| /* -*- Mode:C++; c-file-style:"gnu"; indent-tabs-mode:nil; -*- */ |
| /* |
| * Copyright (c) 2014-2023, The University of Memphis, |
| * Regents of the University of California, |
| * Arizona Board of Regents. |
| * |
| * This file is part of NLSR (Named-data Link State Routing). |
| * See AUTHORS.md for complete list of NLSR authors and contributors. |
| * |
| * NLSR is free software: you can redistribute it and/or modify it under the terms |
| * of the GNU General Public License as published by the Free Software Foundation, |
| * either version 3 of the License, or (at your option) any later version. |
| * |
| * NLSR is distributed in the hope that it will be useful, but WITHOUT ANY WARRANTY; |
| * without even the implied warranty of MERCHANTABILITY or FITNESS FOR A PARTICULAR |
| * PURPOSE. See the GNU General Public License for more details. |
| * |
| * You should have received a copy of the GNU General Public License along with |
| * NLSR, e.g., in COPYING.md file. If not, see <http://www.gnu.org/licenses/>. |
| */ |
| |
| #include "routing-table-calculator.hpp" |
| #include "lsdb.hpp" |
| #include "map.hpp" |
| #include "nexthop.hpp" |
| #include "nlsr.hpp" |
| #include "logger.hpp" |
| #include "adjacent.hpp" |
| |
| #include <cmath> |
| #include <boost/lexical_cast.hpp> |
| #include <ndn-cxx/util/logger.hpp> |
| |
| namespace nlsr { |
| |
| INIT_LOGGER(route.RoutingTableCalculator); |
| |
| constexpr int EMPTY_PARENT = -12345; |
| constexpr double INF_DISTANCE = 2147483647; |
| constexpr int NO_MAPPING_NUM = -1; |
| constexpr int NO_NEXT_HOP = -12345; |
| constexpr double UNKNOWN_DISTANCE = -1.0; |
| constexpr double UNKNOWN_RADIUS = -1.0; |
| |
| void |
| RoutingTableCalculator::allocateAdjMatrix() |
| { |
| adjMatrix = new double*[m_nRouters]; |
| |
| for (size_t i = 0; i < m_nRouters; ++i) { |
| adjMatrix[i] = new double[m_nRouters]; |
| } |
| } |
| |
| void |
| RoutingTableCalculator::initMatrix() |
| { |
| for (size_t i = 0; i < m_nRouters; i++) { |
| for (size_t j = 0; j < m_nRouters; j++) { |
| adjMatrix[i][j] = Adjacent::NON_ADJACENT_COST; |
| } |
| } |
| } |
| |
| void |
| RoutingTableCalculator::makeAdjMatrix(const Lsdb& lsdb, Map& pMap) |
| { |
| // For each LSA represented in the map |
| auto lsaRange = lsdb.getLsdbIterator<AdjLsa>(); |
| for (auto lsaIt = lsaRange.first; lsaIt != lsaRange.second; ++lsaIt) { |
| auto adjLsa = std::static_pointer_cast<AdjLsa>(*lsaIt); |
| auto row = pMap.getMappingNoByRouterName(adjLsa->getOriginRouter()); |
| |
| std::list<Adjacent> adl = adjLsa->getAdl().getAdjList(); |
| // For each adjacency represented in the LSA |
| for (const auto& adjacent : adl) { |
| auto col = pMap.getMappingNoByRouterName(adjacent.getName()); |
| double cost = adjacent.getLinkCost(); |
| |
| if (row && col && *row < static_cast<int32_t>(m_nRouters) |
| && *col < static_cast<int32_t>(m_nRouters)) { |
| adjMatrix[*row][*col] = cost; |
| } |
| } |
| } |
| |
| // Links that do not have the same cost for both directions should |
| // have their costs corrected: |
| // |
| // If the cost of one side of the link is NON_ADJACENT_COST (i.e. broken) or negative, |
| // both direction of the link should have their cost corrected to NON_ADJACENT_COST. |
| // |
| // Otherwise, both sides of the link should use the larger of the two costs. |
