| // - lambda_traits.hpp --- Boost Lambda Library ---------------------------- |
| // |
| // Copyright (C) 1999, 2000 Jaakko Jarvi (jaakko.jarvi@cs.utu.fi) |
| // |
| // Distributed under the Boost Software License, Version 1.0. (See |
| // accompanying file LICENSE_1_0.txt or copy at |
| // http://www.boost.org/LICENSE_1_0.txt) |
| // |
| // For more information, see www.boost.org |
| // ------------------------------------------------------------------------- |
| |
| #ifndef NDNBOOST_LAMBDA_LAMBDA_TRAITS_HPP |
| #define NDNBOOST_LAMBDA_LAMBDA_TRAITS_HPP |
| |
| #include "ndnboost/type_traits/transform_traits.hpp" |
| #include "ndnboost/type_traits/cv_traits.hpp" |
| #include "ndnboost/type_traits/function_traits.hpp" |
| #include "ndnboost/type_traits/object_traits.hpp" |
| #include "ndnboost/tuple/tuple.hpp" |
| |
| namespace ndnboost { |
| namespace lambda { |
| |
| // -- if construct ------------------------------------------------ |
| // Proposed by Krzysztof Czarnecki and Ulrich Eisenecker |
| |
| namespace detail { |
| |
| template <bool If, class Then, class Else> struct IF { typedef Then RET; }; |
| |
| template <class Then, class Else> struct IF<false, Then, Else> { |
| typedef Else RET; |
| }; |
| |
| |
| // An if construct that doesn't instantiate the non-matching template: |
| |
| // Called as: |
| // IF_type<condition, A, B>::type |
| // The matching template must define the typeded 'type' |
| // I.e. A::type if condition is true, B::type if condition is false |
| // Idea from Vesa Karvonen (from C&E as well I guess) |
| template<class T> |
| struct IF_type_ |
| { |
| typedef typename T::type type; |
| }; |
| |
| |
| template<bool C, class T, class E> |
| struct IF_type |
| { |
| typedef typename |
| IF_type_<typename IF<C, T, E>::RET >::type type; |
| }; |
| |
| // helper that can be used to give typedef T to some type |
| template <class T> struct identity_mapping { typedef T type; }; |
| |
| // An if construct for finding an integral constant 'value' |
| // Does not instantiate the non-matching branch |
| // Called as IF_value<condition, A, B>::value |
| // If condition is true A::value must be defined, otherwise B::value |
| |
| template<class T> |
| struct IF_value_ |
| { |
| NDNBOOST_STATIC_CONSTANT(int, value = T::value); |
| }; |
| |
| |
| template<bool C, class T, class E> |
| struct IF_value |
| { |
| NDNBOOST_STATIC_CONSTANT(int, value = (IF_value_<typename IF<C, T, E>::RET>::value)); |
| }; |
| |
| |
| // -------------------------------------------------------------- |
| |
| // removes reference from other than function types: |
| template<class T> class remove_reference_if_valid |
| { |
| |
| typedef typename ndnboost::remove_reference<T>::type plainT; |
| public: |
| typedef typename IF< |
| ndnboost::is_function<plainT>::value, |
| T, |
| plainT |
| >::RET type; |
| |
| }; |
| |
| |
| template<class T> struct remove_reference_and_cv { |
| typedef typename ndnboost::remove_cv< |
| typename ndnboost::remove_reference<T>::type |
| >::type type; |
| }; |
| |
| |
| |
| // returns a reference to the element of tuple T |
| template<int N, class T> struct tuple_element_as_reference { |
| typedef typename |
| ndnboost::tuples::access_traits< |
| typename ndnboost::tuples::element<N, T>::type |
| >::non_const_type type; |
| }; |
| |
| // returns the cv and reverence stripped type of a tuple element |
