| // Boost Lambda Library ret.hpp ----------------------------------------- |
| |
| // Copyright (C) 1999, 2000 Jaakko Jarvi (jaakko.jarvi@cs.utu.fi) |
| // |
| // Distributed under the Boost Software License, Version 1.0. (See |
| // accompanying file LICENSE_1_0.txt or copy at |
| // http://www.boost.org/LICENSE_1_0.txt) |
| // |
| // For more information, see www.boost.org |
| |
| |
| #ifndef BOOST_LAMBDA_RET_HPP |
| #define BOOST_LAMBDA_RET_HPP |
| |
| namespace ndnboost { |
| namespace lambda { |
| |
| // TODO: |
| |
| // Add specializations for function references for ret, protect and unlambda |
| // e.g void foo(); unlambda(foo); fails, as it would add a const qualifier |
| // for a function type. |
| // on the other hand unlambda(*foo) does work |
| |
| |
| // -- ret ------------------------- |
| // the explicit return type template |
| |
| // TODO: It'd be nice to make ret a nop for other than lambda functors |
| // but causes an ambiguiyty with gcc (not with KCC), check what is the |
| // right interpretation. |
| |
| // // ret for others than lambda functors has no effect |
| // template <class U, class T> |
| // inline const T& ret(const T& t) { return t; } |
| |
| |
| template<class RET, class Arg> |
| inline const |
| lambda_functor< |
| lambda_functor_base< |
| explicit_return_type_action<RET>, |
| tuple<lambda_functor<Arg> > |
| > |
| > |
| ret(const lambda_functor<Arg>& a1) |
| { |
| return |
| lambda_functor_base< |
| explicit_return_type_action<RET>, |
| tuple<lambda_functor<Arg> > |
| > |
| (tuple<lambda_functor<Arg> >(a1)); |
| } |
| |
| // protect ------------------ |
| |
| // protecting others than lambda functors has no effect |
| template <class T> |
| inline const T& protect(const T& t) { return t; } |
| |
| template<class Arg> |
| inline const |
| lambda_functor< |
| lambda_functor_base< |
| protect_action, |
| tuple<lambda_functor<Arg> > |
| > |
| > |
| protect(const lambda_functor<Arg>& a1) |
| { |
| return |
| lambda_functor_base< |
| protect_action, |
| tuple<lambda_functor<Arg> > |
| > |
| (tuple<lambda_functor<Arg> >(a1)); |
| } |
| |
| // ------------------------------------------------------------------- |
| |
| // Hides the lambda functorness of a lambda functor. |
| // After this, the functor is immune to argument substitution, etc. |
| // This can be used, e.g. to make it safe to pass lambda functors as |
| // arguments to functions, which might use them as target functions |
| |
| // note, unlambda and protect are different things. Protect hides the lambda |
| // functor for one application, unlambda for good. |
| |
| template <class LambdaFunctor> |
| class non_lambda_functor |
| { |
| LambdaFunctor lf; |
| public: |
| |
| // This functor defines the result_type typedef. |
| // The result type must be deducible without knowing the arguments |
| |
| template <class SigArgs> struct sig { |
| typedef typename |
| LambdaFunctor::inherited:: |
| template sig<typename SigArgs::tail_type>::type type; |
| }; |
| |
| explicit non_lambda_functor(const LambdaFunctor& a) : lf(a) {} |
| |
| typename LambdaFunctor::nullary_return_type |
| operator()() const { |
| return lf.template |
| call<typename LambdaFunctor::nullary_return_type> |
| (cnull_type(), cnull_type(), cnull_type(), cnull_type()); |
| } |
| |
| template<class A> |
| typename sig<tuple<const non_lambda_functor, A&> >::type |
| operator()(A& a) const { |
| return lf.template call<typename sig<tuple<const non_lambda_functor, A&> >::type >(a, cnull_type(), cnull_type(), cnull_type()); |
| } |
| |
| template<class A, class B> |
| typename sig<tuple<const non_lambda_functor, A&, B&> >::type |
| operator()(A& a, B& b) const { |