| // |
| // Additionally, this means that we can halve the amount of space |
| // that the matrix uses by only maintaining a triangle. |
| // - But that is not yet implemented. |
| for (size_t row = 0; row < m_nRouters; ++row) { |
| for (size_t col = 0; col < m_nRouters; ++col) { |
| double toCost = adjMatrix[row][col]; |
| double fromCost = adjMatrix[col][row]; |
| |
| if (fromCost != toCost) { |
| double correctedCost = Adjacent::NON_ADJACENT_COST; |
| |
| if (toCost >= 0 && fromCost >= 0) { |
| // If both sides of the link are up, use the larger cost else break the link |
| correctedCost = std::max(toCost, fromCost); |
| } |
| |
| NLSR_LOG_WARN("Cost between [" << row << "][" << col << "] and [" << col << "][" << row << |
| "] are not the same (" << toCost << " != " << fromCost << "). " << |
| "Correcting to cost: " << correctedCost); |
| |
| adjMatrix[row][col] = correctedCost; |
| adjMatrix[col][row] = correctedCost; |
| } |
| } |
| } |
| } |
| |
| void |
| RoutingTableCalculator::writeAdjMatrixLog(const Map& map) const |
| { |
| if (!ndn_cxx_getLogger().isLevelEnabled(ndn::util::LogLevel::DEBUG)) { |
| return; |
| } |
| |
| NLSR_LOG_DEBUG("-----------Legend (routerName -> index)------"); |
| std::string routerIndex; |
| std::string indexToNameMapping; |
| std::string lengthOfDash = "--"; |
| |
| for (size_t i = 0; i < m_nRouters; i++) { |
| routerIndex += boost::lexical_cast<std::string>(i); |
| routerIndex += " "; |
| lengthOfDash += "--"; |
| NLSR_LOG_DEBUG("Router:" + map.getRouterNameByMappingNo(i)->toUri() + |
| " Index:" + boost::lexical_cast<std::string>(i)); |
| } |
| NLSR_LOG_DEBUG(" |" + routerIndex); |
| NLSR_LOG_DEBUG(lengthOfDash); |
| |
| for (size_t i = 0; i < m_nRouters; i++) { |
| std::string line; |
| for (size_t j = 0; j < m_nRouters; j++) { |
| if (adjMatrix[i][j] == NO_NEXT_HOP) { |
| line += "0 "; |
| } |
| else { |
| line += boost::lexical_cast<std::string>(adjMatrix[i][j]); |
| line += " "; |
| } |
| } |
| line = boost::lexical_cast<std::string>(i) + "|" + line; |
| NLSR_LOG_DEBUG(line); |
| } |
| } |
| |
| void |
| RoutingTableCalculator::adjustAdMatrix(int source, int link, double linkCost) |
| { |
| for (int i = 0; i < static_cast<int>(m_nRouters); i++) { |
| if (i == link) { |
| adjMatrix[source][i] = linkCost; |
| } |
| else { |
| // if "i" is not a link to the source, set it's cost to a non adjacent value. |
| adjMatrix[source][i] = Adjacent::NON_ADJACENT_COST; |
| } |
| } |
| } |
| |
| int |
| RoutingTableCalculator::getNumOfLinkfromAdjMatrix(int sRouter) |
| { |
| int noLink = 0; |
| |
| for (size_t i = 0; i < m_nRouters; i++) { |
| if (adjMatrix[sRouter][i] >= 0 && i != static_cast<size_t>(sRouter)) { // make sure "i" is not self |
| noLink++; |
| } |
| } |
| return noLink; |
| } |
| |
| void |
| RoutingTableCalculator::getLinksFromAdjMatrix(int* links, |
| double* linkCosts, int source) |
| { |
| int j = 0; |
| |
| for (size_t i = 0; i < m_nRouters; i++) { |
| if (adjMatrix[source][i] >= 0 && i != static_cast<size_t>(source)) {// make sure "i" is not self |
| links[j] = i; |
| linkCosts[j] = adjMatrix[source][i]; |
| j++; |
| } |
| } |
| } |
| |
| void |
| RoutingTableCalculator::freeAdjMatrix() |
| { |
| for (size_t i = 0; i < m_nRouters; ++i) { |
| delete [] adjMatrix[i]; |
| } |
| delete [] adjMatrix; |
| } |
| |
| void |