| template<int N, class T> struct tuple_element_stripped { |
| typedef typename |
| remove_reference_and_cv< |
| typename ndnboost::tuples::element<N, T>::type |
| >::type type; |
| }; |
| |
| // is_lambda_functor ------------------------------------------------- |
| |
| template <class T> struct is_lambda_functor_ { |
| NDNBOOST_STATIC_CONSTANT(bool, value = false); |
| }; |
| |
| template <class Arg> struct is_lambda_functor_<lambda_functor<Arg> > { |
| NDNBOOST_STATIC_CONSTANT(bool, value = true); |
| }; |
| |
| } // end detail |
| |
| |
| template <class T> struct is_lambda_functor { |
| NDNBOOST_STATIC_CONSTANT(bool, |
| value = |
| detail::is_lambda_functor_< |
| typename detail::remove_reference_and_cv<T>::type |
| >::value); |
| }; |
| |
| |
| namespace detail { |
| |
| // -- parameter_traits_ --------------------------------------------- |
| |
| // An internal parameter type traits class that respects |
| // the reference_wrapper class. |
| |
| // The conversions performed are: |
| // references -> compile_time_error |
| // T1 -> T2, |
| // reference_wrapper<T> -> T& |
| // const array -> ref to const array |
| // array -> ref to array |
| // function -> ref to function |
| |
| // ------------------------------------------------------------------------ |
| |
| template<class T1, class T2> |
| struct parameter_traits_ { |
| typedef T2 type; |
| }; |
| |
| // Do not instantiate with reference types |
| template<class T, class Any> struct parameter_traits_<T&, Any> { |
| typedef typename |
| generate_error<T&>:: |
| parameter_traits_class_instantiated_with_reference_type type; |
| }; |
| |
| // Arrays can't be stored as plain types; convert them to references |
| template<class T, int n, class Any> struct parameter_traits_<T[n], Any> { |
| typedef T (&type)[n]; |
| }; |
| |
| template<class T, int n, class Any> |
| struct parameter_traits_<const T[n], Any> { |
| typedef const T (&type)[n]; |
| }; |
| |
| template<class T, int n, class Any> |
| struct parameter_traits_<volatile T[n], Any> { |
| typedef volatile T (&type)[n]; |
| }; |
| template<class T, int n, class Any> |
| struct parameter_traits_<const volatile T[n], Any> { |
| typedef const volatile T (&type)[n]; |
| }; |
| |
| |
| template<class T, class Any> |
| struct parameter_traits_<ndnboost::reference_wrapper<T>, Any >{ |
| typedef T& type; |
| }; |
| |
| template<class T, class Any> |
| struct parameter_traits_<const ndnboost::reference_wrapper<T>, Any >{ |
| typedef T& type; |
| }; |
| |
| template<class T, class Any> |
| struct parameter_traits_<volatile ndnboost::reference_wrapper<T>, Any >{ |
| typedef T& type; |
| }; |
| |
| template<class T, class Any> |
| struct parameter_traits_<const volatile ndnboost::reference_wrapper<T>, Any >{ |
| typedef T& type; |
| }; |
| |
| template<class Any> |
| struct parameter_traits_<void, Any> { |
| typedef void type; |
| }; |
| |
| template<class Arg, class Any> |
| struct parameter_traits_<lambda_functor<Arg>, Any > { |
| typedef lambda_functor<Arg> type; |
| }; |
| |
| template<class Arg, class Any> |
| struct parameter_traits_<const lambda_functor<Arg>, Any > { |
| typedef lambda_functor<Arg> type; |
| }; |
| |
| // Are the volatile versions needed? |
| template<class Arg, class Any> |
| struct parameter_traits_<volatile lambda_functor<Arg>, Any > { |
| typedef lambda_functor<Arg> type; |
| }; |
| |
| template<class Arg, class Any> |
