blob: fc175237c346985566e9e852416a54783d4bcf9b [file] [log] [blame]
/* -*- Mode:C++; c-file-style:"gnu"; indent-tabs-mode:nil; -*- */
/*
* Copyright (c) 2014-2022, Regents of the University of California,
* Arizona Board of Regents,
* Colorado State University,
* University Pierre & Marie Curie, Sorbonne University,
* Washington University in St. Louis,
* Beijing Institute of Technology,
* The University of Memphis.
*
* This file is part of NFD (Named Data Networking Forwarding Daemon).
* See AUTHORS.md for complete list of NFD authors and contributors.
*
* NFD is free software: you can redistribute it and/or modify it under the terms
* of the GNU General Public License as published by the Free Software Foundation,
* either version 3 of the License, or (at your option) any later version.
*
* NFD is distributed in the hope that it will be useful, but WITHOUT ANY WARRANTY;
* without even the implied warranty of MERCHANTABILITY or FITNESS FOR A PARTICULAR
* PURPOSE. See the GNU General Public License for more details.
*
* You should have received a copy of the GNU General Public License along with
* NFD, e.g., in COPYING.md file. If not, see <http://www.gnu.org/licenses/>.
*/
#include "name-tree-hashtable.hpp"
#include "common/city-hash.hpp"
#include "common/logger.hpp"
namespace nfd {
namespace name_tree {
NFD_LOG_INIT(NameTreeHashtable);
class Hash32
{
public:
static HashValue
compute(const void* buffer, size_t length)
{
return static_cast<HashValue>(CityHash32(reinterpret_cast<const char*>(buffer), length));
}
};
class Hash64
{
public:
static HashValue
compute(const void* buffer, size_t length)
{
return static_cast<HashValue>(CityHash64(reinterpret_cast<const char*>(buffer), length));
}
};
/**
* \brief A type with a `compute()` static method to compute the hash value from a raw buffer
*/
using HashFunc = std::conditional_t<(sizeof(HashValue) > 4), Hash64, Hash32>;
HashValue
computeHash(const Name& name, size_t prefixLen)
{
name.wireEncode(); // ensure wire buffer exists
HashValue h = 0;
for (size_t i = 0, last = std::min(prefixLen, name.size()); i < last; ++i) {
const name::Component& comp = name[i];
h ^= HashFunc::compute(comp.data(), comp.size());
}
return h;
}
HashSequence
computeHashes(const Name& name, size_t prefixLen)
{
name.wireEncode(); // ensure wire buffer exists
size_t last = std::min(prefixLen, name.size());
HashSequence seq;
seq.reserve(last + 1);
HashValue h = 0;
seq.push_back(h);
for (size_t i = 0; i < last; ++i) {
const name::Component& comp = name[i];
h ^= HashFunc::compute(comp.data(), comp.size());
seq.push_back(h);
}
return seq;
}
Node::Node(HashValue h, const Name& name)
: hash(h)
, prev(nullptr)
, next(nullptr)
, entry(name, this)
{
}
Node::~Node()
{
BOOST_ASSERT(prev == nullptr);
BOOST_ASSERT(next == nullptr);
}
Node*
getNode(const Entry& entry)
{
return entry.m_node;
}
HashtableOptions::HashtableOptions(size_t size)
: initialSize(size)
, minSize(size)
{
}
Hashtable::Hashtable(const Options& options)
: m_options(options)
, m_size(0)
{
BOOST_ASSERT(m_options.minSize > 0);
BOOST_ASSERT(m_options.initialSize >= m_options.minSize);
BOOST_ASSERT(m_options.expandLoadFactor > 0.0);
BOOST_ASSERT(m_options.expandLoadFactor <= 1.0);
BOOST_ASSERT(m_options.expandFactor > 1.0);
BOOST_ASSERT(m_options.shrinkLoadFactor >= 0.0);
BOOST_ASSERT(m_options.shrinkLoadFactor < 1.0);
BOOST_ASSERT(m_options.shrinkFactor > 0.0);
BOOST_ASSERT(m_options.shrinkFactor < 1.0);
m_buckets.resize(options.initialSize);
this->computeThresholds();
}
Hashtable::~Hashtable()
{
for (size_t i = 0; i < m_buckets.size(); ++i) {
foreachNode(m_buckets[i], [] (Node* node) {
