| /** |
| * @author: Jeff Thompson |
| * Derived from BinaryXMLEncoder.js by Meki Cheraoui. |
| * See COPYING for copyright and distribution information. |
| */ |
| |
| #include <math.h> |
| #include "../util/ndn_memory.h" |
| #include "BinaryXML.h" |
| #include "BinaryXMLEncoder.h" |
| |
| enum { |
| ENCODING_LIMIT_1_BYTE = ((1 << ndn_BinaryXml_TT_VALUE_BITS) - 1), |
| ENCODING_LIMIT_2_BYTES = ((1 << (ndn_BinaryXml_TT_VALUE_BITS + ndn_BinaryXml_REGULAR_VALUE_BITS)) - 1), |
| ENCODING_LIMIT_3_BYTES = ((1 << (ndn_BinaryXml_TT_VALUE_BITS + 2 * ndn_BinaryXml_REGULAR_VALUE_BITS)) - 1) |
| }; |
| |
| /** |
| * Call ndn_DynamicUCharArray_ensureLength to ensure that there is enough room in the output, and copy |
| * array to the output. This does not write a header. |
| * @param self pointer to the ndn_BinaryXmlEncoder struct |
| * @param array the array to copy |
| * @param arrayLength the length of the array |
| * @return 0 for success, else an error code |
| */ |
| static ndn_Error writeArray(struct ndn_BinaryXmlEncoder *self, unsigned char *array, unsigned int arrayLength) |
| { |
| ndn_Error error; |
| if (error = ndn_DynamicUCharArray_ensureLength(&self->output, self->offset + arrayLength)) |
| return error; |
| |
| ndn_memcpy(self->output.array + self->offset, array, arrayLength); |
| self->offset += arrayLength; |
| |
| return 0; |
| } |
| |
| /** |
| * Return the number of bytes to encode a header of value x. |
| */ |
| static unsigned int getNHeaderEncodingBytes(unsigned int x) |
| { |
| // Do a quick check for pre-compiled results. |
| if (x <= ENCODING_LIMIT_1_BYTE) |
| return 1; |
| if (x <= ENCODING_LIMIT_2_BYTES) |
| return 2; |
| if (x <= ENCODING_LIMIT_3_BYTES) |
| return 3; |
| |
| unsigned int nBytes = 1; |
| |
| // Last byte gives you TT_VALUE_BITS. |
| // Remainder each gives you REGULAR_VALUE_BITS. |
| x >>= ndn_BinaryXml_TT_VALUE_BITS; |
| while (x != 0) { |
| ++nBytes; |
| x >>= ndn_BinaryXml_REGULAR_VALUE_BITS; |
| } |
| |
| return nBytes; |
| } |
| |
| /** |
| * Reverse the length bytes in array. |
| * @param array |
| * @param length |
| */ |
| static void reverse(unsigned char *array, unsigned int length) |
| { |
| if (length == 0) |
| return; |
| |
| unsigned char *left = array; |
| unsigned char *right = array + length - 1; |
| while (left < right) { |
| // Swap. |
| unsigned char temp = *left; |
| *left = *right; |
| *right = temp; |
| |
| ++left; |
| --right; |
| } |
| } |
| |
| /** |
| * Write x as an unsigned decimal integer to the output with the digits in reverse order, using ndn_DynamicUCharArray_ensureLength. |
| * This does not write a header. |
| * We encode in reverse order, because this is the natural way to encode the digits, and the caller can reverse as needed. |
| * @param self pointer to the ndn_BinaryXmlEncoder struct |
| * @param x the unsigned int to write |
| * @return 0 for success, else an error code |
| */ |
| static ndn_Error encodeReversedUnsignedDecimalInt(struct ndn_BinaryXmlEncoder *self, unsigned int x) |
| { |
| while (1) { |
| ndn_Error error; |
| if (error = ndn_DynamicUCharArray_ensureLength(&self->output, self->offset + 1)) |
| return error; |
| |
| self->output.array[self->offset++] = (unsigned char)(x % 10 + '0'); |
| x /= 10; |
| |
| if (x == 0) |
| break; |
| } |
| |
| return 0; |
| } |
| |
| /** |
| * Reverse the buffer in self->output.array, then shift it right by the amount needed to prefix a header with type, |
| * then encode the header at startOffset. |
| * startOffser it the position in self-output.array of the first byte of the buffer and self->offset is the first byte past the end. |
| * We reverse and shift in the same function to avoid unnecessary copying if we first reverse then shift. |
| * @param self pointer to the ndn_BinaryXmlEncoder struct |
