| /* -*- Mode:C++; c-file-style:"gnu"; indent-tabs-mode:nil; -*- */ |
| /** |
| * Copyright (c) 2013-2017 Regents of the University of California. |
| * |
| * This file is part of ndn-cxx library (NDN C++ library with eXperimental eXtensions). |
| * |
| * ndn-cxx library is free software: you can redistribute it and/or modify it under the |
| * terms of the GNU Lesser General Public License as published by the Free Software |
| * Foundation, either version 3 of the License, or (at your option) any later version. |
| * |
| * ndn-cxx library is distributed in the hope that it will be useful, but WITHOUT ANY |
| * WARRANTY; without even the implied warranty of MERCHANTABILITY or FITNESS FOR A |
| * PARTICULAR PURPOSE. See the GNU Lesser General Public License for more details. |
| * |
| * You should have received copies of the GNU General Public License and GNU Lesser |
| * General Public License along with ndn-cxx, e.g., in COPYING.md file. If not, see |
| * <http://www.gnu.org/licenses/>. |
| * |
| * See AUTHORS.md for complete list of ndn-cxx authors and contributors. |
| */ |
| |
| #include "private-key.hpp" |
| #include "base64-decode.hpp" |
| #include "base64-encode.hpp" |
| #include "buffer-source.hpp" |
| #include "stream-sink.hpp" |
| #include "stream-source.hpp" |
| #include "../detail/openssl-helper.hpp" |
| #include "../key-params.hpp" |
| #include "../../encoding/buffer-stream.hpp" |
| |
| #include <cstring> |
| |
| #define ENSURE_PRIVATE_KEY_LOADED(key) \ |
| do { \ |
| if (key == nullptr) \ |
| BOOST_THROW_EXCEPTION(Error("Private key has not been loaded yet")); \ |
| } while (false) |
| |
| namespace ndn { |
| namespace security { |
| namespace transform { |
| |
| class PrivateKey::Impl |
| { |
| public: |
| Impl() |
| : key(nullptr) |
| { |
| } |
| |
| ~Impl() |
| { |
| EVP_PKEY_free(key); |
| } |
| |
| public: |
| EVP_PKEY* key; |
| }; |
| |
| PrivateKey::PrivateKey() |
| : m_impl(new Impl) |
| { |
| } |
| |
| PrivateKey::~PrivateKey() = default; |
| |
| void |
| PrivateKey::loadPkcs1(const uint8_t* buf, size_t size) |
| { |
| detail::Bio mem(BIO_s_mem()); |
| BIO_write(mem.get(), buf, size); |
| |
| d2i_PrivateKey_bio(mem.get(), &m_impl->key); |
| |
| ENSURE_PRIVATE_KEY_LOADED(m_impl->key); |
| } |
| |
| void |
| PrivateKey::loadPkcs1(std::istream& is) |
| { |
| OBufferStream os; |
| streamSource(is) >> streamSink(os); |
| this->loadPkcs1(os.buf()->buf(), os.buf()->size()); |
| } |
| |
| void |
| PrivateKey::loadPkcs1Base64(const uint8_t* buf, size_t size) |
| { |
| OBufferStream os; |
| bufferSource(buf, size) >> base64Decode() >> streamSink(os); |
| this->loadPkcs1(os.buf()->buf(), os.buf()->size()); |
| } |
| |
| void |
| PrivateKey::loadPkcs1Base64(std::istream& is) |
| { |
| OBufferStream os; |
| streamSource(is) >> base64Decode() >> streamSink(os); |
| this->loadPkcs1(os.buf()->buf(), os.buf()->size()); |
| } |
| |
| void |
| PrivateKey::loadPkcs8(const uint8_t* buf, size_t size, const char* pw, size_t pwLen) |
| { |
| BOOST_ASSERT(std::strlen(pw) == pwLen); |
| |
| detail::Bio mem(BIO_s_mem()); |
| BIO_write(mem.get(), buf, size); |
| |
| m_impl->key = d2i_PKCS8PrivateKey_bio(mem.get(), &m_impl->key, nullptr, const_cast<char*>(pw)); |
| |
| ENSURE_PRIVATE_KEY_LOADED(m_impl->key); |
| } |
| |
| static inline int |