| struct parameter_traits_<const volatile lambda_functor<Arg>, Any > { |
| typedef lambda_functor<Arg> type; |
| }; |
| |
| } // end namespace detail |
| |
| |
| // ------------------------------------------------------------------------ |
| // traits classes for lambda expressions (bind functions, operators ...) |
| |
| // must be instantiated with non-reference types |
| |
| // The default is const plain type ------------------------- |
| // const T -> const T, |
| // T -> const T, |
| // references -> compile_time_error |
| // reference_wrapper<T> -> T& |
| // array -> const ref array |
| template<class T> |
| struct const_copy_argument { |
| typedef typename |
| detail::parameter_traits_< |
| T, |
| typename detail::IF<ndnboost::is_function<T>::value, T&, const T>::RET |
| >::type type; |
| }; |
| |
| // T may be a function type. Without the IF test, const would be added |
| // to a function type, which is illegal. |
| |
| // all arrays are converted to const. |
| // This traits template is used for 'const T&' parameter passing |
| // and thus the knowledge of the potential |
| // non-constness of an actual argument is lost. |
| template<class T, int n> struct const_copy_argument <T[n]> { |
| typedef const T (&type)[n]; |
| }; |
| template<class T, int n> struct const_copy_argument <volatile T[n]> { |
| typedef const volatile T (&type)[n]; |
| }; |
| |
| template<class T> |
| struct const_copy_argument<T&> {}; |
| // do not instantiate with references |
| // typedef typename detail::generate_error<T&>::references_not_allowed type; |
| |
| |
| template<> |
| struct const_copy_argument<void> { |
| typedef void type; |
| }; |
| |
| |
| // Does the same as const_copy_argument, but passes references through as such |
| template<class T> |
| struct bound_argument_conversion { |
| typedef typename const_copy_argument<T>::type type; |
| }; |
| |
| template<class T> |
| struct bound_argument_conversion<T&> { |
| typedef T& type; |
| }; |
| |
| // The default is non-const reference ------------------------- |
| // const T -> const T&, |
| // T -> T&, |
| // references -> compile_time_error |
| // reference_wrapper<T> -> T& |
| template<class T> |
| struct reference_argument { |
| typedef typename detail::parameter_traits_<T, T&>::type type; |
| }; |
| |
| template<class T> |
| struct reference_argument<T&> { |
| typedef typename detail::generate_error<T&>::references_not_allowed type; |
| }; |
| |
| template<class Arg> |
| struct reference_argument<lambda_functor<Arg> > { |
| typedef lambda_functor<Arg> type; |
| }; |
| |
| template<class Arg> |
| struct reference_argument<const lambda_functor<Arg> > { |
| typedef lambda_functor<Arg> type; |
| }; |
| |
| // Are the volatile versions needed? |
| template<class Arg> |
| struct reference_argument<volatile lambda_functor<Arg> > { |
| typedef lambda_functor<Arg> type; |
| }; |
| |
| template<class Arg> |
| struct reference_argument<const volatile lambda_functor<Arg> > { |
| typedef lambda_functor<Arg> type; |
| }; |
| |
| template<> |
| struct reference_argument<void> { |
| typedef void type; |
| }; |
| |
| namespace detail { |
| |
| // Array to pointer conversion |
| template <class T> |
| struct array_to_pointer { |
| typedef T type; |
| }; |
| |
| template <class T, int N> |
| struct array_to_pointer <const T[N]> { |
| typedef const T* type; |
| }; |
| template <class T, int N> |
| struct array_to_pointer <T[N]> { |