| * @param startOffset the offset in self->output.array of the start of the buffer to shift right |
| * @param type the header type |
| * @return 0 for success, else an error code |
| */ |
| static ndn_Error reverseBufferAndInsertHeader |
| (struct ndn_BinaryXmlEncoder *self, unsigned int startOffset, unsigned int type) |
| { |
| unsigned int nBufferBytes = self->offset - startOffset; |
| unsigned int nHeaderBytes = getNHeaderEncodingBytes(nBufferBytes); |
| ndn_Error error; |
| if (error = ndn_DynamicUCharArray_ensureLength(&self->output, self->offset + nHeaderBytes)) |
| return error; |
| |
| // To reverse and shift at the same time, we first shift nHeaderBytes to the destination while reversing, |
| // then reverse the remaining bytes in place. |
| unsigned char *from = self->output.array + startOffset; |
| unsigned char *fromEnd = from + nHeaderBytes; |
| unsigned char *to = self->output.array + startOffset + nBufferBytes + nHeaderBytes - 1; |
| while (from < fromEnd) |
| *(to--) = *(from++); |
| // Reverse the remaining bytes in place (if any). |
| if (nBufferBytes > nHeaderBytes) |
| reverse(self->output.array + startOffset + nHeaderBytes, nBufferBytes - nHeaderBytes); |
| |
| // Override the offset to force encodeTypeAndValue to encode at startOffset, then fix the offset. |
| self->offset = startOffset; |
| if (error = ndn_BinaryXmlEncoder_encodeTypeAndValue(self, ndn_BinaryXml_UDATA, nBufferBytes)) |
| // We don't really expect to get an error, since we have already ensured the length. |
| return error; |
| self->offset = startOffset + nHeaderBytes + nBufferBytes; |
| |
| return 0; |
| } |
| |
| /** |
| * Split the absolute value of x into 32 bit unsigned integers hi32 and lo32. |
| * We need this because not all C compilers support 64 bit long long integers, so we carry around |
| * a high precision value as a double, which we assume has more than 32 bits. |
| * But we want to do bit-wise operations on integers. |
| * @param x the double value |
| * @param hi32 output the high 32 bits |
| * @param lo32 output the low 32 bits |
| */ |
| static inline void splitAbsDouble(double x, unsigned long *hi32, unsigned long *lo32) |
| { |
| if (x < 0) |
| x = -x; |
| x = round(x); |
| |
| double twoPower32 = 4294967296.0; |
| double lo32Double = fmod(x, twoPower32); |
| *lo32 = (unsigned long)lo32Double; |
| *hi32 = (unsigned long)((x - lo32Double) / twoPower32); |
| } |
| |
| ndn_Error ndn_BinaryXmlEncoder_encodeTypeAndValue(struct ndn_BinaryXmlEncoder *self, unsigned int type, unsigned int value) |
| { |
| if (type > ndn_BinaryXml_UDATA) |
| return NDN_ERROR_header_type_is_out_of_range; |
| |
| // Encode backwards. Calculate how many bytes we need. |
| unsigned int nEncodingBytes = getNHeaderEncodingBytes(value); |
| ndn_Error error; |
| if (error = ndn_DynamicUCharArray_ensureLength(&self->output, self->offset + nEncodingBytes)) |
| return error; |
| |
| // Bottom 4 bits of value go in last byte with tag. |
| self->output.array[self->offset + nEncodingBytes - 1] = |
| (ndn_BinaryXml_TT_MASK & type | |
| ((ndn_BinaryXml_TT_VALUE_MASK & value) << ndn_BinaryXml_TT_BITS)) | |
| ndn_BinaryXml_TT_FINAL; // set top bit for last byte |
| value >>= ndn_BinaryXml_TT_VALUE_BITS; |
| |
| // Rest of value goes into preceding bytes, 7 bits per byte. (Zero top bit is "more" flag.) |
| unsigned int i = self->offset + nEncodingBytes - 2; |
| while (value != 0 && i >= self->offset) { |
| self->output.array[i] = (value & ndn_BinaryXml_REGULAR_VALUE_MASK); |
| value >>= ndn_BinaryXml_REGULAR_VALUE_BITS; |
| --i; |
| } |
| if (value != 0) |
| // This should not happen if getNHeaderEncodingBytes is correct. |
| return NDN_ERROR_encodeTypeAndValue_miscalculated_N_encoding_bytes; |
| |
| self->offset+= nEncodingBytes; |
| |
| return 0; |
| } |
| |
| ndn_Error ndn_BinaryXmlEncoder_writeElementClose(struct ndn_BinaryXmlEncoder *self) |
