blob: 30f8ced4cd7c0615879557410bdaf4579c3f5904 [file] [log] [blame]
/* -*- Mode:C++; c-file-style:"gnu"; indent-tabs-mode:nil; -*- */
/*
* Copyright (c) 2014-2020, The University of Memphis,
* Regents of the University of California,
* Arizona Board of Regents.
*
* This file is part of NLSR (Named-data Link State Routing).
* See AUTHORS.md for complete list of NLSR authors and contributors.
*
* NLSR is free software: you can redistribute it and/or modify it under the terms
* of the GNU General Public License as published by the Free Software Foundation,
* either version 3 of the License, or (at your option) any later version.
*
* NLSR is distributed in the hope that it will be useful, but WITHOUT ANY WARRANTY;
* without even the implied warranty of MERCHANTABILITY or FITNESS FOR A PARTICULAR
* PURPOSE. See the GNU General Public License for more details.
*
* You should have received a copy of the GNU General Public License along with
* NLSR, e.g., in COPYING.md file. If not, see <http://www.gnu.org/licenses/>.
*/
#include "../test-common.hpp"
#include "route/routing-table-calculator.hpp"
#include "adjacency-list.hpp"
#include "lsdb.hpp"
#include "nlsr.hpp"
#include "route/map.hpp"
#include "route/routing-table.hpp"
#include <ndn-cxx/util/dummy-client-face.hpp>
namespace nlsr {
namespace test {
using std::shared_ptr;
using ndn::time::system_clock;
static const system_clock::TimePoint MAX_TIME = system_clock::TimePoint::max();
class HyperbolicCalculatorFixture : public BaseFixture
{
public:
HyperbolicCalculatorFixture()
: face(m_ioService, m_keyChain)
, conf(face, m_keyChain)
, nlsr(face, m_keyChain, conf)
, routingTable(nlsr.m_routingTable)
, adjacencies(conf.getAdjacencyList())
, lsdb(nlsr.m_lsdb)
{
}
// Triangle topology with routers A, B, C connected
void setUpTopology(std::vector<double> anglesA, std::vector<double> anglesB,
std::vector<double> anglesC)
{
Adjacent a(ROUTER_A_NAME, ndn::FaceUri(ROUTER_A_FACE), 0, Adjacent::STATUS_ACTIVE, 0, 0);
Adjacent b(ROUTER_B_NAME, ndn::FaceUri(ROUTER_B_FACE), 0, Adjacent::STATUS_ACTIVE, 0, 0);
Adjacent c(ROUTER_C_NAME, ndn::FaceUri(ROUTER_C_FACE), 0, Adjacent::STATUS_ACTIVE, 0, 0);
// Router A
adjacencies.insert(b);
adjacencies.insert(c);
AdjLsa adjA(a.getName(), 1, MAX_TIME, 2, adjacencies);
lsdb.installLsa(std::make_shared<AdjLsa>(adjA));
CoordinateLsa coordA(adjA.getOriginRouter(), 1, MAX_TIME, 16.23, anglesA);
lsdb.installLsa(std::make_shared<CoordinateLsa>(coordA));
// Router B
a.setFaceId(1);
c.setFaceId(2);
AdjacencyList adjacencyListB;
adjacencyListB.insert(a);
adjacencyListB.insert(c);
AdjLsa adjB(b.getName(), 1, MAX_TIME, 2, adjacencyListB);
lsdb.installLsa(std::make_shared<AdjLsa>(adjB));
CoordinateLsa coordB(adjB.getOriginRouter(), 1, MAX_TIME, 16.59, anglesB);
lsdb.installLsa(std::make_shared<CoordinateLsa>(coordB));
// Router C
a.setFaceId(1);
b.setFaceId(2);
AdjacencyList adjacencyListC;
adjacencyListC.insert(a);
adjacencyListC.insert(b);
AdjLsa adjC(c.getName(), 1, MAX_TIME, 2, adjacencyListC);
lsdb.installLsa(std::make_shared<AdjLsa>(adjC));
CoordinateLsa coordC(adjC.getOriginRouter(), 1, MAX_TIME, 14.11, anglesC);
lsdb.installLsa(std::make_shared<CoordinateLsa>(coordC));
auto lsaRange = lsdb.getLsdbIterator<CoordinateLsa>();
