Jeff Thompson | ef2d5a4 | 2013-08-22 19:09:24 -0700 | [diff] [blame] | 1 | // Boost Lambda Library ret.hpp ----------------------------------------- |
| 2 | |
| 3 | // Copyright (C) 1999, 2000 Jaakko Jarvi (jaakko.jarvi@cs.utu.fi) |
| 4 | // |
| 5 | // Distributed under the Boost Software License, Version 1.0. (See |
| 6 | // accompanying file LICENSE_1_0.txt or copy at |
| 7 | // http://www.boost.org/LICENSE_1_0.txt) |
| 8 | // |
| 9 | // For more information, see www.boost.org |
| 10 | |
| 11 | |
Jeff Thompson | 3d613fd | 2013-10-15 15:39:04 -0700 | [diff] [blame^] | 12 | #ifndef NDNBOOST_LAMBDA_RET_HPP |
| 13 | #define NDNBOOST_LAMBDA_RET_HPP |
Jeff Thompson | ef2d5a4 | 2013-08-22 19:09:24 -0700 | [diff] [blame] | 14 | |
| 15 | namespace ndnboost { |
| 16 | namespace lambda { |
| 17 | |
| 18 | // TODO: |
| 19 | |
| 20 | // Add specializations for function references for ret, protect and unlambda |
| 21 | // e.g void foo(); unlambda(foo); fails, as it would add a const qualifier |
| 22 | // for a function type. |
| 23 | // on the other hand unlambda(*foo) does work |
| 24 | |
| 25 | |
| 26 | // -- ret ------------------------- |
| 27 | // the explicit return type template |
| 28 | |
| 29 | // TODO: It'd be nice to make ret a nop for other than lambda functors |
| 30 | // but causes an ambiguiyty with gcc (not with KCC), check what is the |
| 31 | // right interpretation. |
| 32 | |
| 33 | // // ret for others than lambda functors has no effect |
| 34 | // template <class U, class T> |
| 35 | // inline const T& ret(const T& t) { return t; } |
| 36 | |
| 37 | |
| 38 | template<class RET, class Arg> |
| 39 | inline const |
| 40 | lambda_functor< |
| 41 | lambda_functor_base< |
| 42 | explicit_return_type_action<RET>, |
| 43 | tuple<lambda_functor<Arg> > |
| 44 | > |
| 45 | > |
| 46 | ret(const lambda_functor<Arg>& a1) |
| 47 | { |
| 48 | return |
| 49 | lambda_functor_base< |
| 50 | explicit_return_type_action<RET>, |
| 51 | tuple<lambda_functor<Arg> > |
| 52 | > |
| 53 | (tuple<lambda_functor<Arg> >(a1)); |
| 54 | } |
| 55 | |
| 56 | // protect ------------------ |
| 57 | |
| 58 | // protecting others than lambda functors has no effect |
| 59 | template <class T> |
| 60 | inline const T& protect(const T& t) { return t; } |
| 61 | |
| 62 | template<class Arg> |
| 63 | inline const |
| 64 | lambda_functor< |
| 65 | lambda_functor_base< |
| 66 | protect_action, |
| 67 | tuple<lambda_functor<Arg> > |
| 68 | > |
| 69 | > |
| 70 | protect(const lambda_functor<Arg>& a1) |
| 71 | { |
| 72 | return |
| 73 | lambda_functor_base< |
| 74 | protect_action, |
| 75 | tuple<lambda_functor<Arg> > |
| 76 | > |
| 77 | (tuple<lambda_functor<Arg> >(a1)); |
| 78 | } |
| 79 | |
| 80 | // ------------------------------------------------------------------- |
| 81 | |
| 82 | // Hides the lambda functorness of a lambda functor. |
| 83 | // After this, the functor is immune to argument substitution, etc. |
| 84 | // This can be used, e.g. to make it safe to pass lambda functors as |
| 85 | // arguments to functions, which might use them as target functions |
| 86 | |
| 87 | // note, unlambda and protect are different things. Protect hides the lambda |
| 88 | // functor for one application, unlambda for good. |
| 89 | |
| 90 | template <class LambdaFunctor> |
