blob: aee7357957b8f2118824c651580ce87b44d5976e [file] [log] [blame]
/* -*- Mode:C++; c-file-style:"gnu"; indent-tabs-mode:nil; -*- */
/**
* Copyright (c) 2014-2017, Regents of the University of California,
* Arizona Board of Regents,
* Colorado State University,
* University Pierre & Marie Curie, Sorbonne University,
* Washington University in St. Louis,
* Beijing Institute of Technology,
* The University of Memphis.
*
* This file is part of NFD (Named Data Networking Forwarding Daemon).
* See AUTHORS.md for complete list of NFD authors and contributors.
*
* NFD is free software: you can redistribute it and/or modify it under the terms
* of the GNU General Public License as published by the Free Software Foundation,
* either version 3 of the License, or (at your option) any later version.
*
* NFD is distributed in the hope that it will be useful, but WITHOUT ANY WARRANTY;
* without even the implied warranty of MERCHANTABILITY or FITNESS FOR A PARTICULAR
* PURPOSE. See the GNU General Public License for more details.
*
* You should have received a copy of the GNU General Public License along with
* NFD, e.g., in COPYING.md file. If not, see <http://www.gnu.org/licenses/>.
*/
#include "lp-reliability.hpp"
#include "generic-link-service.hpp"
#include "transport.hpp"
namespace nfd {
namespace face {
LpReliability::LpReliability(const LpReliability::Options& options, GenericLinkService* linkService)
: m_options(options)
, m_linkService(linkService)
, m_firstUnackedFrag(m_unackedFrags.begin())
, m_isIdleAckTimerRunning(false)
{
BOOST_ASSERT(m_linkService != nullptr);
BOOST_ASSERT(m_options.idleAckTimerPeriod > time::nanoseconds::zero());
}
void
LpReliability::setOptions(const Options& options)
{
BOOST_ASSERT(options.idleAckTimerPeriod > time::nanoseconds::zero());
if (m_options.isEnabled && !options.isEnabled) {
this->stopIdleAckTimer();
}
m_options = options;
}
const GenericLinkService*
LpReliability::getLinkService() const
{
return m_linkService;
}
void
LpReliability::observeOutgoing(const std::vector<lp::Packet>& frags)
{
BOOST_ASSERT(m_options.isEnabled);
// The sequence number of the first fragment is used to identify the NetPkt.
lp::Sequence netPktIdentifier = frags.at(0).get<lp::SequenceField>();
auto& netPkt = m_netPkts.emplace(netPktIdentifier, NetPkt{}).first->second;
auto unackedFragsIt = m_unackedFrags.begin();
auto netPktUnackedFragsIt = netPkt.unackedFrags.begin();
for (const lp::Packet& frag : frags) {
// Store LpPacket for future retransmissions
lp::Sequence seq = frag.get<lp::SequenceField>();
unackedFragsIt = m_unackedFrags.emplace_hint(unackedFragsIt, seq, frag);
unackedFragsIt->second.rtoTimer =
scheduler::schedule(m_rto.computeRto(), bind(&LpReliability::onLpPacketLost, this, seq));
unackedFragsIt->second.sendTime = time::steady_clock::now();
netPktUnackedFragsIt = netPkt.unackedFrags.insert(netPktUnackedFragsIt, seq);
if (m_unackedFrags.size() == 1) {
m_firstUnackedFrag = unackedFragsIt;
}
}
}
void
LpReliability::processIncomingPacket(const lp::Packet& pkt)
{
BOOST_ASSERT(m_options.isEnabled);
auto now = time::steady_clock::now();
// Extract and parse Acks
for (lp::Sequence ackSeq : pkt.list<lp::AckField>()) {
auto txFrag = m_unackedFrags.find(ackSeq);
if (txFrag == m_unackedFrags.end()) {
// Ignore an Ack for an unknown sequence number
continue;
}
// Cancel the RTO timer for the acknowledged fragment
txFrag->second.rtoTimer.cancel();
if (txFrag->second.retxCount == 0) {
// This sequence had no retransmissions, so use it to calculate the RTO
m_rto.addMeasurement(time::duration_cast<RttEstimator::Duration>(now - txFrag->second.sendTime));
}
// Look for Acks with sequence numbers < ackSeq (allowing for wraparound) and consider them lost
// if a configurable number of Acks containing greater sequence numbers have been received.
auto lostLpPackets = findLostLpPackets(ackSeq);
// Remove the fragment from the map of unacknowledged sequences and from its associated network
// packet (removing the network packet if it has been received in whole by remote host).
// Potentially increment the start of the window.
onLpPacketAcknowledged(txFrag, getNetPktByFrag(ackSeq));
// Resend or fail fragments considered lost. This must be done separately from the above
// enhanced for loop because onLpPacketLost may delete the fragment from m_unackedFrags.
