Davide Pesavento | 4ad933a | 2019-06-02 21:15:42 -0400 | [diff] [blame] | 1 | /* -*- Mode:C++; c-file-style:"gnu"; indent-tabs-mode:nil; -*- */ |
| 2 | /* |
| 3 | * Copyright (c) 2016-2019, Regents of the University of California, |
| 4 | * Colorado State University, |
| 5 | * University Pierre & Marie Curie, Sorbonne University. |
| 6 | * |
| 7 | * This file is part of ndn-cxx library (NDN C++ library with eXperimental eXtensions). |
| 8 | * |
| 9 | * ndn-cxx library is free software: you can redistribute it and/or modify it under the |
| 10 | * terms of the GNU Lesser General Public License as published by the Free Software |
| 11 | * Foundation, either version 3 of the License, or (at your option) any later version. |
| 12 | * |
| 13 | * ndn-cxx library is distributed in the hope that it will be useful, but WITHOUT ANY |
| 14 | * WARRANTY; without even the implied warranty of MERCHANTABILITY or FITNESS FOR A |
| 15 | * PARTICULAR PURPOSE. See the GNU Lesser General Public License for more details. |
| 16 | * |
| 17 | * You should have received copies of the GNU General Public License and GNU Lesser |
| 18 | * General Public License along with ndn-cxx, e.g., in COPYING.md file. If not, see |
| 19 | * <http://www.gnu.org/licenses/>. |
| 20 | * |
| 21 | * See AUTHORS.md for complete list of ndn-cxx authors and contributors. |
| 22 | */ |
| 23 | |
| 24 | #include "ndn-cxx/util/rtt-estimator.hpp" |
| 25 | |
| 26 | #include "tests/boost-test.hpp" |
| 27 | |
| 28 | #include <cmath> |
| 29 | |
| 30 | namespace ndn { |
| 31 | namespace util { |
| 32 | namespace tests { |
| 33 | |
| 34 | BOOST_AUTO_TEST_SUITE(Util) |
| 35 | BOOST_AUTO_TEST_SUITE(TestRttEstimator) |
| 36 | |
| 37 | using Millis = RttEstimator::MillisecondsDouble; |
| 38 | |
| 39 | BOOST_AUTO_TEST_CASE(MinAvgMaxRtt) |
| 40 | { |
| 41 | RttEstimator rttEstimator; |
| 42 | |
| 43 | // check initial values |
| 44 | BOOST_CHECK_CLOSE(rttEstimator.getMinRtt().count(), std::numeric_limits<double>::max(), 0.001); |
| 45 | BOOST_CHECK_CLOSE(rttEstimator.getAvgRtt().count(), 0.0, 0.001); |
| 46 | BOOST_CHECK_CLOSE(rttEstimator.getMaxRtt().count(), std::numeric_limits<double>::min(), 0.001); |
| 47 | |
| 48 | // start with three samples |
| 49 | rttEstimator.addMeasurement(Millis(100), 1); |
| 50 | rttEstimator.addMeasurement(Millis(400), 1); |
| 51 | rttEstimator.addMeasurement(Millis(250), 1); |
| 52 | |
| 53 | BOOST_CHECK_CLOSE(rttEstimator.getMinRtt().count(), 100.0, 0.001); |
| 54 | BOOST_CHECK_CLOSE(rttEstimator.getAvgRtt().count(), 250.0, 0.001); |
| 55 | BOOST_CHECK_CLOSE(rttEstimator.getMaxRtt().count(), 400.0, 0.001); |
| 56 | |
| 57 | // add another sample (new minimum) |
| 58 | rttEstimator.addMeasurement(Millis(50), 2); |