| RoutingTableCalculator::allocateLinks() |
| { |
| links = new int[vNoLink]; |
| } |
| |
| void |
| RoutingTableCalculator::allocateLinkCosts() |
| { |
| linkCosts = new double[vNoLink]; |
| } |
| |
| void |
| RoutingTableCalculator::freeLinks() |
| { |
| delete [] links; |
| } |
| void |
| RoutingTableCalculator::freeLinksCosts() |
| { |
| delete [] linkCosts; |
| } |
| |
| void |
| LinkStateRoutingTableCalculator::calculatePath(Map& pMap, RoutingTable& rt, |
| ConfParameter& confParam, |
| const Lsdb& lsdb) |
| { |
| NLSR_LOG_DEBUG("LinkStateRoutingTableCalculator::calculatePath Called"); |
| allocateAdjMatrix(); |
| initMatrix(); |
| makeAdjMatrix(lsdb, pMap); |
| writeAdjMatrixLog(pMap); |
| auto sourceRouter = pMap.getMappingNoByRouterName(confParam.getRouterPrefix()); |
| allocateParent(); // These two matrices are used in Dijkstra's algorithm. |
| allocateDistance(); // |
| // We only bother to do the calculation if we have a router by that name. |
| if (sourceRouter && confParam.getMaxFacesPerPrefix() == 1) { |
| // In the single path case we can simply run Dijkstra's algorithm. |
| doDijkstraPathCalculation(*sourceRouter); |
| // Inform the routing table of the new next hops. |
| addAllLsNextHopsToRoutingTable(confParam.getAdjacencyList(), rt, pMap, *sourceRouter); |
| } |
| else { |
| // Multi Path |
| setNoLink(getNumOfLinkfromAdjMatrix(*sourceRouter)); |
| allocateLinks(); |
| allocateLinkCosts(); |
| // Gets a sparse listing of adjacencies for path calculation |
| getLinksFromAdjMatrix(links, linkCosts, *sourceRouter); |
| for (int i = 0 ; i < vNoLink; i++) { |
| // Simulate that only the current neighbor is accessible |
| adjustAdMatrix(*sourceRouter, links[i], linkCosts[i]); |
| writeAdjMatrixLog(pMap); |
| // Do Dijkstra's algorithm using the current neighbor as your start. |
| doDijkstraPathCalculation(*sourceRouter); |
| // Update the routing table with the calculations. |
| addAllLsNextHopsToRoutingTable(confParam.getAdjacencyList(), rt, pMap, *sourceRouter); |
| } |
| freeLinks(); |
| freeLinksCosts(); |
| } |
| freeParent(); |
| freeDistance(); |
| freeAdjMatrix(); |
| } |
| |
| void |
| LinkStateRoutingTableCalculator::doDijkstraPathCalculation(int sourceRouter) |
| { |
| int i; |
| int v, u; |
| int* Q = new int[m_nRouters]; // Each cell represents the router with that mapping no. |
| int head = 0; |
| // Initiate the parent |
| for (i = 0 ; i < static_cast<int>(m_nRouters); i++) { |
| m_parent[i] = EMPTY_PARENT; |
| // Array where the ith element is the distance to the router with mapping no i. |
| m_distance[i] = INF_DISTANCE; |
| Q[i] = i; |
| } |
| if (sourceRouter != NO_MAPPING_NUM) { |
| // Distance to source from source is always 0. |
| m_distance[sourceRouter] = 0; |
| sortQueueByDistance(Q, m_distance, head, m_nRouters); |
| // While we haven't visited every node. |
| while (head < static_cast<int>(m_nRouters)) { |
| u = Q[head]; // Set u to be the current node pointed to by head. |
| if (m_distance[u] == INF_DISTANCE) { |
| break; // This can only happen when there are no accessible nodes. |
| } |
| // Iterate over the adjacent nodes to u. |
| for (v = 0 ; v < static_cast<int>(m_nRouters); v++) { |
| // If the current node is accessible. |
| if (adjMatrix[u][v] >= 0) { |
| // And we haven't visited it yet. |
