| /* -*- Mode:C++; c-file-style:"gnu"; indent-tabs-mode:nil; -*- */ |
| /** |
| * Copyright (c) 2014-2016, Regents of the University of California, |
| * Arizona Board of Regents, |
| * Colorado State University, |
| * University Pierre & Marie Curie, Sorbonne University, |
| * Washington University in St. Louis, |
| * Beijing Institute of Technology, |
| * The University of Memphis. |
| * |
| * This file is part of NFD (Named Data Networking Forwarding Daemon). |
| * See AUTHORS.md for complete list of NFD authors and contributors. |
| * |
| * NFD is free software: you can redistribute it and/or modify it under the terms |
| * of the GNU General Public License as published by the Free Software Foundation, |
| * either version 3 of the License, or (at your option) any later version. |
| * |
| * NFD is distributed in the hope that it will be useful, but WITHOUT ANY WARRANTY; |
| * without even the implied warranty of MERCHANTABILITY or FITNESS FOR A PARTICULAR |
| * PURPOSE. See the GNU General Public License for more details. |
| * |
| * You should have received a copy of the GNU General Public License along with |
| * NFD, e.g., in COPYING.md file. If not, see <http://www.gnu.org/licenses/>. |
| */ |
| |
| #include "name-tree.hpp" |
| #include "core/logger.hpp" |
| #include "core/city-hash.hpp" |
| |
| #include <boost/concept/assert.hpp> |
| #include <boost/concept_check.hpp> |
| #include <type_traits> |
| |
| namespace nfd { |
| |
| NFD_LOG_INIT("NameTree"); |
| |
| // http://en.cppreference.com/w/cpp/concept/ForwardIterator |
| BOOST_CONCEPT_ASSERT((boost::ForwardIterator<NameTree::const_iterator>)); |
| // boost::ForwardIterator follows SGI standard http://www.sgi.com/tech/stl/ForwardIterator.html, |
| // which doesn't require DefaultConstructible |
| #ifdef HAVE_IS_DEFAULT_CONSTRUCTIBLE |
| static_assert(std::is_default_constructible<NameTree::const_iterator>::value, |
| "NameTree::const_iterator must be default-constructible"); |
| #else |
| BOOST_CONCEPT_ASSERT((boost::DefaultConstructible<NameTree::const_iterator>)); |
| #endif // HAVE_IS_DEFAULT_CONSTRUCTIBLE |
| |
| namespace name_tree { |
| |
| class Hash32 |
| { |
| public: |
| static size_t |
| compute(const char* buffer, size_t length) |
| { |
| return static_cast<size_t>(CityHash32(buffer, length)); |
| } |
| }; |
| |
| class Hash64 |
| { |
| public: |
| static size_t |
| compute(const char* buffer, size_t length) |
| { |
| return static_cast<size_t>(CityHash64(buffer, length)); |
| } |
| }; |
| |
| /// @cond NoDocumentation |
| typedef boost::mpl::if_c<sizeof(size_t) >= 8, Hash64, Hash32>::type CityHash; |
| /// @endcond |
| |
| // Interface of different hash functions |
| size_t |
| computeHash(const Name& prefix) |
| { |
| prefix.wireEncode(); // guarantees prefix's wire buffer is not empty |
| |
| size_t hashValue = 0; |
| size_t hashUpdate = 0; |
| |
| for (Name::const_iterator it = prefix.begin(); it != prefix.end(); it++) |
| { |
| const char* wireFormat = reinterpret_cast<const char*>( it->wire() ); |
| hashUpdate = CityHash::compute(wireFormat, it->size()); |
| hashValue ^= hashUpdate; |
| } |
| |
| return hashValue; |
| } |
| |
| std::vector<size_t> |
| computeHashSet(const Name& prefix) |
| { |
| prefix.wireEncode(); // guarantees prefix's wire buffer is not empty |
| |
| size_t hashValue = 0; |
| size_t hashUpdate = 0; |
| |
