blob: 40ed32f594af7a8896faab53c2bfacba5b28efef [file] [log] [blame]
/* -*- Mode:C++; c-file-style:"gnu"; indent-tabs-mode:nil; -*- */
/*
* Copyright (c) 2014-2024, The University of Memphis,
* Regents of the University of California,
* Arizona Board of Regents.
*
* This file is part of NLSR (Named-data Link State Routing).
* See AUTHORS.md for complete list of NLSR authors and contributors.
*
* NLSR is free software: you can redistribute it and/or modify it under the terms
* of the GNU General Public License as published by the Free Software Foundation,
* either version 3 of the License, or (at your option) any later version.
*
* NLSR is distributed in the hope that it will be useful, but WITHOUT ANY WARRANTY;
* without even the implied warranty of MERCHANTABILITY or FITNESS FOR A PARTICULAR
* PURPOSE. See the GNU General Public License for more details.
*
* You should have received a copy of the GNU General Public License along with
* NLSR, e.g., in COPYING.md file. If not, see <http://www.gnu.org/licenses/>.
*/
#include "route/routing-table-calculator.hpp"
#include "adjacency-list.hpp"
#include "adjacent.hpp"
#include "lsdb.hpp"
#include "nlsr.hpp"
#include "route/name-map.hpp"
#include "route/routing-table.hpp"
#include "tests/io-key-chain-fixture.hpp"
#include "tests/test-common.hpp"
namespace nlsr::tests {
constexpr time::system_clock::time_point MAX_TIME = time::system_clock::time_point::max();
static const ndn::Name ROUTER_A_NAME = "/ndn/site/%C1.Router/this-router";
static const ndn::Name ROUTER_B_NAME = "/ndn/site/%C1.Router/b";
static const ndn::Name ROUTER_C_NAME = "/ndn/site/%C1.Router/c";
static const ndn::FaceUri ROUTER_A_FACE("udp4://10.0.0.1");
static const ndn::FaceUri ROUTER_B_FACE("udp4://10.0.0.2");
static const ndn::FaceUri ROUTER_C_FACE("udp4://10.0.0.3");
constexpr double LINK_AB_COST = 5;
constexpr double LINK_AC_COST = 10;
constexpr double LINK_BC_COST = 17;
class LinkStateCalculatorFixture : public IoKeyChainFixture
{
public:
LinkStateCalculatorFixture()
: face(m_io, m_keyChain)
, conf(face, m_keyChain)
, confProcessor(conf)
, nlsr(face, m_keyChain, conf)
, routingTable(nlsr.m_routingTable)
, lsdb(nlsr.m_lsdb)
{
setUpTopology();
}
// Triangle topology with routers A, B, C connected
void setUpTopology()
{
Adjacent a(ROUTER_A_NAME, ROUTER_A_FACE, 0, Adjacent::STATUS_ACTIVE, 0, 0);
Adjacent b(ROUTER_B_NAME, ROUTER_B_FACE, 0, Adjacent::STATUS_ACTIVE, 0, 0);
Adjacent c(ROUTER_C_NAME, ROUTER_C_FACE, 0, Adjacent::STATUS_ACTIVE, 0, 0);
// Router A
b.setLinkCost(LINK_AB_COST);
c.setLinkCost(LINK_AC_COST);
AdjacencyList& adjacencyListA = conf.getAdjacencyList();
adjacencyListA.insert(b);
adjacencyListA.insert(c);
AdjLsa adjA(a.getName(), 1, MAX_TIME, adjacencyListA);
lsdb.installLsa(std::make_shared<AdjLsa>(adjA));
// Router B
a.setLinkCost(LINK_AB_COST);
c.setLinkCost(LINK_BC_COST);
AdjacencyList adjacencyListB;
adjacencyListB.insert(a);
adjacencyListB.insert(c);
AdjLsa adjB(b.getName(), 1, MAX_TIME, adjacencyListB);
lsdb.installLsa(std::make_shared<AdjLsa>(adjB));
// Router C
a.setLinkCost(LINK_AC_COST);
b.setLinkCost(LINK_BC_COST);
AdjacencyList adjacencyListC;
adjacencyListC.insert(a);
adjacencyListC.insert(b);
AdjLsa adjC(c.getName(), 1, MAX_TIME, adjacencyListC);
lsdb.installLsa(std::make_shared<AdjLsa>(adjC));
auto lsaRange = lsdb.getLsdbIterator<AdjLsa>();
map = NameMap::createFromAdjLsdb(lsaRange.first, lsaRange.second);
}
public:
ndn::DummyClientFace face;
ConfParameter conf;