| return lf.template call<typename sig<tuple<const non_lambda_functor, A&, B&> >::type >(a, b, cnull_type(), cnull_type()); |
| } |
| |
| template<class A, class B, class C> |
| typename sig<tuple<const non_lambda_functor, A&, B&, C&> >::type |
| operator()(A& a, B& b, C& c) const { |
| return lf.template call<typename sig<tuple<const non_lambda_functor, A&, B&, C&> >::type>(a, b, c, cnull_type()); |
| } |
| }; |
| |
| template <class Arg> |
| inline const Arg& unlambda(const Arg& a) { return a; } |
| |
| template <class Arg> |
| inline const non_lambda_functor<lambda_functor<Arg> > |
| unlambda(const lambda_functor<Arg>& a) |
| { |
| return non_lambda_functor<lambda_functor<Arg> >(a); |
| } |
| |
| // Due to a language restriction, lambda functors cannot be made to |
| // accept non-const rvalue arguments. Usually iterators do not return |
| // temporaries, but sometimes they do. That's why a workaround is provided. |
| // Note, that this potentially breaks const correctness, so be careful! |
| |
| // any lambda functor can be turned into a const_incorrect_lambda_functor |
| // The operator() takes arguments as consts and then casts constness |
| // away. So this breaks const correctness!!! but is a necessary workaround |
| // in some cases due to language limitations. |
| // Note, that this is not a lambda_functor anymore, so it can not be used |
| // as a sub lambda expression. |
| |
| template <class LambdaFunctor> |
| struct const_incorrect_lambda_functor { |
| LambdaFunctor lf; |
| public: |
| |
| explicit const_incorrect_lambda_functor(const LambdaFunctor& a) : lf(a) {} |
| |
| template <class SigArgs> struct sig { |
| typedef typename |
| LambdaFunctor::inherited::template |
| sig<typename SigArgs::tail_type>::type type; |
| }; |
| |
| // The nullary case is not needed (no arguments, no parameter type problems) |
| |
| template<class A> |
| typename sig<tuple<const const_incorrect_lambda_functor, A&> >::type |
| operator()(const A& a) const { |
| return lf.template call<typename sig<tuple<const const_incorrect_lambda_functor, A&> >::type >(const_cast<A&>(a), cnull_type(), cnull_type(), cnull_type()); |
| } |
| |
| template<class A, class B> |
| typename sig<tuple<const const_incorrect_lambda_functor, A&, B&> >::type |
| operator()(const A& a, const B& b) const { |
| return lf.template call<typename sig<tuple<const const_incorrect_lambda_functor, A&, B&> >::type >(const_cast<A&>(a), const_cast<B&>(b), cnull_type(), cnull_type()); |
| } |
| |
| template<class A, class B, class C> |
| typename sig<tuple<const const_incorrect_lambda_functor, A&, B&, C&> >::type |
| operator()(const A& a, const B& b, const C& c) const { |
| return lf.template call<typename sig<tuple<const const_incorrect_lambda_functor, A&, B&, C&> >::type>(const_cast<A&>(a), const_cast<B&>(b), const_cast<C&>(c), cnull_type()); |
| } |
| }; |
| |
| // ------------------------------------------------------------------------ |
| // any lambda functor can be turned into a const_parameter_lambda_functor |
| // The operator() takes arguments as const. |
| // This is useful if lambda functors are called with non-const rvalues. |
| // Note, that this is not a lambda_functor anymore, so it can not be used |
| // as a sub lambda expression. |
| |
| template <class LambdaFunctor> |
| struct const_parameter_lambda_functor { |
| LambdaFunctor lf; |
| public: |
| |
| explicit const_parameter_lambda_functor(const LambdaFunctor& a) : lf(a) {} |
| |
| template <class SigArgs> struct sig { |
| typedef typename |
| LambdaFunctor::inherited::template |
| sig<typename SigArgs::tail_type>::type type; |
| }; |
| |
| // The nullary case is not needed: no arguments, no constness problems. |
| |
| template<class A> |