| std::vector<size_t> hashValueSet; |
| hashValueSet.push_back(hashValue); |
| |
| for (Name::const_iterator it = prefix.begin(); it != prefix.end(); it++) |
| { |
| const char* wireFormat = reinterpret_cast<const char*>( it->wire() ); |
| hashUpdate = CityHash::compute(wireFormat, it->size()); |
| hashValue ^= hashUpdate; |
| hashValueSet.push_back(hashValue); |
| } |
| |
| return hashValueSet; |
| } |
| |
| } // namespace name_tree |
| |
| NameTree::NameTree(size_t nBuckets) |
| : m_nItems(0) |
| , m_nBuckets(nBuckets) |
| , m_minNBuckets(nBuckets) |
| , m_enlargeLoadFactor(0.5) // more than 50% buckets loaded |
| , m_enlargeFactor(2) // double the hash table size |
| , m_shrinkLoadFactor(0.1) // less than 10% buckets loaded |
| , m_shrinkFactor(0.5) // reduce the number of buckets by half |
| , m_endIterator(FULL_ENUMERATE_TYPE, *this, m_end) |
| { |
| m_enlargeThreshold = static_cast<size_t>(m_enlargeLoadFactor * |
| static_cast<double>(m_nBuckets)); |
| |
| m_shrinkThreshold = static_cast<size_t>(m_shrinkLoadFactor * |
| static_cast<double>(m_nBuckets)); |
| |
| // array of node pointers |
| m_buckets = new name_tree::Node*[m_nBuckets]; |
| // Initialize the pointer array |
| for (size_t i = 0; i < m_nBuckets; i++) |
| m_buckets[i] = 0; |
| } |
| |
| NameTree::~NameTree() |
| { |
| for (size_t i = 0; i < m_nBuckets; i++) |
| { |
| if (m_buckets[i] != 0) { |
| delete m_buckets[i]; |
| } |
| } |
| |
| delete [] m_buckets; |
| } |
| |
| // insert() is a private function, and called by only lookup() |
| std::pair<shared_ptr<name_tree::Entry>, bool> |
| NameTree::insert(const Name& prefix) |
| { |
| NFD_LOG_TRACE("insert " << prefix); |
| |
| size_t hashValue = name_tree::computeHash(prefix); |
| size_t loc = hashValue % m_nBuckets; |
| |
| NFD_LOG_TRACE("Name " << prefix << " hash value = " << hashValue << " location = " << loc); |
| |
| // Check if this Name has been stored |
| name_tree::Node* node = m_buckets[loc]; |
| name_tree::Node* nodePrev = node; // initialize nodePrev to node |
| |
| for (node = m_buckets[loc]; node != 0; node = node->m_next) |
| { |
| if (static_cast<bool>(node->m_entry)) |
| { |
| if (prefix == node->m_entry->m_prefix) |
| { |
| return std::make_pair(node->m_entry, false); // false: old entry |
| } |
| } |
| nodePrev = node; |
| } |
| |
| NFD_LOG_TRACE("Did not find " << prefix << ", need to insert it to the table"); |
| |
| // If no bucket is empty occupied, we need to create a new node, and it is |
| // linked from nodePrev |
| node = new name_tree::Node(); |
| node->m_prev = nodePrev; |
| |
| if (nodePrev == 0) |
| { |
| m_buckets[loc] = node; |
| } |
| else |
| { |
| nodePrev->m_next = node; |
| } |
| |
| // Create a new Entry |
| shared_ptr<name_tree::Entry> entry(make_shared<name_tree::Entry>(prefix)); |
| entry->setHash(hashValue); |
| node->m_entry = entry; // link the Entry to its Node |
| entry->m_node = node; // link the node to Entry. Used in eraseEntryIfEmpty. |
| |
| return std::make_pair(entry, true); // true: new entry |
| } |
| |
| // Name Prefix Lookup. Create Name Tree Entry if not found |
| shared_ptr<name_tree::Entry> |
| NameTree::lookup(const Name& prefix) |
| { |
| NFD_LOG_TRACE("lookup " << prefix); |
| |
| shared_ptr<name_tree::Entry> entry; |
| shared_ptr<name_tree::Entry> parent; |
| |
| for (size_t i = 0; i <= prefix.size(); i++) |
| { |
| Name temp = prefix.getPrefix(i); |