| 91 | class non_lambda_functor |
| 92 | { |
| 93 | LambdaFunctor lf; |
| 94 | public: |
| 95 | |
| 96 | // This functor defines the result_type typedef. |
| 97 | // The result type must be deducible without knowing the arguments |
| 98 | |
| 99 | template <class SigArgs> struct sig { |
| 100 | typedef typename |
| 101 | LambdaFunctor::inherited:: |
| 102 | template sig<typename SigArgs::tail_type>::type type; |
| 103 | }; |
| 104 | |
| 105 | explicit non_lambda_functor(const LambdaFunctor& a) : lf(a) {} |
| 106 | |
| 107 | typename LambdaFunctor::nullary_return_type |
| 108 | operator()() const { |
| 109 | return lf.template |
| 110 | call<typename LambdaFunctor::nullary_return_type> |
| 111 | (cnull_type(), cnull_type(), cnull_type(), cnull_type()); |
| 112 | } |
| 113 | |
| 114 | template<class A> |
| 115 | typename sig<tuple<const non_lambda_functor, A&> >::type |
| 116 | operator()(A& a) const { |
| 117 | return lf.template call<typename sig<tuple<const non_lambda_functor, A&> >::type >(a, cnull_type(), cnull_type(), cnull_type()); |
| 118 | } |
| 119 | |
| 120 | template<class A, class B> |
| 121 | typename sig<tuple<const non_lambda_functor, A&, B&> >::type |
| 122 | operator()(A& a, B& b) const { |
| 123 | return lf.template call<typename sig<tuple<const non_lambda_functor, A&, B&> >::type >(a, b, cnull_type(), cnull_type()); |
| 124 | } |
| 125 | |
| 126 | template<class A, class B, class C> |
| 127 | typename sig<tuple<const non_lambda_functor, A&, B&, C&> >::type |
| 128 | operator()(A& a, B& b, C& c) const { |
| 129 | return lf.template call<typename sig<tuple<const non_lambda_functor, A&, B&, C&> >::type>(a, b, c, cnull_type()); |
| 130 | } |
| 131 | }; |
| 132 | |
| 133 | template <class Arg> |
| 134 | inline const Arg& unlambda(const Arg& a) { return a; } |
| 135 | |
| 136 | template <class Arg> |
| 137 | inline const non_lambda_functor<lambda_functor<Arg> > |
| 138 | unlambda(const lambda_functor<Arg>& a) |
| 139 | { |
| 140 | return non_lambda_functor<lambda_functor<Arg> >(a); |
| 141 | } |
| 142 | |
| 143 | // Due to a language restriction, lambda functors cannot be made to |
| 144 | // accept non-const rvalue arguments. Usually iterators do not return |
| 145 | // temporaries, but sometimes they do. That's why a workaround is provided. |
| 146 | // Note, that this potentially breaks const correctness, so be careful! |
| 147 | |
| 148 | // any lambda functor can be turned into a const_incorrect_lambda_functor |
| 149 | // The operator() takes arguments as consts and then casts constness |
| 150 | // away. So this breaks const correctness!!! but is a necessary workaround |
| 151 | // in some cases due to language limitations. |
| 152 | // Note, that this is not a lambda_functor anymore, so it can not be used |
| 153 | // as a sub lambda expression. |
| 154 | |
| 155 | template <class LambdaFunctor> |
| 156 | struct const_incorrect_lambda_functor { |
| 157 | LambdaFunctor lf; |
| 158 | public: |
| 159 | |
| 160 | explicit const_incorrect_lambda_functor(const LambdaFunctor& a) : lf(a) {} |
| 161 | |
| 162 | template <class SigArgs> struct sig { |
| 163 | typedef typename |
| 164 | LambdaFunctor::inherited::template |
| 165 | sig<typename SigArgs::tail_type>::type type; |
| 166 | }; |
| 167 | |
| 168 | // The nullary case is not needed (no arguments, no parameter type problems) |