| typename sig<tuple<const const_parameter_lambda_functor, const A&> >::type |
| operator()(const A& a) const { |
| return lf.template call<typename sig<tuple<const const_parameter_lambda_functor, const A&> >::type >(a, cnull_type(), cnull_type(), cnull_type()); |
| } |
| |
| template<class A, class B> |
| typename sig<tuple<const const_parameter_lambda_functor, const A&, const B&> >::type |
| operator()(const A& a, const B& b) const { |
| return lf.template call<typename sig<tuple<const const_parameter_lambda_functor, const A&, const B&> >::type >(a, b, cnull_type(), cnull_type()); |
| } |
| |
| template<class A, class B, class C> |
| typename sig<tuple<const const_parameter_lambda_functor, const A&, const B&, const C&> |
| >::type |
| operator()(const A& a, const B& b, const C& c) const { |
| return lf.template call<typename sig<tuple<const const_parameter_lambda_functor, const A&, const B&, const C&> >::type>(a, b, c, cnull_type()); |
| } |
| }; |
| |
| template <class Arg> |
| inline const const_incorrect_lambda_functor<lambda_functor<Arg> > |
| break_const(const lambda_functor<Arg>& lf) |
| { |
| return const_incorrect_lambda_functor<lambda_functor<Arg> >(lf); |
| } |
| |
| |
| template <class Arg> |
| inline const const_parameter_lambda_functor<lambda_functor<Arg> > |
| const_parameters(const lambda_functor<Arg>& lf) |
| { |
| return const_parameter_lambda_functor<lambda_functor<Arg> >(lf); |
| } |
| |
| // make void ------------------------------------------------ |
| // make_void( x ) turns a lambda functor x with some return type y into |
| // another lambda functor, which has a void return type |
| // when called, the original return type is discarded |
| |
| // we use this action. The action class will be called, which means that |
| // the wrapped lambda functor is evaluated, but we just don't do anything |
| // with the result. |
| struct voidifier_action { |
| template<class Ret, class A> static void apply(A&) {} |
| }; |
| |
| template<class Args> struct return_type_N<voidifier_action, Args> { |
| typedef void type; |
| }; |
| |
| template<class Arg1> |
| inline const |
| lambda_functor< |
| lambda_functor_base< |
| action<1, voidifier_action>, |
| tuple<lambda_functor<Arg1> > |
| > |
| > |
| make_void(const lambda_functor<Arg1>& a1) { |
| return |
| lambda_functor_base< |
| action<1, voidifier_action>, |
| tuple<lambda_functor<Arg1> > |
| > |
| (tuple<lambda_functor<Arg1> > (a1)); |
| } |
| |
| // for non-lambda functors, make_void does nothing |
| // (the argument gets evaluated immediately) |
| |
| template<class Arg1> |
| inline const |
| lambda_functor< |
| lambda_functor_base<do_nothing_action, null_type> |
| > |
| make_void(const Arg1&) { |
| return |
| lambda_functor_base<do_nothing_action, null_type>(); |
| } |
| |
| // std_functor ----------------------------------------------------- |
| |
| // The STL uses the result_type typedef as the convention to let binders know |
| // the return type of a function object. |
| // LL uses the sig template. |
| // To let LL know that the function object has the result_type typedef |
| // defined, it can be wrapped with the std_functor function. |
| |
| |
| // Just inherit form the template parameter (the standard functor), |
| // and provide a sig template. So we have a class which is still the |
| // same functor + the sig template. |
| |
| template<class T> |
| struct result_type_to_sig : public T { |
| template<class Args> struct sig { typedef typename T::result_type type; }; |
| result_type_to_sig(const T& t) : T(t) {} |
| }; |
| |
| template<class F> |
| inline result_type_to_sig<F> std_functor(const F& f) { return f; } |
| |
| |
| } // namespace lambda |
| } // namespace ndnboost |
| |
| #endif |
| |
| |
| |
| |
| |
| |
| |