| |
| // insert() will create the entry if it does not exist. |
| std::pair<shared_ptr<name_tree::Entry>, bool> ret = insert(temp); |
| entry = ret.first; |
| |
| if (ret.second == true) |
| { |
| m_nItems++; // Increase the counter |
| entry->m_parent = parent; |
| |
| if (static_cast<bool>(parent)) |
| { |
| parent->m_children.push_back(entry); |
| } |
| } |
| |
| if (m_nItems > m_enlargeThreshold) |
| { |
| resize(m_enlargeFactor * m_nBuckets); |
| } |
| |
| parent = entry; |
| } |
| return entry; |
| } |
| |
| shared_ptr<name_tree::Entry> |
| NameTree::lookup(const fib::Entry& fibEntry) const |
| { |
| shared_ptr<name_tree::Entry> nte = this->getEntry(fibEntry); |
| BOOST_ASSERT(nte == nullptr || nte->getFibEntry() == &fibEntry); |
| return nte; |
| } |
| |
| shared_ptr<name_tree::Entry> |
| NameTree::lookup(const pit::Entry& pitEntry) |
| { |
| shared_ptr<name_tree::Entry> nte = this->getEntry(pitEntry); |
| if (nte == nullptr) { |
| return nullptr; |
| } |
| |
| if (nte->getPrefix().size() == pitEntry.getName().size()) { |
| return nte; |
| } |
| |
| BOOST_ASSERT(pitEntry.getName().at(-1).isImplicitSha256Digest()); |
| BOOST_ASSERT(nte->getPrefix() == pitEntry.getName().getPrefix(-1)); |
| return this->lookup(pitEntry.getName()); |
| } |
| |
| shared_ptr<name_tree::Entry> |
| NameTree::lookup(const measurements::Entry& measurementsEntry) const |
| { |
| shared_ptr<name_tree::Entry> nte = this->getEntry(measurementsEntry); |
| BOOST_ASSERT(nte == nullptr || nte->getMeasurementsEntry().get() == &measurementsEntry); |
| return nte; |
| } |
| |
| shared_ptr<name_tree::Entry> |
| NameTree::lookup(const strategy_choice::Entry& strategyChoiceEntry) const |
| { |
| shared_ptr<name_tree::Entry> nte = this->getEntry(strategyChoiceEntry); |
| BOOST_ASSERT(nte == nullptr || nte->getStrategyChoiceEntry() == &strategyChoiceEntry); |
| return nte; |
| } |
| |
| // return {false: this entry is not empty, true: this entry is empty and erased} |
| bool |
| NameTree::eraseEntryIfEmpty(shared_ptr<name_tree::Entry> entry) |
| { |
| BOOST_ASSERT(static_cast<bool>(entry)); |
| |
| NFD_LOG_TRACE("eraseEntryIfEmpty " << entry->getPrefix()); |
| |
| // first check if this Entry can be erased |
| if (entry->isEmpty()) |
| { |
| // update child-related info in the parent |
| shared_ptr<name_tree::Entry> parent = entry->getParent(); |
| |
| if (static_cast<bool>(parent)) |
| { |
| std::vector<shared_ptr<name_tree::Entry> >& parentChildrenList = |
| parent->getChildren(); |
| |
| bool isFound = false; |
| size_t size = parentChildrenList.size(); |
| for (size_t i = 0; i < size; i++) |
| { |
| if (parentChildrenList[i] == entry) |
| { |
| parentChildrenList[i] = parentChildrenList[size - 1]; |
| parentChildrenList.pop_back(); |
| isFound = true; |
| break; |
| } |
| } |
| |
| BOOST_VERIFY(isFound == true); |
| } |
| |
| // remove this Entry and its Name Tree Node |
| name_tree::Node* node = entry->m_node; |
| name_tree::Node* nodePrev = node->m_prev; |
| |
| // configure the previous node |
| if (nodePrev != 0) |
| { |
| // link the previous node to the next node |
| nodePrev->m_next = node->m_next; |
| } |
| else |
| { |
| m_buckets[entry->getHash() % m_nBuckets] = node->m_next; |
| } |
| |
| // link the previous node with the next node (skip the erased one) |
| if (node->m_next != 0) |
| { |
| node->m_next->m_prev = nodePrev; |