| if (isNotExplored(Q, v, head + 1, m_nRouters)) { |
| // And if the distance to this node + from this node to v |
| // is less than the distance from our source node to v |
| // that we got when we built the adj LSAs |
| if (m_distance[u] + adjMatrix[u][v] < m_distance[v]) { |
| // Set the new distance |
| m_distance[v] = m_distance[u] + adjMatrix[u][v] ; |
| // Set how we get there. |
| m_parent[v] = u; |
| } |
| } |
| } |
| } |
| // Increment the head position, resort the list by distance from where we are. |
| head++; |
| sortQueueByDistance(Q, m_distance, head, m_nRouters); |
| } |
| } |
| delete [] Q; |
| } |
| |
| void |
| LinkStateRoutingTableCalculator::addAllLsNextHopsToRoutingTable(AdjacencyList& adjacencies, |
| RoutingTable& rt, Map& pMap, |
| uint32_t sourceRouter) |
| { |
| NLSR_LOG_DEBUG("LinkStateRoutingTableCalculator::addAllNextHopsToRoutingTable Called"); |
| |
| int nextHopRouter = 0; |
| |
| // For each router we have |
| for (size_t i = 0; i < m_nRouters ; i++) { |
| if (i != sourceRouter) { |
| |
| // Obtain the next hop that was determined by the algorithm |
| nextHopRouter = getLsNextHop(i, sourceRouter); |
| // If this router is accessible at all |
| if (nextHopRouter != NO_NEXT_HOP) { |
| |
| // Fetch its distance |
| double routeCost = m_distance[i]; |
| // Fetch its actual name |
| auto nextHopRouterName = pMap.getRouterNameByMappingNo(nextHopRouter); |
| if (nextHopRouterName) { |
| auto nextHopFace = adjacencies.getAdjacent(*nextHopRouterName).getFaceUri(); |
| // Add next hop to routing table |
| NextHop nh(nextHopFace, routeCost); |
| rt.addNextHop(*(pMap.getRouterNameByMappingNo(i)), nh); |
| } |
| } |
| } |
| } |
| } |
| |
| int |
| LinkStateRoutingTableCalculator::getLsNextHop(int dest, int source) |
| { |
| int nextHop = NO_NEXT_HOP; |
| while (m_parent[dest] != EMPTY_PARENT) { |
| nextHop = dest; |
| dest = m_parent[dest]; |
| } |
| if (dest != source) { |
| nextHop = NO_NEXT_HOP; |
| } |
| return nextHop; |
| } |
| |
| void |
| LinkStateRoutingTableCalculator::sortQueueByDistance(int* Q, |
| double* dist, |
| int start, int element) |
| { |
| for (int i = start ; i < element ; i++) { |
| for (int j = i + 1; j < element; j++) { |
| if (dist[Q[j]] < dist[Q[i]]) { |
| int tempU = Q[j]; |
| Q[j] = Q[i]; |
| Q[i] = tempU; |
| } |
| } |
| } |
| } |
| |
| int |
| LinkStateRoutingTableCalculator::isNotExplored(int* Q, |
| int u, int start, int element) |
| { |
| int ret = 0; |
| for (int i = start; i < element; i++) { |
| if (Q[i] == u) { |
| ret = 1; |
| break; |
| } |
| } |
| return ret; |
| } |
| |
| void |
| LinkStateRoutingTableCalculator::allocateParent() |
| { |
| m_parent = new int[m_nRouters]; |
| } |
| |
| void |
| LinkStateRoutingTableCalculator::allocateDistance() |
| { |
| m_distance = new double[m_nRouters]; |
| } |
| |
| void |
| LinkStateRoutingTableCalculator::freeParent() |
| { |
| delete [] m_parent; |
| } |
| |
| void LinkStateRoutingTableCalculator::freeDistance() |
| { |
| delete [] m_distance; |
| } |
| |
| void |
| HyperbolicRoutingCalculator::calculatePath(Map& map, RoutingTable& rt, |
| Lsdb& lsdb, AdjacencyList& adjacencies) |
| { |
| NLSR_LOG_TRACE("Calculating hyperbolic paths"); |
| |
| auto thisRouter = map.getMappingNoByRouterName(m_thisRouterName); |
| |
| // Iterate over directly connected neighbors |