| passwordCallback(char* buf, int size, int rwflag, void* u) |
| { |
| auto cb = reinterpret_cast<PrivateKey::PasswordCallback*>(u); |
| return (*cb)(buf, size, rwflag); |
| } |
| |
| void |
| PrivateKey::loadPkcs8(const uint8_t* buf, size_t size, PasswordCallback pwCallback) |
| { |
| OpenSSL_add_all_algorithms(); |
| detail::Bio mem(BIO_s_mem()); |
| BIO_write(mem.get(), buf, size); |
| |
| if (pwCallback) |
| m_impl->key = d2i_PKCS8PrivateKey_bio(mem.get(), &m_impl->key, passwordCallback, &pwCallback); |
| else |
| m_impl->key = d2i_PKCS8PrivateKey_bio(mem.get(), &m_impl->key, nullptr, nullptr); |
| |
| ENSURE_PRIVATE_KEY_LOADED(m_impl->key); |
| } |
| |
| void |
| PrivateKey::loadPkcs8(std::istream& is, const char* pw, size_t pwLen) |
| { |
| OBufferStream os; |
| streamSource(is) >> streamSink(os); |
| this->loadPkcs8(os.buf()->buf(), os.buf()->size(), pw, pwLen); |
| } |
| |
| void |
| PrivateKey::loadPkcs8(std::istream& is, PasswordCallback pwCallback) |
| { |
| OBufferStream os; |
| streamSource(is) >> streamSink(os); |
| this->loadPkcs8(os.buf()->buf(), os.buf()->size(), pwCallback); |
| } |
| |
| void |
| PrivateKey::loadPkcs8Base64(const uint8_t* buf, size_t size, const char* pw, size_t pwLen) |
| { |
| OBufferStream os; |
| bufferSource(buf, size) >> base64Decode() >> streamSink(os); |
| this->loadPkcs8(os.buf()->buf(), os.buf()->size(), pw, pwLen); |
| } |
| |
| void |
| PrivateKey::loadPkcs8Base64(const uint8_t* buf, size_t size, PasswordCallback pwCallback) |
| { |
| OBufferStream os; |
| bufferSource(buf, size) >> base64Decode() >> streamSink(os); |
| this->loadPkcs8(os.buf()->buf(), os.buf()->size(), pwCallback); |
| } |
| |
| void |
| PrivateKey::loadPkcs8Base64(std::istream& is, const char* pw, size_t pwLen) |
| { |
| OBufferStream os; |
| streamSource(is) >> base64Decode() >> streamSink(os); |
| this->loadPkcs8(os.buf()->buf(), os.buf()->size(), pw, pwLen); |
| } |
| |
| void |
| PrivateKey::loadPkcs8Base64(std::istream& is, PasswordCallback pwCallback) |
| { |
| OBufferStream os; |
| streamSource(is) >> base64Decode() >> streamSink(os); |
| this->loadPkcs8(os.buf()->buf(), os.buf()->size(), pwCallback); |
| } |
| |
| void |
| PrivateKey::savePkcs1(std::ostream& os) const |
| { |
| bufferSource(*this->toPkcs1()) >> streamSink(os); |
| } |
| |
| void |
| PrivateKey::savePkcs1Base64(std::ostream& os) const |
| { |
| bufferSource(*this->toPkcs1()) >> base64Encode() >> streamSink(os); |
| } |
| |
| void |
| PrivateKey::savePkcs8(std::ostream& os, const char* pw, size_t pwLen) const |
| { |
| bufferSource(*this->toPkcs8(pw, pwLen)) >> streamSink(os); |
| } |
| |
| void |
| PrivateKey::savePkcs8(std::ostream& os, PasswordCallback pwCallback) const |
| { |
| bufferSource(*this->toPkcs8(pwCallback)) >> streamSink(os); |
| } |
| |
| void |
| PrivateKey::savePkcs8Base64(std::ostream& os, const char* pw, size_t pwLen) const |
| { |
| bufferSource(*this->toPkcs8(pw, pwLen)) >> base64Encode() >> streamSink(os); |
| } |
| |
| void |
| PrivateKey::savePkcs8Base64(std::ostream& os, PasswordCallback pwCallback) const |
| { |
| bufferSource(*this->toPkcs8(pwCallback)) >> base64Encode() >> streamSink(os); |
| } |
| |
| ConstBufferPtr |
| PrivateKey::derivePublicKey() const |
| { |
| ENSURE_PRIVATE_KEY_LOADED(m_impl->key); |
| |