DummyConfFileProcessor confProcessor;
Nlsr nlsr;
NameMap map;
RoutingTable& routingTable;
Lsdb& lsdb;
};
BOOST_FIXTURE_TEST_SUITE(TestLinkStateRoutingCalculator, LinkStateCalculatorFixture)
BOOST_AUTO_TEST_CASE(Basic)
{
LinkStateRoutingTableCalculator calculator(map.size());
calculator.calculatePath(map, routingTable, conf, lsdb);
RoutingTableEntry* entryB = routingTable.findRoutingTableEntry(ROUTER_B_NAME);
BOOST_REQUIRE(entryB != nullptr);
// Router A should be able to get to B through B and to B through C
NexthopList& bHopList = entryB->getNexthopList();
BOOST_REQUIRE_EQUAL(bHopList.getNextHops().size(), 2);
for (const NextHop& hop : bHopList) {
auto faceUri = hop.getConnectingFaceUri();
uint64_t cost = hop.getRouteCostAsAdjustedInteger();
BOOST_CHECK((faceUri == ROUTER_B_FACE && cost == LINK_AB_COST) ||
(faceUri == ROUTER_C_FACE && cost == LINK_AC_COST + LINK_BC_COST));
}
RoutingTableEntry* entryC = routingTable.findRoutingTableEntry(ROUTER_C_NAME);
BOOST_REQUIRE(entryC != nullptr);
// Router A should be able to get to C through C and to C through B
NexthopList& cHopList = entryC->getNexthopList();
BOOST_REQUIRE_EQUAL(cHopList.getNextHops().size(), 2);
for (const NextHop& hop : cHopList) {
auto faceUri = hop.getConnectingFaceUri();
uint64_t cost = hop.getRouteCostAsAdjustedInteger();
BOOST_CHECK((faceUri == ROUTER_C_FACE && cost == LINK_AC_COST) ||
(faceUri == ROUTER_B_FACE && cost == LINK_AB_COST + LINK_BC_COST));
}
}
BOOST_AUTO_TEST_CASE(Asymmetric)
{
// Asymmetric link cost between B and C
auto lsa = nlsr.m_lsdb.findLsa<AdjLsa>(ndn::Name(ROUTER_B_NAME));
BOOST_REQUIRE(lsa != nullptr);
auto c = lsa->m_adl.findAdjacent(ROUTER_C_NAME);
BOOST_REQUIRE(c != conf.getAdjacencyList().end());
double higherLinkCost = LINK_BC_COST + 1;
c->setLinkCost(higherLinkCost);
// Calculation should consider the link between B and C as having cost = higherLinkCost
LinkStateRoutingTableCalculator calculator(map.size());
calculator.calculatePath(map, routingTable, conf, lsdb);
RoutingTableEntry* entryB = routingTable.findRoutingTableEntry(ROUTER_B_NAME);
BOOST_REQUIRE(entryB != nullptr);
// Router A should be able to get to B through B and to B through C
NexthopList& bHopList = entryB->getNexthopList();
BOOST_REQUIRE_EQUAL(bHopList.getNextHops().size(), 2);
for (const NextHop& hop : bHopList) {
auto faceUri = hop.getConnectingFaceUri();
uint64_t cost = hop.getRouteCostAsAdjustedInteger();
BOOST_CHECK((faceUri == ROUTER_B_FACE && cost == LINK_AB_COST) ||
(faceUri == ROUTER_C_FACE && cost == LINK_AC_COST + higherLinkCost));
}
RoutingTableEntry* entryC = routingTable.findRoutingTableEntry(ROUTER_C_NAME);
BOOST_REQUIRE(entryC != nullptr);
// Router A should be able to get to C through C and to C through B
NexthopList& cHopList = entryC->getNexthopList();
BOOST_REQUIRE_EQUAL(cHopList.getNextHops().size(), 2);
for (const NextHop& hop : cHopList) {
auto faceUri = hop.getConnectingFaceUri();
uint64_t cost = hop.getRouteCostAsAdjustedInteger();
BOOST_CHECK((faceUri == ROUTER_C_FACE && cost == LINK_AC_COST) ||
(faceUri == ROUTER_B_FACE && cost == LINK_AB_COST + higherLinkCost));
}
}
BOOST_AUTO_TEST_CASE(NonAdjacentCost)
{
// Asymmetric link cost between B and C
auto lsa = nlsr.m_lsdb.findLsa<AdjLsa>(ROUTER_B_NAME);
BOOST_REQUIRE(lsa != nullptr);
auto c = lsa->m_adl.findAdjacent(ROUTER_C_NAME);
BOOST_REQUIRE(c != conf.getAdjacencyList().end());
// Break the link between B - C by setting it to a NON_ADJACENT_COST.