| { |
| ndn_Error error; |
| if (error = ndn_DynamicUCharArray_ensureLength(&self->output, self->offset + 1)) |
| return error; |
| |
| self->output.array[self->offset] = ndn_BinaryXml_CLOSE; |
| self->offset += 1; |
| |
| return 0; |
| } |
| |
| ndn_Error ndn_BinaryXmlEncoder_writeBlob(struct ndn_BinaryXmlEncoder *self, unsigned char *value, unsigned int valueLength) |
| { |
| ndn_Error error; |
| if (error = ndn_BinaryXmlEncoder_encodeTypeAndValue(self, ndn_BinaryXml_BLOB, valueLength)) |
| return error; |
| |
| if (error = writeArray(self, value, valueLength)) |
| return error; |
| |
| return 0; |
| } |
| |
| ndn_Error ndn_BinaryXmlEncoder_writeBlobDTagElement(struct ndn_BinaryXmlEncoder *self, unsigned int tag, unsigned char *value, unsigned int valueLength) |
| { |
| ndn_Error error; |
| if (error = ndn_BinaryXmlEncoder_writeElementStartDTag(self, tag)) |
| return error; |
| |
| if (error = ndn_BinaryXmlEncoder_writeBlob(self, value, valueLength)) |
| return error; |
| |
| if (error = ndn_BinaryXmlEncoder_writeElementClose(self)) |
| return error; |
| |
| return 0; |
| } |
| |
| ndn_Error ndn_BinaryXmlEncoder_writeUnsignedDecimalInt(struct ndn_BinaryXmlEncoder *self, unsigned int value) |
| { |
| // First write the decimal int (to find out how many bytes it is), then shift it forward to make room for the header. |
| unsigned int startOffset = self->offset; |
| |
| ndn_Error error; |
| if (error = encodeReversedUnsignedDecimalInt(self, value)) |
| return error; |
| |
| if (error = reverseBufferAndInsertHeader(self, startOffset, ndn_BinaryXml_UDATA)) |
| return error; |
| |
| return 0; |
| } |
| |
| ndn_Error ndn_BinaryXmlEncoder_writeUnsignedDecimalIntDTagElement(struct ndn_BinaryXmlEncoder *self, unsigned int tag, unsigned int value) |
| { |
| ndn_Error error; |
| if (error = ndn_BinaryXmlEncoder_writeElementStartDTag(self, tag)) |
| return error; |
| |
| if (error = ndn_BinaryXmlEncoder_writeUnsignedDecimalInt(self, value)) |
| return error; |
| |
| if (error = ndn_BinaryXmlEncoder_writeElementClose(self)) |
| return error; |
| |
| return 0; |
| } |
| |
| ndn_Error ndn_BinaryXmlEncoder_writeAbsDoubleBigEndianBlob(struct ndn_BinaryXmlEncoder *self, double value) |
| { |
| unsigned long hi32, lo32; |
| splitAbsDouble(value, &hi32, &lo32); |
| |
| // First encode the big endian backwards, then reverseBufferAndInsertHeader will reverse it. |
| unsigned int startOffset = self->offset; |
| |
| ndn_Error error; |
| while (lo32 != 0) { |
| if (error = ndn_DynamicUCharArray_ensureLength(&self->output, self->offset + 1)) |
| return error; |
| |
| self->output.array[self->offset++] = (unsigned char)(lo32 & 0xff); |
| lo32 >>= 8; |
| } |
| |
| if (hi32 != 0) { |
| // Pad the lo values out to 4 bytes. |
| while (self->offset - startOffset < 4) { |
| if (error = ndn_DynamicUCharArray_ensureLength(&self->output, self->offset + 1)) |
| return error; |
| |
| self->output.array[self->offset++] = 0; |
| } |
| |
| // Encode hi32 |
| while (hi32 != 0) { |
| if (error = ndn_DynamicUCharArray_ensureLength(&self->output, self->offset + 1)) |
| return error; |
| |
| self->output.array[self->offset++] = (unsigned char)(hi32 & 0xff); |
| hi32 >>= 8; |
| } |
| } |
| |
| if (error = reverseBufferAndInsertHeader(self, startOffset, ndn_BinaryXml_BLOB)) |
| return error; |
| |
| return 0; |
| } |
| |
| ndn_Error ndn_BinaryXmlEncoder_writeTimeMillisecondsDTagElement(struct ndn_BinaryXmlEncoder *self, unsigned int tag, double milliseconds) |
| { |
| ndn_Error error; |
| if (error = ndn_BinaryXmlEncoder_writeElementStartDTag(self, tag)) |
| return error; |
| |
| if (error = ndn_BinaryXmlEncoder_writeAbsDoubleBigEndianBlob(self, (milliseconds / 1000.0) * 4096.0)) |
| return error; |
| |
| if (error = ndn_BinaryXmlEncoder_writeElementClose(self)) |
| return error; |
| |
| return 0; |
| } |