| std::list<Adjacent> neighbors = adjacencies.getAdjList(); |
| for (auto adj = neighbors.begin(); adj != neighbors.end(); ++adj) { |
| |
| // Don't calculate nexthops using an inactive router |
| if (adj->getStatus() == Adjacent::STATUS_INACTIVE) { |
| NLSR_LOG_TRACE(adj->getName() << " is inactive; not using it as a nexthop"); |
| continue; |
| } |
| |
| ndn::Name srcRouterName = adj->getName(); |
| |
| // Don't calculate nexthops for this router to other routers |
| if (srcRouterName == m_thisRouterName) { |
| continue; |
| } |
| |
| // Install nexthops for this router to the neighbor; direct neighbors have a 0 cost link |
| addNextHop(srcRouterName, adj->getFaceUri(), 0, rt); |
| |
| auto src = map.getMappingNoByRouterName(srcRouterName); |
| if (!src) { |
| NLSR_LOG_WARN(adj->getName() << " does not exist in the router map!"); |
| continue; |
| } |
| |
| // Get hyperbolic distance from direct neighbor to every other router |
| for (int dest = 0; dest < static_cast<int>(m_nRouters); ++dest) { |
| // Don't calculate nexthops to this router or from a router to itself |
| if (thisRouter && dest != *thisRouter && dest != *src) { |
| |
| auto destRouterName = map.getRouterNameByMappingNo(dest); |
| if (destRouterName) { |
| double distance = getHyperbolicDistance(lsdb, srcRouterName, *destRouterName); |
| |
| // Could not compute distance |
| if (distance == UNKNOWN_DISTANCE) { |
| NLSR_LOG_WARN("Could not calculate hyperbolic distance from " << srcRouterName |
| << " to " << *destRouterName); |
| continue; |
| } |
| addNextHop(*destRouterName, adj->getFaceUri(), distance, rt); |
| } |
| } |
| } |
| } |
| } |
| |
| double |
| HyperbolicRoutingCalculator::getHyperbolicDistance(Lsdb& lsdb, ndn::Name src, ndn::Name dest) |
| { |
| NLSR_LOG_TRACE("Calculating hyperbolic distance from " << src << " to " << dest); |
| |
| double distance = UNKNOWN_DISTANCE; |
| |
| auto srcLsa = lsdb.findLsa<CoordinateLsa>(src); |
| auto destLsa = lsdb.findLsa<CoordinateLsa>(dest); |
| |
| // Coordinate LSAs do not exist for these routers |
| if (srcLsa == nullptr || destLsa == nullptr) { |
| return UNKNOWN_DISTANCE; |
| } |
| |
| std::vector<double> srcTheta = srcLsa->getCorTheta(); |
| std::vector<double> destTheta = destLsa->getCorTheta(); |
| |
| double srcRadius = srcLsa->getCorRadius(); |
| double destRadius = destLsa->getCorRadius(); |
| |
| double diffTheta = calculateAngularDistance(srcTheta, destTheta); |
| |
| if (srcRadius == UNKNOWN_RADIUS || destRadius == UNKNOWN_RADIUS || |
| diffTheta == UNKNOWN_DISTANCE) { |
| return UNKNOWN_DISTANCE; |
| } |
| |
| // double r_i, double r_j, double delta_theta, double zeta = 1 (default) |
| distance = calculateHyperbolicDistance(srcRadius, destRadius, diffTheta); |
| |
| NLSR_LOG_TRACE("Distance from " << src << " to " << dest << " is " << distance); |
| |
| return distance; |
| } |
| |
| double |
| HyperbolicRoutingCalculator::calculateAngularDistance(std::vector<double> angleVectorI, |
| std::vector<double> angleVectorJ) |
| { |
| // It is not possible for angle vector size to be zero as ensured by conf-file-processor |
| |
| // https://en.wikipedia.org/wiki/N-sphere#Spherical_coordinates |
| |
| // Check if two vector lengths are the same |
| if (angleVectorI.size() != angleVectorJ.size()) { |
| NLSR_LOG_ERROR("Angle vector sizes do not match"); |