| 169 | |
| 170 | template<class A> |
| 171 | typename sig<tuple<const const_incorrect_lambda_functor, A&> >::type |
| 172 | operator()(const A& a) const { |
| 173 | return lf.template call<typename sig<tuple<const const_incorrect_lambda_functor, A&> >::type >(const_cast<A&>(a), cnull_type(), cnull_type(), cnull_type()); |
| 174 | } |
| 175 | |
| 176 | template<class A, class B> |
| 177 | typename sig<tuple<const const_incorrect_lambda_functor, A&, B&> >::type |
| 178 | operator()(const A& a, const B& b) const { |
| 179 | return lf.template call<typename sig<tuple<const const_incorrect_lambda_functor, A&, B&> >::type >(const_cast<A&>(a), const_cast<B&>(b), cnull_type(), cnull_type()); |
| 180 | } |
| 181 | |
| 182 | template<class A, class B, class C> |
| 183 | typename sig<tuple<const const_incorrect_lambda_functor, A&, B&, C&> >::type |
| 184 | operator()(const A& a, const B& b, const C& c) const { |
| 185 | return lf.template call<typename sig<tuple<const const_incorrect_lambda_functor, A&, B&, C&> >::type>(const_cast<A&>(a), const_cast<B&>(b), const_cast<C&>(c), cnull_type()); |
| 186 | } |
| 187 | }; |
| 188 | |
| 189 | // ------------------------------------------------------------------------ |
| 190 | // any lambda functor can be turned into a const_parameter_lambda_functor |
| 191 | // The operator() takes arguments as const. |
| 192 | // This is useful if lambda functors are called with non-const rvalues. |
| 193 | // Note, that this is not a lambda_functor anymore, so it can not be used |
| 194 | // as a sub lambda expression. |
| 195 | |
| 196 | template <class LambdaFunctor> |
| 197 | struct const_parameter_lambda_functor { |
| 198 | LambdaFunctor lf; |
| 199 | public: |
| 200 | |
| 201 | explicit const_parameter_lambda_functor(const LambdaFunctor& a) : lf(a) {} |
| 202 | |
| 203 | template <class SigArgs> struct sig { |
| 204 | typedef typename |
| 205 | LambdaFunctor::inherited::template |
| 206 | sig<typename SigArgs::tail_type>::type type; |
| 207 | }; |
| 208 | |
| 209 | // The nullary case is not needed: no arguments, no constness problems. |
| 210 | |
| 211 | template<class A> |
| 212 | typename sig<tuple<const const_parameter_lambda_functor, const A&> >::type |
| 213 | operator()(const A& a) const { |
| 214 | return lf.template call<typename sig<tuple<const const_parameter_lambda_functor, const A&> >::type >(a, cnull_type(), cnull_type(), cnull_type()); |
| 215 | } |
| 216 | |
| 217 | template<class A, class B> |
| 218 | typename sig<tuple<const const_parameter_lambda_functor, const A&, const B&> >::type |
| 219 | operator()(const A& a, const B& b) const { |
| 220 | return lf.template call<typename sig<tuple<const const_parameter_lambda_functor, const A&, const B&> >::type >(a, b, cnull_type(), cnull_type()); |
| 221 | } |
| 222 | |
| 223 | template<class A, class B, class C> |
| 224 | typename sig<tuple<const const_parameter_lambda_functor, const A&, const B&, const C&> |
| 225 | >::type |
| 226 | operator()(const A& a, const B& b, const C& c) const { |
| 227 | return lf.template call<typename sig<tuple<const const_parameter_lambda_functor, const A&, const B&, const C&> >::type>(a, b, c, cnull_type()); |
| 228 | } |
| 229 | }; |
| 230 | |
| 231 | template <class Arg> |