| typedef T* type; |
| }; |
| |
| template <class T, int N> |
| struct array_to_pointer <const T (&) [N]> { |
| typedef const T* type; |
| }; |
| template <class T, int N> |
| struct array_to_pointer <T (&) [N]> { |
| typedef T* type; |
| }; |
| |
| |
| // --------------------------------------------------------------------------- |
| // The call_traits for bind |
| // Respects the reference_wrapper class. |
| |
| // These templates are used outside of bind functions as well. |
| // the bind_tuple_mapper provides a shorter notation for default |
| // bound argument storing semantics, if all arguments are treated |
| // uniformly. |
| |
| // from template<class T> foo(const T& t) : bind_traits<const T>::type |
| // from template<class T> foo(T& t) : bind_traits<T>::type |
| |
| // Conversions: |
| // T -> const T, |
| // cv T -> cv T, |
| // T& -> T& |
| // reference_wrapper<T> -> T& |
| // const reference_wrapper<T> -> T& |
| // array -> const ref array |
| |
| // make bound arguments const, this is a deliberate design choice, the |
| // purpose is to prevent side effects to bound arguments that are stored |
| // as copies |
| template<class T> |
| struct bind_traits { |
| typedef const T type; |
| }; |
| |
| template<class T> |
| struct bind_traits<T&> { |
| typedef T& type; |
| }; |
| |
| // null_types are an exception, we always want to store them as non const |
| // so that other templates can assume that null_type is always without const |
| template<> |
| struct bind_traits<null_type> { |
| typedef null_type type; |
| }; |
| |
| // the bind_tuple_mapper, bind_type_generators may |
| // introduce const to null_type |
| template<> |
| struct bind_traits<const null_type> { |
| typedef null_type type; |
| }; |
| |
| // Arrays can't be stored as plain types; convert them to references. |
| // All arrays are converted to const. This is because bind takes its |
| // parameters as const T& and thus the knowledge of the potential |
| // non-constness of actual argument is lost. |
| template<class T, int n> struct bind_traits <T[n]> { |
| typedef const T (&type)[n]; |
| }; |
| |
| template<class T, int n> |
| struct bind_traits<const T[n]> { |
| typedef const T (&type)[n]; |
| }; |
| |
| template<class T, int n> struct bind_traits<volatile T[n]> { |
| typedef const volatile T (&type)[n]; |
| }; |
| |
| template<class T, int n> |
| struct bind_traits<const volatile T[n]> { |
| typedef const volatile T (&type)[n]; |
| }; |
| |
| template<class R> |
| struct bind_traits<R()> { |
| typedef R(&type)(); |
| }; |
| |
| template<class R, class Arg1> |
| struct bind_traits<R(Arg1)> { |
| typedef R(&type)(Arg1); |
| }; |
| |
| template<class R, class Arg1, class Arg2> |
| struct bind_traits<R(Arg1, Arg2)> { |
| typedef R(&type)(Arg1, Arg2); |
| }; |
| |
| template<class R, class Arg1, class Arg2, class Arg3> |
| struct bind_traits<R(Arg1, Arg2, Arg3)> { |
| typedef R(&type)(Arg1, Arg2, Arg3); |
| }; |
| |
| template<class R, class Arg1, class Arg2, class Arg3, class Arg4> |
| struct bind_traits<R(Arg1, Arg2, Arg3, Arg4)> { |
| typedef R(&type)(Arg1, Arg2, Arg3, Arg4); |
| }; |
| |
| template<class R, class Arg1, class Arg2, class Arg3, class Arg4, class Arg5> |
| struct bind_traits<R(Arg1, Arg2, Arg3, Arg4, Arg5)> { |
| typedef R(&type)(Arg1, Arg2, Arg3, Arg4, Arg5); |
| }; |
| |
| template<class R, class Arg1, class Arg2, class Arg3, class Arg4, class Arg5, class Arg6> |