| uint8_t* pkcs8 = nullptr; |
| int len = i2d_PUBKEY(m_impl->key, &pkcs8); |
| |
| if (len <= 0) |
| BOOST_THROW_EXCEPTION(Error("Failed to derive public key")); |
| |
| auto result = make_shared<Buffer>(pkcs8, len); |
| OPENSSL_free(pkcs8); |
| |
| return result; |
| } |
| |
| ConstBufferPtr |
| PrivateKey::decrypt(const uint8_t* cipherText, size_t cipherLen) const |
| { |
| ENSURE_PRIVATE_KEY_LOADED(m_impl->key); |
| |
| #if OPENSSL_VERSION_NUMBER < 0x1010000fL |
| switch (EVP_PKEY_type(m_impl->key->type)) { |
| #else |
| switch (EVP_PKEY_base_id(m_impl->key)) { |
| #endif // OPENSSL_VERSION_NUMBER < 0x1010000fL |
| case EVP_PKEY_RSA: |
| return rsaDecrypt(cipherText, cipherLen); |
| default: |
| BOOST_THROW_EXCEPTION(Error("Decryption is not supported for this key type")); |
| } |
| } |
| |
| void* |
| PrivateKey::getEvpPkey() const |
| { |
| return m_impl->key; |
| } |
| |
| ConstBufferPtr |
| PrivateKey::toPkcs1() const |
| { |
| ENSURE_PRIVATE_KEY_LOADED(m_impl->key); |
| |
| OpenSSL_add_all_algorithms(); |
| detail::Bio mem(BIO_s_mem()); |
| int ret = i2d_PrivateKey_bio(mem.get(), m_impl->key); |
| if (ret != 1) |
| BOOST_THROW_EXCEPTION(Error("Cannot convert key into PKCS1 format")); |
| |
| int len8 = BIO_pending(mem.get()); |
| auto buffer = make_shared<Buffer>(len8); |
| BIO_read(mem.get(), buffer->buf(), len8); |
| |
| return buffer; |
| } |
| |
| ConstBufferPtr |
| PrivateKey::toPkcs8(const char* pw, size_t pwLen) const |
| { |
| ENSURE_PRIVATE_KEY_LOADED(m_impl->key); |
| |
| BOOST_ASSERT(std::strlen(pw) == pwLen); |
| |
| OpenSSL_add_all_algorithms(); |
| detail::Bio mem(BIO_s_mem()); |
| int ret = i2d_PKCS8PrivateKey_bio(mem.get(), m_impl->key, EVP_des_cbc(), |
| const_cast<char*>(pw), pwLen, nullptr, nullptr); |
| if (ret != 1) |
| BOOST_THROW_EXCEPTION(Error("Cannot convert key into PKCS8 format")); |
| |
| int len8 = BIO_pending(mem.get()); |
| auto buffer = make_shared<Buffer>(len8); |
| BIO_read(mem.get(), buffer->buf(), len8); |
| |
| return buffer; |
| } |
| |
| ConstBufferPtr |
| PrivateKey::toPkcs8(PasswordCallback pwCallback) const |
| { |
| ENSURE_PRIVATE_KEY_LOADED(m_impl->key); |
| |
| OpenSSL_add_all_algorithms(); |
| detail::Bio mem(BIO_s_mem()); |
| int ret = i2d_PKCS8PrivateKey_bio(mem.get(), m_impl->key, EVP_des_cbc(), |
| nullptr, 0, |
| passwordCallback, &pwCallback); |
| if (ret != 1) |
| BOOST_THROW_EXCEPTION(Error("Cannot convert key into PKCS8 format")); |
| |
| int len8 = BIO_pending(mem.get()); |
| auto buffer = make_shared<Buffer>(len8); |
| BIO_read(mem.get(), buffer->buf(), len8); |
| |
| return buffer; |
| } |
| |
| ConstBufferPtr |
| PrivateKey::rsaDecrypt(const uint8_t* cipherText, size_t cipherLen) const |
| { |
| detail::EvpPkeyCtx ctx(m_impl->key); |
| |
| if (EVP_PKEY_decrypt_init(ctx.get()) <= 0) |
| BOOST_THROW_EXCEPTION(Error("Failed to initialize decryption context")); |
| |
| if (EVP_PKEY_CTX_set_rsa_padding(ctx.get(), RSA_PKCS1_OAEP_PADDING) <= 0) |
| BOOST_THROW_EXCEPTION(Error("Failed to set padding")); |
| |
| size_t outlen = 0; |
| // Determine buffer length |
| if (EVP_PKEY_decrypt(ctx.get(), nullptr, &outlen, cipherText, cipherLen) <= 0) |
| BOOST_THROW_EXCEPTION(Error("Failed to estimate output length")); |
| |
| auto out = make_shared<Buffer>(outlen); |
| |