| node->m_next = 0; |
| } |
| |
| BOOST_ASSERT(node->m_next == 0); |
| |
| m_nItems--; |
| delete node; |
| |
| if (static_cast<bool>(parent)) |
| eraseEntryIfEmpty(parent); |
| |
| size_t newNBuckets = static_cast<size_t>(m_shrinkFactor * |
| static_cast<double>(m_nBuckets)); |
| |
| if (newNBuckets >= m_minNBuckets && m_nItems < m_shrinkThreshold) |
| { |
| resize(newNBuckets); |
| } |
| |
| return true; |
| |
| } // if this entry is empty |
| |
| return false; // if this entry is not empty |
| } |
| |
| // Exact Match |
| shared_ptr<name_tree::Entry> |
| NameTree::findExactMatch(const Name& prefix) const |
| { |
| NFD_LOG_TRACE("findExactMatch " << prefix); |
| |
| size_t hashValue = name_tree::computeHash(prefix); |
| size_t loc = hashValue % m_nBuckets; |
| |
| NFD_LOG_TRACE("Name " << prefix << " hash value = " << hashValue << |
| " location = " << loc); |
| |
| shared_ptr<name_tree::Entry> entry; |
| name_tree::Node* node = 0; |
| |
| for (node = m_buckets[loc]; node != 0; node = node->m_next) |
| { |
| entry = node->m_entry; |
| if (static_cast<bool>(entry)) |
| { |
| if (hashValue == entry->getHash() && prefix == entry->getPrefix()) |
| { |
| return entry; |
| } |
| } // if entry |
| } // for node |
| |
| // if not found, the default value of entry (null pointer) will be returned |
| entry.reset(); |
| return entry; |
| } |
| |
| // Longest Prefix Match |
| shared_ptr<name_tree::Entry> |
| NameTree::findLongestPrefixMatch(const Name& prefix, const name_tree::EntrySelector& entrySelector) const |
| { |
| NFD_LOG_TRACE("findLongestPrefixMatch " << prefix); |
| |
| shared_ptr<name_tree::Entry> entry; |
| std::vector<size_t> hashValueSet = name_tree::computeHashSet(prefix); |
| |
| size_t hashValue = 0; |
| size_t loc = 0; |
| |
| for (int i = static_cast<int>(prefix.size()); i >= 0; i--) |
| { |
| hashValue = hashValueSet[i]; |
| loc = hashValue % m_nBuckets; |
| |
| name_tree::Node* node = 0; |
| for (node = m_buckets[loc]; node != 0; node = node->m_next) |
| { |
| entry = node->m_entry; |
| if (static_cast<bool>(entry)) |
| { |
| // isPrefixOf() is used to avoid making a copy of the name |
| if (hashValue == entry->getHash() && |
| entry->getPrefix().isPrefixOf(prefix) && |
| entrySelector(*entry)) |
| { |
| return entry; |
| } |
| } // if entry |
| } // for node |
| } |
| |
| // if not found, the default value of entry (null pointer) will be returned |
| entry.reset(); |
| return entry; |
| } |
| |
| shared_ptr<name_tree::Entry> |
| NameTree::findLongestPrefixMatch(shared_ptr<name_tree::Entry> entry, |
| const name_tree::EntrySelector& entrySelector) const |
| { |
| while (static_cast<bool>(entry)) |
| { |
| if (entrySelector(*entry)) |
| return entry; |
| entry = entry->getParent(); |
| } |
| return shared_ptr<name_tree::Entry>(); |
| } |
| |
| shared_ptr<name_tree::Entry> |
| NameTree::findLongestPrefixMatch(const pit::Entry& pitEntry) const |
| { |
| shared_ptr<name_tree::Entry> nte = this->getEntry(pitEntry); |
| BOOST_ASSERT(nte != nullptr); |
| if (nte->getPrefix().size() == pitEntry.getName().size()) { |
| return nte; |
| } |
| |
| BOOST_ASSERT(pitEntry.getName().at(-1).isImplicitSha256Digest()); |
| BOOST_ASSERT(nte->getPrefix() == pitEntry.getName().getPrefix(-1)); |
| shared_ptr<name_tree::Entry> exact = this->findExactMatch(pitEntry.getName()); |
| return exact == nullptr ? nte : exact; |