| 232 | inline const const_incorrect_lambda_functor<lambda_functor<Arg> > |
| 233 | break_const(const lambda_functor<Arg>& lf) |
| 234 | { |
| 235 | return const_incorrect_lambda_functor<lambda_functor<Arg> >(lf); |
| 236 | } |
| 237 | |
| 238 | |
| 239 | template <class Arg> |
| 240 | inline const const_parameter_lambda_functor<lambda_functor<Arg> > |
| 241 | const_parameters(const lambda_functor<Arg>& lf) |
| 242 | { |
| 243 | return const_parameter_lambda_functor<lambda_functor<Arg> >(lf); |
| 244 | } |
| 245 | |
| 246 | // make void ------------------------------------------------ |
| 247 | // make_void( x ) turns a lambda functor x with some return type y into |
| 248 | // another lambda functor, which has a void return type |
| 249 | // when called, the original return type is discarded |
| 250 | |
| 251 | // we use this action. The action class will be called, which means that |
| 252 | // the wrapped lambda functor is evaluated, but we just don't do anything |
| 253 | // with the result. |
| 254 | struct voidifier_action { |
| 255 | template<class Ret, class A> static void apply(A&) {} |
| 256 | }; |
| 257 | |
| 258 | template<class Args> struct return_type_N<voidifier_action, Args> { |
| 259 | typedef void type; |
| 260 | }; |
| 261 | |
| 262 | template<class Arg1> |
| 263 | inline const |
| 264 | lambda_functor< |
| 265 | lambda_functor_base< |
| 266 | action<1, voidifier_action>, |
| 267 | tuple<lambda_functor<Arg1> > |
| 268 | > |
| 269 | > |
| 270 | make_void(const lambda_functor<Arg1>& a1) { |
| 271 | return |
| 272 | lambda_functor_base< |
| 273 | action<1, voidifier_action>, |
| 274 | tuple<lambda_functor<Arg1> > |
| 275 | > |
| 276 | (tuple<lambda_functor<Arg1> > (a1)); |
| 277 | } |
| 278 | |
| 279 | // for non-lambda functors, make_void does nothing |
| 280 | // (the argument gets evaluated immediately) |
| 281 | |
| 282 | template<class Arg1> |
| 283 | inline const |
| 284 | lambda_functor< |
| 285 | lambda_functor_base<do_nothing_action, null_type> |
| 286 | > |
| 287 | make_void(const Arg1&) { |
| 288 | return |
| 289 | lambda_functor_base<do_nothing_action, null_type>(); |
| 290 | } |
| 291 | |
| 292 | // std_functor ----------------------------------------------------- |
| 293 | |
| 294 | // The STL uses the result_type typedef as the convention to let binders know |
| 295 | // the return type of a function object. |
| 296 | // LL uses the sig template. |
| 297 | // To let LL know that the function object has the result_type typedef |
| 298 | // defined, it can be wrapped with the std_functor function. |
| 299 | |
| 300 | |
| 301 | // Just inherit form the template parameter (the standard functor), |
| 302 | // and provide a sig template. So we have a class which is still the |
| 303 | // same functor + the sig template. |
| 304 | |
| 305 | template<class T> |
| 306 | struct result_type_to_sig : public T { |
| 307 | template<class Args> struct sig { typedef typename T::result_type type; }; |
| 308 | result_type_to_sig(const T& t) : T(t) {} |
| 309 | }; |
| 310 | |
| 311 | template<class F> |
| 312 | inline result_type_to_sig<F> std_functor(const F& f) { return f; } |
| 313 | |
| 314 | |
| 315 | } // namespace lambda |
| 316 | } // namespace ndnboost |
| 317 | |
| 318 | #endif |
| 319 | |
| 320 | |
| 321 | |
| 322 | |
| 323 | |
| 324 | |
| 325 | |