| if (EVP_PKEY_decrypt(ctx.get(), out->buf(), &outlen, cipherText, cipherLen) <= 0) |
| BOOST_THROW_EXCEPTION(Error("Failed to decrypt cipher text")); |
| |
| out->resize(outlen); |
| return out; |
| } |
| |
| static unique_ptr<PrivateKey> |
| generateRsaKey(uint32_t keySize) |
| { |
| detail::EvpPkeyCtx kctx(EVP_PKEY_RSA); |
| |
| int ret = EVP_PKEY_keygen_init(kctx.get()); |
| if (ret != 1) |
| BOOST_THROW_EXCEPTION(PrivateKey::Error("Fail to generate RSA key")); |
| |
| ret = EVP_PKEY_CTX_set_rsa_keygen_bits(kctx.get(), keySize); |
| if (ret != 1) |
| BOOST_THROW_EXCEPTION(PrivateKey::Error("Fail to generate RSA key")); |
| |
| detail::EvpPkey key; |
| ret = EVP_PKEY_keygen(kctx.get(), &key); |
| if (ret != 1) |
| BOOST_THROW_EXCEPTION(PrivateKey::Error("Fail to generate RSA key")); |
| |
| detail::Bio mem(BIO_s_mem()); |
| i2d_PrivateKey_bio(mem.get(), key.get()); |
| int len = BIO_pending(mem.get()); |
| Buffer buffer(len); |
| BIO_read(mem.get(), buffer.buf(), len); |
| |
| auto privateKey = make_unique<PrivateKey>(); |
| privateKey->loadPkcs1(buffer.buf(), buffer.size()); |
| |
| return privateKey; |
| } |
| |
| static unique_ptr<PrivateKey> |
| generateEcKey(uint32_t keySize) |
| { |
| detail::EvpPkeyCtx ctx(EVP_PKEY_EC); |
| |
| int ret = EVP_PKEY_paramgen_init(ctx.get()); |
| if (ret != 1) |
| BOOST_THROW_EXCEPTION(PrivateKey::Error("Fail to generate EC key")); |
| |
| switch (keySize) { |
| case 256: |
| ret = EVP_PKEY_CTX_set_ec_paramgen_curve_nid(ctx.get(), NID_X9_62_prime256v1); |
| break; |
| case 384: |
| ret = EVP_PKEY_CTX_set_ec_paramgen_curve_nid(ctx.get(), NID_secp384r1); |
| break; |
| default: |
| BOOST_THROW_EXCEPTION(PrivateKey::Error("Fail to generate EC key")); |
| } |
| if (ret != 1) |
| BOOST_THROW_EXCEPTION(PrivateKey::Error("Fail to generate EC key")); |
| |
| detail::EvpPkey params; |
| ret = EVP_PKEY_paramgen(ctx.get(), ¶ms); |
| if (ret != 1) |
| BOOST_THROW_EXCEPTION(PrivateKey::Error("Fail to generate EC key")); |
| |
| detail::EvpPkeyCtx kctx(params.get()); |
| ret = EVP_PKEY_keygen_init(kctx.get()); |
| if (ret != 1) |
| BOOST_THROW_EXCEPTION(PrivateKey::Error("Fail to generate EC key")); |
| |
| detail::EvpPkey key; |
| ret = EVP_PKEY_keygen(kctx.get(), &key); |
| if (ret != 1) |
| BOOST_THROW_EXCEPTION(PrivateKey::Error("Fail to generate EC key")); |
| |
| detail::Bio mem(BIO_s_mem()); |
| i2d_PrivateKey_bio(mem.get(), key.get()); |
| int len = BIO_pending(mem.get()); |
| Buffer buffer(len); |
| BIO_read(mem.get(), buffer.buf(), len); |
| |
| auto privateKey = make_unique<PrivateKey>(); |
| privateKey->loadPkcs1(buffer.buf(), buffer.size()); |
| |
| return privateKey; |
| } |
| |
| unique_ptr<PrivateKey> |
| generatePrivateKey(const KeyParams& keyParams) |
| { |
| switch (keyParams.getKeyType()) { |
| case KeyType::RSA: { |
| const RsaKeyParams& rsaParams = static_cast<const RsaKeyParams&>(keyParams); |
| return generateRsaKey(rsaParams.getKeySize()); |
| } |
| case KeyType::EC: { |
| const EcKeyParams& ecParams = static_cast<const EcKeyParams&>(keyParams); |
| return generateEcKey(ecParams.getKeySize()); |
| } |
| default: |
| BOOST_THROW_EXCEPTION(std::invalid_argument("Unsupported asymmetric key type")); |
| } |
| } |
| |
| } // namespace transform |
| } // namespace security |
| } // namespace ndn |