| } |
| |
| boost::iterator_range<NameTree::const_iterator> |
| NameTree::findAllMatches(const Name& prefix, |
| const name_tree::EntrySelector& entrySelector) const |
| { |
| NFD_LOG_TRACE("NameTree::findAllMatches" << prefix); |
| |
| // As we are using Name Prefix Hash Table, and the current LPM() is |
| // implemented as starting from full name, and reduce the number of |
| // components by 1 each time, we could use it here. |
| // For trie-like design, it could be more efficient by walking down the |
| // trie from the root node. |
| |
| shared_ptr<name_tree::Entry> entry = findLongestPrefixMatch(prefix, entrySelector); |
| |
| if (static_cast<bool>(entry)) { |
| const_iterator begin(FIND_ALL_MATCHES_TYPE, *this, entry, entrySelector); |
| return {begin, end()}; |
| } |
| // If none of the entry satisfies the requirements, then return the end() iterator. |
| return {end(), end()}; |
| } |
| |
| boost::iterator_range<NameTree::const_iterator> |
| NameTree::fullEnumerate(const name_tree::EntrySelector& entrySelector) const |
| { |
| NFD_LOG_TRACE("fullEnumerate"); |
| |
| // find the first eligible entry |
| for (size_t i = 0; i < m_nBuckets; i++) { |
| for (name_tree::Node* node = m_buckets[i]; node != 0; node = node->m_next) { |
| if (static_cast<bool>(node->m_entry) && entrySelector(*node->m_entry)) { |
| const_iterator it(FULL_ENUMERATE_TYPE, *this, node->m_entry, entrySelector); |
| return {it, end()}; |
| } |
| } |
| } |
| |
| // If none of the entry satisfies the requirements, then return the end() iterator. |
| return {end(), end()}; |
| } |
| |
| boost::iterator_range<NameTree::const_iterator> |
| NameTree::partialEnumerate(const Name& prefix, |
| const name_tree::EntrySubTreeSelector& entrySubTreeSelector) const |
| { |
| // the first step is to process the root node |
| shared_ptr<name_tree::Entry> entry = findExactMatch(prefix); |
| if (!static_cast<bool>(entry)) { |
| return {end(), end()}; |
| } |
| |
| std::pair<bool, bool>result = entrySubTreeSelector(*entry); |
| const_iterator it(PARTIAL_ENUMERATE_TYPE, |
| *this, |
| entry, |
| name_tree::AnyEntry(), |
| entrySubTreeSelector); |
| |
| it.m_shouldVisitChildren = (result.second && entry->hasChildren()); |
| |
| if (result.first) { |
| // root node is acceptable |
| } |
| else { |
| // let the ++ operator handle it |
| ++it; |
| } |
| return {it, end()}; |
| } |
| |
| // Hash Table Resize |
| void |
| NameTree::resize(size_t newNBuckets) |
| { |
| NFD_LOG_TRACE("resize"); |
| |
| name_tree::Node** newBuckets = new name_tree::Node*[newNBuckets]; |
| size_t count = 0; |
| |
| // referenced ccnx hashtb.c hashtb_rehash() |
| name_tree::Node** pp = 0; |
| name_tree::Node* p = 0; |
| name_tree::Node* pre = 0; |
| name_tree::Node* q = 0; // record p->m_next |
| size_t i; |
| uint32_t h; |
| uint32_t b; |
| |
| for (i = 0; i < newNBuckets; i++) |
| { |
| newBuckets[i] = 0; |
| } |
| |
| for (i = 0; i < m_nBuckets; i++) |
| { |
| for (p = m_buckets[i]; p != 0; p = q) |
| { |
| count++; |
| q = p->m_next; |
| BOOST_ASSERT(static_cast<bool>(p->m_entry)); |
| h = p->m_entry->m_hash; |
| b = h % newNBuckets; |
| pre = 0; |
| for (pp = &newBuckets[b]; *pp != 0; pp = &((*pp)->m_next)) |
| { |
| pre = *pp; |
| continue; |
| } |
| p->m_prev = pre; |
| p->m_next = *pp; // Actually *pp always == 0 in this case |
| *pp = p; |
| } |
| } |
| |