| return UNKNOWN_DISTANCE; |
| } |
| |
| // Check if all angles are within the [0, PI] and [0, 2PI] ranges |
| if (angleVectorI.size() > 1) { |
| for (unsigned int k = 0; k < angleVectorI.size() - 1; k++) { |
| if ((angleVectorI[k] > M_PI && angleVectorI[k] < 0.0) || |
| (angleVectorJ[k] > M_PI && angleVectorJ[k] < 0.0)) { |
| NLSR_LOG_ERROR("Angle outside [0, PI]"); |
| return UNKNOWN_DISTANCE; |
| } |
| } |
| } |
| |
| if (angleVectorI[angleVectorI.size()-1] > 2.*M_PI || |
| angleVectorI[angleVectorI.size()-1] < 0.0) { |
| NLSR_LOG_ERROR("Angle not within [0, 2PI]"); |
| return UNKNOWN_DISTANCE; |
| } |
| |
| if (angleVectorI[angleVectorI.size()-1] > 2.*M_PI || |
| angleVectorI[angleVectorI.size()-1] < 0.0) { |
| NLSR_LOG_ERROR("Angle not within [0, 2PI]"); |
| return UNKNOWN_DISTANCE; |
| } |
| |
| // deltaTheta = arccos(vectorI . vectorJ) -> do the inner product |
| double innerProduct = 0.0; |
| |
| // Calculate x0 of the vectors |
| double x0i = std::cos(angleVectorI[0]); |
| double x0j = std::cos(angleVectorJ[0]); |
| |
| // Calculate xn of the vectors |
| double xni = std::sin(angleVectorI[angleVectorI.size() - 1]); |
| double xnj = std::sin(angleVectorJ[angleVectorJ.size() - 1]); |
| |
| // Do the aggregation of the (n-1) coordinates (if there is more than one angle) |
| // i.e contraction of all (n-1)-dimensional angular coordinates to one variable |
| for (unsigned int k = 0; k < angleVectorI.size() - 1; k++) { |
| xni *= std::sin(angleVectorI[k]); |
| xnj *= std::sin(angleVectorJ[k]); |
| } |
| innerProduct += (x0i * x0j) + (xni * xnj); |
| |
| // If d > 1 |
| if (angleVectorI.size() > 1) { |
| for (unsigned int m = 1; m < angleVectorI.size(); m++) { |
| // calculate euclidean coordinates given the angles and assuming R_sphere = 1 |
| double xmi = std::cos(angleVectorI[m]); |
| double xmj = std::cos(angleVectorJ[m]); |
| for (unsigned int l = 0; l < m; l++) { |
| xmi *= std::sin(angleVectorI[l]); |
| xmj *= std::sin(angleVectorJ[l]); |
| } |
| innerProduct += xmi * xmj; |
| } |
| } |
| |
| // ArcCos of the inner product gives the angular distance |
| // between two points on a d-dimensional sphere |
| return std::acos(innerProduct); |
| } |
| |
| double |
| HyperbolicRoutingCalculator::calculateHyperbolicDistance(double rI, double rJ, |
| double deltaTheta) |
| { |
| if (deltaTheta == UNKNOWN_DISTANCE) { |
| return UNKNOWN_DISTANCE; |
| } |
| |
| // Usually, we set zeta = 1 in all experiments |
| double zeta = 1; |
| |
| if (deltaTheta <= 0.0 || rI <= 0.0 || rJ <= 0.0) { |
| NLSR_LOG_ERROR("Delta theta or rI or rJ is <= 0"); |
| NLSR_LOG_ERROR("Please make sure that no two nodes have the exact same HR coordinates"); |
| return UNKNOWN_DISTANCE; |
| } |
| |
| double xij = (1. / zeta) * std::acosh(std::cosh(zeta*rI) * std::cosh(zeta*rJ) - |
| std::sinh(zeta*rI)*std::sinh(zeta*rJ)*std::cos(deltaTheta)); |
| return xij; |
| } |
| |
| void |
| HyperbolicRoutingCalculator::addNextHop(const ndn::Name& dest, const ndn::FaceUri& faceUri, |
| double cost, RoutingTable& rt) |
| { |
| NextHop hop(faceUri, cost); |
| hop.setHyperbolic(true); |
| |
| NLSR_LOG_TRACE("Calculated " << hop << " for destination: " << dest); |
| |
| if (m_isDryRun) { |
| rt.addNextHopToDryTable(dest, hop); |
| } |
| else { |
| rt.addNextHop(dest, hop); |
| } |
| } |
| |
| } // namespace nlsr |