for (const lp::Sequence& seq : lostLpPackets) {
this->onLpPacketLost(seq);
}
}
// If has Fragment field, extract Sequence and add to AckQueue
if (pkt.has<lp::FragmentField>() && pkt.has<lp::SequenceField>()) {
m_ackQueue.push(pkt.get<lp::SequenceField>());
if (!m_isIdleAckTimerRunning) {
this->startIdleAckTimer();
}
}
}
void
LpReliability::piggyback(lp::Packet& pkt, ssize_t mtu)
{
BOOST_ASSERT(m_options.isEnabled);
int maxAcks = std::numeric_limits<int>::max();
if (mtu > 0) {
// Ack Type (3 octets) + Ack Length (1 octet) + sizeof(lp::Sequence)
size_t ackSize = 3 + 1 + sizeof(lp::Sequence);
ndn::EncodingEstimator estimator;
maxAcks = (mtu - pkt.wireEncode(estimator)) / ackSize;
}
ssize_t nAcksInPkt = 0;
while (!m_ackQueue.empty() && nAcksInPkt < maxAcks) {
pkt.add<lp::AckField>(m_ackQueue.front());
m_ackQueue.pop();
nAcksInPkt++;
}
}
void
LpReliability::startIdleAckTimer()
{
BOOST_ASSERT(!m_isIdleAckTimerRunning);
m_isIdleAckTimerRunning = true;
m_idleAckTimer = scheduler::schedule(m_options.idleAckTimerPeriod, [this] {
while (!m_ackQueue.empty()) {
m_linkService->requestIdlePacket();
}
m_isIdleAckTimerRunning = false;
});
}
void
LpReliability::stopIdleAckTimer()
{
m_idleAckTimer.cancel();
m_isIdleAckTimerRunning = false;
}
std::vector<lp::Sequence>
LpReliability::findLostLpPackets(lp::Sequence ackSeq)
{
std::vector<lp::Sequence> lostLpPackets;
for (auto it = m_firstUnackedFrag; ; ++it) {
if (it == m_unackedFrags.end()) {
it = m_unackedFrags.begin();
}
if (it->first == ackSeq) {
break;
}
auto& unackedFrag = it->second;
unackedFrag.nGreaterSeqAcks++;
if (unackedFrag.nGreaterSeqAcks >= m_options.seqNumLossThreshold && !unackedFrag.wasTimedOutBySeq) {
unackedFrag.wasTimedOutBySeq = true;
lostLpPackets.push_back(it->first);
}
}
return lostLpPackets;
}
void
LpReliability::onLpPacketLost(lp::Sequence seq)
{
auto& txFrag = m_unackedFrags.at(seq);
auto netPktIt = getNetPktByFrag(seq);
// Check if maximum number of retransmissions exceeded
if (txFrag.retxCount >= m_options.maxRetx) {
// Delete all LpPackets of NetPkt from TransmitCache
lp::Sequence firstSeq = *(netPktIt->second.unackedFrags.begin());
lp::Sequence lastSeq = *(std::prev(netPktIt->second.unackedFrags.end()));
if (lastSeq >= firstSeq) { // Normal case: no wraparound
m_unackedFrags.erase(m_unackedFrags.find(firstSeq), std::next(m_unackedFrags.find(lastSeq)));
}
else { // sequence number wraparound
m_unackedFrags.erase(m_unackedFrags.find(firstSeq), m_unackedFrags.end());
m_unackedFrags.erase(m_unackedFrags.begin(), std::next(m_unackedFrags.find(lastSeq)));
}
m_netPkts.erase(netPktIt);
++m_linkService->nRetxExhausted;
}
else {
txFrag.retxCount++;
// Start RTO timer for this sequence
txFrag.rtoTimer = scheduler::schedule(m_rto.computeRto(),
bind(&LpReliability::onLpPacketLost, this, seq));
// Retransmit fragment
m_linkService->sendLpPacket(lp::Packet(txFrag.pkt));
}
}
void
LpReliability::onLpPacketAcknowledged(std::map<lp::Sequence, LpReliability::UnackedFrag>::iterator fragIt,
std::map<lp::Sequence, LpReliability::NetPkt>::iterator netPktIt)
{
lp::Sequence seq = fragIt->first;
// We need to store the sequence of the window begin in case we are erasing it from m_unackedFrags
lp::Sequence firstUnackedSeq = m_firstUnackedFrag->first;
auto nextSeqIt = m_unackedFrags.erase(fragIt);
netPktIt->second.unackedFrags.erase(seq);
if (!m_unackedFrags.empty() && firstUnackedSeq == seq) {
// If "first" fragment in send window (allowing for wraparound), increment window begin
if (nextSeqIt == m_unackedFrags.end()) {
m_firstUnackedFrag = m_unackedFrags.begin();
}
else {
m_firstUnackedFrag = nextSeqIt;
}
}
// Check if network-layer packet completely received. If so, delete network packet mapping
// and increment counter
if (netPktIt->second.unackedFrags.empty()) {
if (netPktIt->second.didRetx) {
++m_linkService->nRetransmitted;
}
else {
++m_linkService->nAcknowledged;
}
m_netPkts.erase(netPktIt);
}
}
std::map<lp::Sequence, LpReliability::NetPkt>::iterator
LpReliability::getNetPktByFrag(lp::Sequence seq)
{
BOOST_ASSERT(!m_netPkts.empty());
auto it = m_netPkts.lower_bound(seq);
if (it == m_netPkts.end()) {
// This can happen because of sequence number wraparound in the middle of a network packet.
// In this case, the network packet will be at the end of m_netPkts and we will need to
// decrement the iterator to m_netPkts.end() to the one before it.
--it;
}
return it;
}
LpReliability::UnackedFrag::UnackedFrag(lp::Packet pkt)
: pkt(std::move(pkt))
, sendTime(time::steady_clock::now())
, retxCount(0)
, nGreaterSeqAcks(0)
, wasTimedOutBySeq(false)
{
}
LpReliability::NetPkt::NetPkt()
: didRetx(false)
{
}
} // namespace face
} // namespace nfd