| 59 | BOOST_CHECK_CLOSE(rttEstimator.getMinRtt().count(), 50.0, 0.001); |
| 60 | BOOST_CHECK_CLOSE(rttEstimator.getAvgRtt().count(), 200.0, 0.001); |
| 61 | BOOST_CHECK_CLOSE(rttEstimator.getMaxRtt().count(), 400.0, 0.001); |
| 62 | |
| 63 | // add another sample (new maximum) |
| 64 | rttEstimator.addMeasurement(Millis(700), 1); |
| 65 | BOOST_CHECK_CLOSE(rttEstimator.getMinRtt().count(), 50.0, 0.001); |
| 66 | BOOST_CHECK_CLOSE(rttEstimator.getAvgRtt().count(), 300.0, 0.001); |
| 67 | BOOST_CHECK_CLOSE(rttEstimator.getMaxRtt().count(), 700.0, 0.001); |
| 68 | } |
| 69 | |
| 70 | BOOST_AUTO_TEST_CASE(EstimatedRto) |
| 71 | { |
| 72 | RttEstimator::Options opts; |
| 73 | opts.initialRto = Millis(1000); |
| 74 | opts.maxRto = Millis(4000); |
| 75 | RttEstimator rttEstimator(opts); |
| 76 | |
| 77 | // check initial values |
| 78 | BOOST_CHECK(std::isnan(rttEstimator.m_sRtt.count())); |
| 79 | BOOST_CHECK(std::isnan(rttEstimator.m_rttVar.count())); |
| 80 | BOOST_CHECK_CLOSE(rttEstimator.getEstimatedRto().count(), 1000.0, 0.001); |
| 81 | |
| 82 | // first measurement |
| 83 | rttEstimator.addMeasurement(Millis(100), 1); |
| 84 | |
| 85 | BOOST_CHECK_CLOSE(rttEstimator.m_sRtt.count(), 100.0, 0.001); |
| 86 | BOOST_CHECK_CLOSE(rttEstimator.m_rttVar.count(), 50.0, 0.001); |
| 87 | BOOST_CHECK_CLOSE(rttEstimator.getEstimatedRto().count(), 300.0, 0.001); |
| 88 | |
| 89 | rttEstimator.m_sRtt = Millis(500); |
| 90 | rttEstimator.m_rttVar = Millis(100); |
| 91 | rttEstimator.m_rto = Millis(900); |
| 92 | |
| 93 | rttEstimator.addMeasurement(Millis(100), 1); |
| 94 | |
| 95 | BOOST_CHECK_CLOSE(rttEstimator.m_sRtt.count(), 450.0, 0.001); |
| 96 | BOOST_CHECK_CLOSE(rttEstimator.m_rttVar.count(), 175.0, 0.001); |
| 97 | BOOST_CHECK_CLOSE(rttEstimator.getEstimatedRto().count(), 1150.0, 0.001); |
| 98 | |
| 99 | // expected samples larger than 1 |
| 100 | rttEstimator.addMeasurement(Millis(100), 5); |
| 101 | |
| 102 | BOOST_CHECK_CLOSE(rttEstimator.m_sRtt.count(), 441.25, 0.001); |
| 103 | BOOST_CHECK_CLOSE(rttEstimator.m_rttVar.count(), 183.75, 0.001); |
| 104 | BOOST_CHECK_CLOSE(rttEstimator.getEstimatedRto().count(), 1176.25, 0.001); |
| 105 | |
| 106 | rttEstimator.m_sRtt = Millis(100.0); |
| 107 | rttEstimator.m_rttVar = Millis(30.0); |
| 108 | rttEstimator.m_rto = Millis(220.0); |
| 109 | |
| 110 | // check if minRto works |
| 111 | rttEstimator.addMeasurement(Millis(100), 1); |
| 112 | |
| 113 | BOOST_CHECK_CLOSE(rttEstimator.m_sRtt.count(), 100.0, 0.001); |
| 114 | BOOST_CHECK_CLOSE(rttEstimator.m_rttVar.count(), 22.5, 0.001); |
| 115 | BOOST_CHECK_CLOSE(rttEstimator.getEstimatedRto().count(), 200.0, 0.001); |
| 116 | |
| 117 | rttEstimator.m_sRtt = Millis(2000); |