map.createFromCoordinateLsdb(lsaRange.first, lsaRange.second);
}
void runTest(const double& expectedCost)
{
HyperbolicRoutingCalculator calculator(map.getMapSize(), false, ROUTER_A_NAME);
calculator.calculatePath(map, routingTable, lsdb, adjacencies);
RoutingTableEntry* entryB = routingTable.findRoutingTableEntry(ROUTER_B_NAME);
// Router A should be able to get to B through B with cost 0 and to B through C
NexthopList& bHopList = entryB->getNexthopList();
BOOST_REQUIRE_EQUAL(bHopList.getNextHops().size(), 2);
for (std::set<NextHop, NextHopComparator>::iterator it = bHopList.begin(); it != bHopList.end(); ++it) {
std::string faceUri = it->getConnectingFaceUri();
uint64_t cost = it->getRouteCostAsAdjustedInteger();
BOOST_CHECK((faceUri == ROUTER_B_FACE && cost == 0) ||
(faceUri == ROUTER_C_FACE && cost == applyHyperbolicFactorAndRound(expectedCost)));
}
RoutingTableEntry* entryC = routingTable.findRoutingTableEntry(ROUTER_C_NAME);
// Router A should be able to get to C through C with cost 0 and to C through B
NexthopList& cHopList = entryC->getNexthopList();
BOOST_REQUIRE_EQUAL(cHopList.getNextHops().size(), 2);
for (std::set<NextHop, NextHopComparator>::iterator it = cHopList.begin(); it != cHopList.end(); ++it) {
std::string faceUri = it->getConnectingFaceUri();
uint64_t cost = it->getRouteCostAsAdjustedInteger();
BOOST_CHECK((faceUri == ROUTER_B_FACE && cost == applyHyperbolicFactorAndRound(expectedCost)) ||
(faceUri == ROUTER_C_FACE && cost == 0));
}
}
uint64_t
applyHyperbolicFactorAndRound(double d)
{
// Hyperbolic costs in the tests were calculated with 1*10^-9 precision.
// A factor larger than 1*10^9 will cause the tests to fail.
BOOST_REQUIRE(NextHop::HYPERBOLIC_COST_ADJUSTMENT_FACTOR <= 1000000000);
return round(NextHop::HYPERBOLIC_COST_ADJUSTMENT_FACTOR*d);
}
public:
ndn::util::DummyClientFace face;
ConfParameter conf;
Nlsr nlsr;
Map map;
RoutingTable& routingTable;
AdjacencyList& adjacencies;
Lsdb& lsdb;
static const ndn::Name ROUTER_A_NAME;
static const ndn::Name ROUTER_B_NAME;
static const ndn::Name ROUTER_C_NAME;
static const std::string ROUTER_A_FACE;
static const std::string ROUTER_B_FACE;
static const std::string ROUTER_C_FACE;
};
const ndn::Name HyperbolicCalculatorFixture::ROUTER_A_NAME = "/ndn/router/a";
const ndn::Name HyperbolicCalculatorFixture::ROUTER_B_NAME = "/ndn/router/b";
const ndn::Name HyperbolicCalculatorFixture::ROUTER_C_NAME = "/ndn/router/c";
const std::string HyperbolicCalculatorFixture::ROUTER_A_FACE = "udp4://10.0.0.1";
const std::string HyperbolicCalculatorFixture::ROUTER_B_FACE = "udp4://10.0.0.2";
const std::string HyperbolicCalculatorFixture::ROUTER_C_FACE = "udp4://10.0.0.3";
BOOST_FIXTURE_TEST_SUITE(TestHyperbolicRoutingCalculator, HyperbolicCalculatorFixture)
BOOST_AUTO_TEST_CASE(Basic)
{
std::vector<double> anglesA = {2.97},
anglesB = {3.0},
anglesC = {2.99};
setUpTopology(anglesA, anglesB, anglesC);
runTest(20.103356956);
}
BOOST_AUTO_TEST_CASE(BasicMultipleAngles)
{
std::vector<double> anglesA = {2.97,1.22},
anglesB = {3.0, 0.09},
anglesC = {321, 2.99};
setUpTopology(anglesA, anglesB, anglesC);
runTest(30.655296361);
}
BOOST_AUTO_TEST_SUITE_END()
} // namespace test
} // namespace nlsr