c->setLinkCost(Adjacent::NON_ADJACENT_COST);
// Calculation should consider the link between B and C as down
LinkStateRoutingTableCalculator calculator(map.size());
calculator.calculatePath(map, routingTable, conf, lsdb);
// Router A should be able to get to B through B but not through C
RoutingTableEntry* entryB = routingTable.findRoutingTableEntry(ROUTER_B_NAME);
BOOST_REQUIRE(entryB != nullptr);
auto bHopList = entryB->getNexthopList();
BOOST_REQUIRE_EQUAL(bHopList.getNextHops().size(), 1);
const auto nextHopForB = bHopList.getNextHops().begin();
BOOST_CHECK(nextHopForB->getConnectingFaceUri() == ROUTER_B_FACE &&
nextHopForB->getRouteCostAsAdjustedInteger() == LINK_AB_COST);
// Router A should be able to get to C through C but not through B
auto entryC = routingTable.findRoutingTableEntry(ROUTER_C_NAME);
BOOST_REQUIRE(entryC != nullptr);
NexthopList& cHopList = entryC->getNexthopList();
BOOST_REQUIRE_EQUAL(cHopList.getNextHops().size(), 1);
const auto nextHopForC = cHopList.getNextHops().begin();
BOOST_CHECK(nextHopForC->getConnectingFaceUri() == ROUTER_C_FACE &&
nextHopForC->getRouteCostAsAdjustedInteger() == LINK_AC_COST);
}
BOOST_AUTO_TEST_CASE(AsymmetricZeroCostLink)
{
// Asymmetric and zero link cost between B - C, and B - A.
auto lsaB = nlsr.m_lsdb.findLsa<AdjLsa>(ROUTER_B_NAME);
BOOST_REQUIRE(lsaB != nullptr);
auto c = lsaB->m_adl.findAdjacent(ROUTER_C_NAME);
BOOST_REQUIRE(c != conf.getAdjacencyList().end());
// Re-adjust link cost to 0 from B-C. However, this should not set B-C cost 0 because C-B
// cost is greater that 0 i.e. 17
c->setLinkCost(0);
auto a = lsaB->m_adl.findAdjacent(ROUTER_A_NAME);
BOOST_REQUIRE(a != conf.getAdjacencyList().end());
auto lsaA = nlsr.m_lsdb.findLsa<AdjLsa>(ROUTER_A_NAME);
BOOST_REQUIRE(lsaA != nullptr);
auto b = lsaA->m_adl.findAdjacent(ROUTER_B_NAME);
BOOST_REQUIRE(b != conf.getAdjacencyList().end());
// Re-adjust link cost to 0 from both the direction i.e B-A and A-B
a->setLinkCost(0);
b->setLinkCost(0);
// Calculation should consider 0 link-cost between B and C
LinkStateRoutingTableCalculator calculator(map.size());
calculator.calculatePath(map, routingTable, conf, lsdb);
// Router A should be able to get to B through B and C
RoutingTableEntry* entryB = routingTable.findRoutingTableEntry(ROUTER_B_NAME);
BOOST_REQUIRE(entryB != nullptr);
// Node can have neighbors with zero cost, so the nexthop count should be 2
NexthopList& bHopList = entryB->getNexthopList();
BOOST_REQUIRE_EQUAL(bHopList.getNextHops().size(), 2);
const auto nextHopForB = bHopList.getNextHops().begin();
// Check if the next hop via B is through A or not after the cost adjustment
BOOST_CHECK(nextHopForB->getConnectingFaceUri() == ROUTER_B_FACE &&
nextHopForB->getRouteCostAsAdjustedInteger() == 0);
// Router A should be able to get to C through C and B
auto entryC = routingTable.findRoutingTableEntry(ROUTER_C_NAME);
BOOST_REQUIRE(entryC != nullptr);
NexthopList& cHopList = entryC->getNexthopList();
BOOST_REQUIRE_EQUAL(cHopList.getNextHops().size(), 2);
const auto nextHopForC = cHopList.getNextHops().begin();
// Check if the nextHop from C is via A or not
BOOST_CHECK(nextHopForC->getConnectingFaceUri() == ROUTER_C_FACE &&
nextHopForC->getRouteCostAsAdjustedInteger() == LINK_AC_COST);
}
BOOST_AUTO_TEST_SUITE_END()
} // namespace nlsr::tests