| BOOST_ASSERT(count == m_nItems); |
| |
| name_tree::Node** oldBuckets = m_buckets; |
| m_buckets = newBuckets; |
| delete [] oldBuckets; |
| |
| m_nBuckets = newNBuckets; |
| |
| m_enlargeThreshold = static_cast<size_t>(m_enlargeLoadFactor * |
| static_cast<double>(m_nBuckets)); |
| m_shrinkThreshold = static_cast<size_t>(m_shrinkLoadFactor * |
| static_cast<double>(m_nBuckets)); |
| } |
| |
| // For debugging |
| void |
| NameTree::dump(std::ostream& output) const |
| { |
| NFD_LOG_TRACE("dump()"); |
| |
| name_tree::Node* node = 0; |
| shared_ptr<name_tree::Entry> entry; |
| |
| using std::endl; |
| |
| for (size_t i = 0; i < m_nBuckets; i++) |
| { |
| for (node = m_buckets[i]; node != 0; node = node->m_next) |
| { |
| entry = node->m_entry; |
| |
| // if the Entry exist, dump its information |
| if (static_cast<bool>(entry)) |
| { |
| output << "Bucket" << i << "\t" << entry->m_prefix.toUri() << endl; |
| output << "\t\tHash " << entry->m_hash << endl; |
| |
| if (static_cast<bool>(entry->m_parent)) |
| { |
| output << "\t\tparent->" << entry->m_parent->m_prefix.toUri(); |
| } |
| else |
| { |
| output << "\t\tROOT"; |
| } |
| output << endl; |
| |
| if (entry->m_children.size() != 0) |
| { |
| output << "\t\tchildren = " << entry->m_children.size() << endl; |
| |
| for (size_t j = 0; j < entry->m_children.size(); j++) |
| { |
| output << "\t\t\tChild " << j << " " << |
| entry->m_children[j]->getPrefix() << endl; |
| } |
| } |
| |
| } // if (static_cast<bool>(entry)) |
| |
| } // for node |
| } // for int i |
| |
| output << "Bucket count = " << m_nBuckets << endl; |
| output << "Stored item = " << m_nItems << endl; |
| output << "--------------------------\n"; |
| } |
| |
| NameTree::const_iterator::const_iterator() |
| : m_nameTree(nullptr) |
| { |
| } |
| |
| NameTree::const_iterator::const_iterator(NameTree::IteratorType type, |
| const NameTree& nameTree, |
| shared_ptr<name_tree::Entry> entry, |
| const name_tree::EntrySelector& entrySelector, |
| const name_tree::EntrySubTreeSelector& entrySubTreeSelector) |
| : m_nameTree(&nameTree) |
| , m_entry(entry) |
| , m_subTreeRoot(entry) |
| , m_entrySelector(make_shared<name_tree::EntrySelector>(entrySelector)) |
| , m_entrySubTreeSelector(make_shared<name_tree::EntrySubTreeSelector>(entrySubTreeSelector)) |
| , m_type(type) |
| , m_shouldVisitChildren(true) |
| { |
| } |
| |
| // operator++() |
| NameTree::const_iterator |
| NameTree::const_iterator::operator++() |
| { |
| NFD_LOG_TRACE("const_iterator::operator++()"); |
| |
| BOOST_ASSERT(m_entry != m_nameTree->m_end); |
| |
| if (m_type == FULL_ENUMERATE_TYPE) // fullEnumerate |
| { |
| // process the entries in the same bucket first |
| while (m_entry->m_node->m_next != 0) |
| { |
| m_entry = m_entry->m_node->m_next->m_entry; |
| if ((*m_entrySelector)(*m_entry)) |
| { |
| return *this; |
| } |
| } |
| |
| // process other buckets |
| |
| for (int newLocation = m_entry->m_hash % m_nameTree->m_nBuckets + 1; |
| newLocation < static_cast<int>(m_nameTree->m_nBuckets); |
| ++newLocation) |
| { |
| // process each bucket |
| name_tree::Node* node = m_nameTree->m_buckets[newLocation]; |
| while (node != 0) |
| { |
| m_entry = node->m_entry; |
| if ((*m_entrySelector)(*m_entry)) |
| { |
| return *this; |
| } |
| node = node->m_next; |
| } |
| } |
| |
| // Reach the end() |
| m_entry = m_nameTree->m_end; |