| struct bind_traits<R(Arg1, Arg2, Arg3, Arg4, Arg5, Arg6)> { |
| typedef R(&type)(Arg1, Arg2, Arg3, Arg4, Arg5, Arg6); |
| }; |
| |
| template<class R, class Arg1, class Arg2, class Arg3, class Arg4, class Arg5, class Arg6, class Arg7> |
| struct bind_traits<R(Arg1, Arg2, Arg3, Arg4, Arg5, Arg6, Arg7)> { |
| typedef R(&type)(Arg1, Arg2, Arg3, Arg4, Arg5, Arg6, Arg7); |
| }; |
| |
| template<class R, class Arg1, class Arg2, class Arg3, class Arg4, class Arg5, class Arg6, class Arg7, class Arg8> |
| struct bind_traits<R(Arg1, Arg2, Arg3, Arg4, Arg5, Arg6, Arg7, Arg8)> { |
| typedef R(&type)(Arg1, Arg2, Arg3, Arg4, Arg5, Arg6, Arg7, Arg8); |
| }; |
| |
| template<class R, class Arg1, class Arg2, class Arg3, class Arg4, class Arg5, class Arg6, class Arg7, class Arg8, class Arg9> |
| struct bind_traits<R(Arg1, Arg2, Arg3, Arg4, Arg5, Arg6, Arg7, Arg8, Arg9)> { |
| typedef R(&type)(Arg1, Arg2, Arg3, Arg4, Arg5, Arg6, Arg7, Arg8, Arg9); |
| }; |
| |
| template<class T> |
| struct bind_traits<reference_wrapper<T> >{ |
| typedef T& type; |
| }; |
| |
| template<class T> |
| struct bind_traits<const reference_wrapper<T> >{ |
| typedef T& type; |
| }; |
| |
| template<> |
| struct bind_traits<void> { |
| typedef void type; |
| }; |
| |
| |
| |
| template < |
| class T0 = null_type, class T1 = null_type, class T2 = null_type, |
| class T3 = null_type, class T4 = null_type, class T5 = null_type, |
| class T6 = null_type, class T7 = null_type, class T8 = null_type, |
| class T9 = null_type |
| > |
| struct bind_tuple_mapper { |
| typedef |
| tuple<typename bind_traits<T0>::type, |
| typename bind_traits<T1>::type, |
| typename bind_traits<T2>::type, |
| typename bind_traits<T3>::type, |
| typename bind_traits<T4>::type, |
| typename bind_traits<T5>::type, |
| typename bind_traits<T6>::type, |
| typename bind_traits<T7>::type, |
| typename bind_traits<T8>::type, |
| typename bind_traits<T9>::type> type; |
| }; |
| |
| // bind_traits, except map const T& -> const T |
| // this is needed e.g. in currying. Const reference arguments can |
| // refer to temporaries, so it is not safe to store them as references. |
| template <class T> struct remove_const_reference { |
| typedef typename bind_traits<T>::type type; |
| }; |
| |
| template <class T> struct remove_const_reference<const T&> { |
| typedef const T type; |
| }; |
| |
| |
| // maps the bind argument types to the resulting lambda functor type |
| template < |
| class T0 = null_type, class T1 = null_type, class T2 = null_type, |
| class T3 = null_type, class T4 = null_type, class T5 = null_type, |
| class T6 = null_type, class T7 = null_type, class T8 = null_type, |
| class T9 = null_type |
| > |
| class bind_type_generator { |
| |
| typedef typename |
| detail::bind_tuple_mapper< |
| T0, T1, T2, T3, T4, T5, T6, T7, T8, T9 |
| >::type args_t; |
| |
| NDNBOOST_STATIC_CONSTANT(int, nof_elems = ndnboost::tuples::length<args_t>::value); |
| |
| typedef |
| action< |
| nof_elems, |
| function_action<nof_elems> |
| > action_type; |
| |
| public: |
| typedef |
| lambda_functor< |
| lambda_functor_base< |
| action_type, |
| args_t |
| > |
| > type; |
| |
| }; |
| |
| |
| |
| } // detail |
| |
| template <class T> inline const T& make_const(const T& t) { return t; } |
| |
| |
| } // end of namespace lambda |
| } // end of namespace ndnboost |
| |
| |
| |
| #endif // NDNBOOST_LAMBDA_TRAITS_HPP |