node->prev = node->next = nullptr;
delete node;
});
}
}
void
Hashtable::attach(size_t bucket, Node* node)
{
node->prev = nullptr;
node->next = m_buckets[bucket];
if (node->next != nullptr) {
BOOST_ASSERT(node->next->prev == nullptr);
node->next->prev = node;
}
m_buckets[bucket] = node;
}
void
Hashtable::detach(size_t bucket, Node* node)
{
if (node->prev != nullptr) {
BOOST_ASSERT(node->prev->next == node);
node->prev->next = node->next;
}
else {
BOOST_ASSERT(m_buckets[bucket] == node);
m_buckets[bucket] = node->next;
}
if (node->next != nullptr) {
BOOST_ASSERT(node->next->prev == node);
node->next->prev = node->prev;
}
node->prev = node->next = nullptr;
}
std::pair<const Node*, bool>
Hashtable::findOrInsert(const Name& name, size_t prefixLen, HashValue h, bool allowInsert)
{
size_t bucket = this->computeBucketIndex(h);
for (const Node* node = m_buckets[bucket]; node != nullptr; node = node->next) {
if (node->hash == h && name.compare(0, prefixLen, node->entry.getName()) == 0) {
NFD_LOG_TRACE("found " << name.getPrefix(prefixLen) << " hash=" << h << " bucket=" << bucket);
return {node, false};
}
}
if (!allowInsert) {
NFD_LOG_TRACE("not-found " << name.getPrefix(prefixLen) << " hash=" << h << " bucket=" << bucket);
return {nullptr, false};
}
Node* node = new Node(h, name.getPrefix(prefixLen));
this->attach(bucket, node);
NFD_LOG_TRACE("insert " << node->entry.getName() << " hash=" << h << " bucket=" << bucket);
++m_size;
if (m_size > m_expandThreshold) {
this->resize(static_cast<size_t>(m_options.expandFactor * this->getNBuckets()));
}
return {node, true};
}
const Node*
Hashtable::find(const Name& name, size_t prefixLen) const
{
HashValue h = computeHash(name, prefixLen);
return const_cast<Hashtable*>(this)->findOrInsert(name, prefixLen, h, false).first;
}
const Node*
Hashtable::find(const Name& name, size_t prefixLen, const HashSequence& hashes) const
{
BOOST_ASSERT(hashes.at(prefixLen) == computeHash(name, prefixLen));
return const_cast<Hashtable*>(this)->findOrInsert(name, prefixLen, hashes[prefixLen], false).first;
}
std::pair<const Node*, bool>
Hashtable::insert(const Name& name, size_t prefixLen, const HashSequence& hashes)
{
BOOST_ASSERT(hashes.at(prefixLen) == computeHash(name, prefixLen));
return this->findOrInsert(name, prefixLen, hashes[prefixLen], true);
}
void
Hashtable::erase(Node* node)
{
BOOST_ASSERT(node != nullptr);
BOOST_ASSERT(node->entry.getParent() == nullptr);
size_t bucket = this->computeBucketIndex(node->hash);
NFD_LOG_TRACE("erase " << node->entry.getName() << " hash=" << node->hash << " bucket=" << bucket);
this->detach(bucket, node);
delete node;
--m_size;
if (m_size < m_shrinkThreshold) {
size_t newNBuckets = std::max(m_options.minSize,
static_cast<size_t>(m_options.shrinkFactor * this->getNBuckets()));
this->resize(newNBuckets);
}
}
void
Hashtable::computeThresholds()
{
m_expandThreshold = static_cast<size_t>(m_options.expandLoadFactor * this->getNBuckets());
m_shrinkThreshold = static_cast<size_t>(m_options.shrinkLoadFactor * this->getNBuckets());
NFD_LOG_TRACE("thresholds expand=" << m_expandThreshold << " shrink=" << m_shrinkThreshold);
}
void
Hashtable::resize(size_t newNBuckets)
{
if (this->getNBuckets() == newNBuckets) {
return;
}
NFD_LOG_DEBUG("resize from=" << this->getNBuckets() << " to=" << newNBuckets);
std::vector<Node*> oldBuckets;
oldBuckets.swap(m_buckets);
m_buckets.resize(newNBuckets);
for (Node* head : oldBuckets) {
foreachNode(head, [this] (Node* node) {
size_t bucket = this->computeBucketIndex(node->hash);
this->attach(bucket, node);
});
}
this->computeThresholds();
}
} // namespace name_tree
} // namespace nfd