struct return_type_N<function_action<I, Ret>, Args> {
234 typedef Ret type;
235};
236
237// ::result_type support
238
239namespace detail
240{
241
242BOOST_MPL_HAS_XXX_TRAIT_DEF(result_type)
243
244template<class F> struct get_result_type
245{
246 typedef typename F::result_type type;
247};
248
249template<class F, class A> struct get_sig
250{
251 typedef typename function_adaptor<F>::template sig<A>::type type;
252};
253
254} // namespace detail
255
256 // Ret is detail::unspecified, so try to deduce return type
257template<int I, class Args>
258struct return_type_N<function_action<I, detail::unspecified>, Args > {
259
260 // in the case of function action, the first element in Args is
261 // some type of function
262 typedef typename Args::head_type Func;
263 typedef typename detail::remove_reference_and_cv<Func>::type plain_Func;
264
265public:
266 // pass the function to function_adaptor, and get the return type from
267 // that
268 typedef typename detail::IF<
269 detail::has_result_type<plain_Func>::value,
270 detail::get_result_type<plain_Func>,
271 detail::get_sig<plain_Func, Args>
272 >::RET::type type;
273};
274
275
276} // namespace lambda
277} // namespace ndnboost
278
279#endif
280
281
282