| return *this; |
| } |
| |
| if (m_type == PARTIAL_ENUMERATE_TYPE) // partialEnumerate |
| { |
| // We use pre-order traversal. |
| // if at the root, it could have already been accepted, or this |
| // iterator was just declared, and root doesn't satisfy the |
| // requirement |
| // The if() section handles this special case |
| // Essentially, we need to check root's fist child, and the rest will |
| // be the same as normal process |
| if (m_entry == m_subTreeRoot) |
| { |
| if (m_shouldVisitChildren) |
| { |
| m_entry = m_entry->getChildren()[0]; |
| std::pair<bool, bool> result = ((*m_entrySubTreeSelector)(*m_entry)); |
| m_shouldVisitChildren = (result.second && m_entry->hasChildren()); |
| if(result.first) |
| { |
| return *this; |
| } |
| else |
| { |
| // the first child did not meet the requirement |
| // the rest of the process can just fall through the while loop |
| // as normal |
| } |
| } |
| else |
| { |
| // no children, should return end(); |
| // just fall through |
| } |
| } |
| |
| // The first thing to do is to visit its child, or go to find its possible |
| // siblings |
| while (m_entry != m_subTreeRoot) |
| { |
| if (m_shouldVisitChildren) |
| { |
| // If this subtree should be visited |
| m_entry = m_entry->getChildren()[0]; |
| std::pair<bool, bool> result = ((*m_entrySubTreeSelector)(*m_entry)); |
| m_shouldVisitChildren = (result.second && m_entry->hasChildren()); |
| if (result.first) // if this node is acceptable |
| { |
| return *this; |
| } |
| else |
| { |
| // do nothing, as this node is essentially ignored |
| // send this node to the while loop. |
| } |
| } |
| else |
| { |
| // Should try to find its sibling |
| shared_ptr<name_tree::Entry> parent = m_entry->getParent(); |
| |
| std::vector<shared_ptr<name_tree::Entry> >& parentChildrenList = parent->getChildren(); |
| bool isFound = false; |
| size_t i = 0; |
| for (i = 0; i < parentChildrenList.size(); i++) |
| { |
| if (parentChildrenList[i] == m_entry) |
| { |
| isFound = true; |
| break; |
| } |
| } |
| |
| BOOST_VERIFY(isFound == true); |
| if (i < parentChildrenList.size() - 1) // m_entry not the last child |
| { |
| m_entry = parentChildrenList[i + 1]; |
| std::pair<bool, bool> result = ((*m_entrySubTreeSelector)(*m_entry)); |
| m_shouldVisitChildren = (result.second && m_entry->hasChildren()); |
| if (result.first) // if this node is acceptable |
| { |
| return *this; |
| } |
| else |
| { |
| // do nothing, as this node is essentially ignored |
| // send this node to the while loop. |
| } |
| } |
| else |
| { |
| // m_entry is the last child, no more sibling, should try to find parent's sibling |
| m_shouldVisitChildren = false; |
| m_entry = parent; |
| } |
| } |
| } |
| |
| m_entry = m_nameTree->m_end; |
| return *this; |
| } |
| |
| if (m_type == FIND_ALL_MATCHES_TYPE) // findAllMatches |
| { |
| // Assumption: at the beginning, m_entry was initialized with the first |
| // eligible Name Tree entry (i.e., has a PIT entry that can be satisfied |
| // by the Data packet) |
| |
| while (static_cast<bool>(m_entry->getParent())) |
| { |
| m_entry = m_entry->getParent(); |
| if ((*m_entrySelector)(*m_entry)) |
| return *this; |
| } |
| |
| // Reach to the end (Root) |
| m_entry = m_nameTree->m_end; |
| return *this; |
| } |
| |
| BOOST_ASSERT(false); // unknown type |
| return *this; |
| } |
| |
| } // namespace nfd |