| 118 | rttEstimator.m_rttVar = Millis(400); |
| 119 | rttEstimator.m_rto = Millis(3600); |
| 120 | |
| 121 | // check if maxRto works |
| 122 | rttEstimator.addMeasurement(Millis(100), 1); |
| 123 | |
| 124 | BOOST_CHECK_CLOSE(rttEstimator.m_sRtt.count(), 1762.5, 0.001); |
| 125 | BOOST_CHECK_CLOSE(rttEstimator.m_rttVar.count(), 775.0, 0.001); |
| 126 | BOOST_CHECK_CLOSE(rttEstimator.getEstimatedRto().count(), 4000.0, 0.001); |
| 127 | } |
| 128 | |
| 129 | BOOST_AUTO_TEST_CASE(BackoffRto) |
| 130 | { |
| 131 | RttEstimator::Options opts; |
| 132 | opts.initialRto = Millis(500); |
| 133 | opts.maxRto = Millis(4000); |
| 134 | RttEstimator rttEstimator(opts); |
| 135 | |
| 136 | rttEstimator.backoffRto(); |
| 137 | BOOST_CHECK_CLOSE(rttEstimator.getEstimatedRto().count(), 1000.0, 0.001); |
| 138 | |
| 139 | // check if minRto works |
| 140 | rttEstimator.m_rto = Millis(10); |
| 141 | rttEstimator.backoffRto(); |
| 142 | BOOST_CHECK_CLOSE(rttEstimator.getEstimatedRto().count(), 200.0, 0.001); |
| 143 | |
| 144 | // check if maxRto works |
| 145 | rttEstimator.m_rto = Millis(3000); |
| 146 | rttEstimator.backoffRto(); |
| 147 | BOOST_CHECK_CLOSE(rttEstimator.getEstimatedRto().count(), 4000.0, 0.001); |
| 148 | } |
| 149 | |
| 150 | BOOST_AUTO_TEST_CASE(AfterMeasurement) |
| 151 | { |
| 152 | RttEstimator rttEstimator; |
| 153 | |
| 154 | int nHandlerInvocations = 0; |
| 155 | rttEstimator.afterMeasurement.connectSingleShot([&nHandlerInvocations] (const auto& sample) { |
| 156 | ++nHandlerInvocations; |
| 157 | BOOST_CHECK_CLOSE(sample.rtt.count(), 80.0, 0.001); |
| 158 | BOOST_CHECK_CLOSE(sample.sRtt.count(), 80.0, 0.001); |
| 159 | BOOST_CHECK_CLOSE(sample.rttVar.count(), 40.0, 0.001); |
| 160 | BOOST_CHECK_CLOSE(sample.rto.count(), 240.0, 0.001); |
| 161 | BOOST_CHECK(!sample.segNum.has_value()); |
| 162 | }); |
| 163 | rttEstimator.addMeasurement(Millis(80), 1); |
| 164 | BOOST_CHECK_EQUAL(nHandlerInvocations, 1); |
| 165 | |
| 166 | rttEstimator.afterMeasurement.connectSingleShot([&nHandlerInvocations] (const auto& sample) { |
| 167 | ++nHandlerInvocations; |
| 168 | BOOST_CHECK_CLOSE(sample.rtt.count(), 40.0, 0.001); |
| 169 | BOOST_CHECK_CLOSE(sample.sRtt.count(), 75.0, 0.001); |
| 170 | BOOST_CHECK_CLOSE(sample.rttVar.count(), 40.0, 0.001); |
| 171 | BOOST_CHECK_CLOSE(sample.rto.count(), 235.0, 0.001); |
| 172 | BOOST_CHECK(sample.segNum == 42U); |
| 173 | }); |
| 174 | rttEstimator.addMeasurement(Millis(40), 1, 42); |
| 175 | BOOST_CHECK_EQUAL(nHandlerInvocations, 2); |
| 176 | } |
| 177 | |
| 178 | BOOST_AUTO_TEST_SUITE_END() // TestRttEstimator |
| 179 | BOOST_AUTO_TEST_SUITE_END() // Util |
| 180 | |
| 181 | } // namespace tests |
| 182 | } // namespace util |
| 183 | } // namespace ndn |