| /* -*- Mode:C++; c-file-style:"gnu"; indent-tabs-mode:nil; -*- */ |
| /** |
| * Copyright (c) 2017-2020, Regents of the University of California. |
| * |
| * This file is part of ndncert, a certificate management system based on NDN. |
| * |
| * ndncert is free software: you can redistribute it and/or modify it under the terms |
| * of the GNU General Public License as published by the Free Software Foundation, either |
| * version 3 of the License, or (at your option) any later version. |
| * |
| * ndncert is distributed in the hope that it will be useful, but WITHOUT ANY |
| * WARRANTY; without even the implied warranty of MERCHANTABILITY or FITNESS FOR A |
| * PARTICULAR PURPOSE. See the GNU General Public License for more details. |
| * |
| * You should have received copies of the GNU General Public License along with |
| * ndncert, e.g., in COPYING.md file. If not, see <http://www.gnu.org/licenses/>. |
| * |
| * See AUTHORS.md for complete list of ndncert authors and contributors. |
| */ |
| |
| #include "crypto-helper.hpp" |
| #include "../logging.hpp" |
| |
| #include <openssl/err.h> |
| #include <openssl/pem.h> |
| #include <openssl/hmac.h> |
| |
| #include <ndn-cxx/encoding/buffer-stream.hpp> |
| #include <ndn-cxx/security/transform/base64-decode.hpp> |
| #include <ndn-cxx/security/transform/base64-encode.hpp> |
| #include <ndn-cxx/security/transform/buffer-source.hpp> |
| #include <ndn-cxx/security/transform/private-key.hpp> |
| #include <ndn-cxx/security/transform/signer-filter.hpp> |
| #include <ndn-cxx/security/transform/step-source.hpp> |
| #include <ndn-cxx/security/transform/stream-sink.hpp> |
| |
| namespace ndn { |
| namespace ndncert { |
| |
| const size_t HASH_SIZE = 32; |
| |
| _LOG_INIT(crypto-support); |
| |
| ECDHState::ECDHState() |
| { |
| OpenSSL_add_all_algorithms(); |
| context = std::make_unique<ECDH_CTX>(); |
| context->EC_NID = NID_X9_62_prime256v1; |
| |
| // Create the context for parameter generation |
| if (nullptr == (context->ctx_params = EVP_PKEY_CTX_new_id(EVP_PKEY_EC, nullptr))) { |
| handleErrors("Could not create context contexts."); |
| return; |
| } |
| |
| // Initialise the parameter generation |
| if (EVP_PKEY_paramgen_init(context->ctx_params) != 1) { |
| handleErrors("Could not initialize parameter generation."); |
| return; |
| } |
| |
| // We're going to use the ANSI X9.62 Prime 256v1 curve |
| if (1 != EVP_PKEY_CTX_set_ec_paramgen_curve_nid(context->ctx_params, context->EC_NID)) { |
| handleErrors("Likely unknown elliptical curve ID specified."); |
| return; |
| } |
| |
| // Create the parameter object params |
| if (!EVP_PKEY_paramgen(context->ctx_params, &context->params)) { |
| // the generated key is written to context->params |
| handleErrors("Could not create parameter object parameters."); |
| return; |
| } |
| |
| // Create the context for the key generation |
| if (nullptr == (context->ctx_keygen = EVP_PKEY_CTX_new(context->params, nullptr))) { |
| //The EVP_PKEY_CTX_new() function allocates public key algorithm context using |
| //the algorithm specified in pkey and ENGINE e (in this case nullptr). |
| handleErrors("Could not create the context for the key generation"); |
| return; |
| } |
| |
| // initializes a public key algorithm context |
| if (1 != EVP_PKEY_keygen_init(context->ctx_keygen)){ |
| handleErrors("Could not init context for key generation."); |
| return; |
| } |
| if (1 != EVP_PKEY_keygen(context->ctx_keygen, &context->privkey)) { |
| //performs a key generation operation, the generated key is written to context->privkey. |
| handleErrors("Could not generate DHE keys in final step"); |
| return; |
| } |
| } |
| |
| ECDHState::~ECDHState() |
| { |
| // Contexts |
| if(context->ctx_params != nullptr){ |
| EVP_PKEY_CTX_free(context->ctx_params); |
| } |
| if(context->ctx_keygen != nullptr){ |
| EVP_PKEY_CTX_free(context->ctx_keygen); |
| } |
| |
| // Keys |
| if(context->privkey != nullptr){ |
| EVP_PKEY_free(context->privkey); |
| } |
| if(context->peerkey != nullptr){ |
| EVP_PKEY_free(context->peerkey); |
| } |
| if(context->params != nullptr){ |
| EVP_PKEY_free(context->params); |
| } |
| } |
| |
| uint8_t* |
| ECDHState::getRawSelfPubKey() |
| { |
| auto privECKey = EVP_PKEY_get1_EC_KEY(context->privkey); |
| |
| if (privECKey == nullptr) { |
| handleErrors("Could not get referenced key when calling EVP_PKEY_get1_EC_KEY()."); |
| return nullptr; |
| } |
| |
| auto ecPoint = EC_KEY_get0_public_key(privECKey); |
| const EC_GROUP* group = EC_KEY_get0_group(privECKey); |
| context->publicKeyLen = EC_POINT_point2oct(group, ecPoint, POINT_CONVERSION_COMPRESSED, |
| context->publicKey, 256, nullptr); |
| EC_KEY_free(privECKey); |
| if (context->publicKeyLen == 0) { |
| handleErrors("Could not convert EC_POINTS to octet string when calling EC_POINT_point2oct."); |
| return nullptr; |
| } |
| |
| return context->publicKey; |
| } |
| |
| std::string |
| ECDHState::getBase64PubKey() |
| { |
| namespace t = ndn::security::transform; |
| |
| if (context->publicKeyLen == 0) { |
| this->getRawSelfPubKey(); |
| } |
| |
| std::ostringstream os; |
| t::bufferSource(context->publicKey, context->publicKeyLen) |
| >> t::base64Encode(false) |
| >> t::streamSink(os); |
| return os.str(); |
| } |
| |
| uint8_t* |
| ECDHState::deriveSecret(const uint8_t* peerkey, int peerKeySize) |
| { |
| auto privECKey = EVP_PKEY_get1_EC_KEY(context->privkey); |
| |
| if (privECKey == nullptr) { |
| handleErrors("Could not get referenced key when calling EVP_PKEY_get1_EC_KEY()"); |
| return nullptr; |
| } |
| |
| auto group = EC_KEY_get0_group(privECKey); |
| auto peerPoint = EC_POINT_new(group); |
| int result = EC_POINT_oct2point(group, peerPoint, peerkey, peerKeySize, nullptr); |
| if (result == 0) { |
| EC_POINT_free(peerPoint); |
| EC_KEY_free(privECKey); |
| handleErrors("Cannot convert peer's key into a EC point when calling EC_POINT_oct2point()"); |
| } |
| |
| if (-1 == (context->sharedSecretLen = ECDH_compute_key(context->sharedSecret, 256, |
| peerPoint, privECKey, nullptr))) { |
| EC_POINT_free(peerPoint); |
| EC_KEY_free(privECKey); |
| handleErrors("Cannot generate ECDH secret when calling ECDH_compute_key()"); |
| } |
| EC_POINT_free(peerPoint); |
| EC_KEY_free(privECKey); |
| return context->sharedSecret; |
| } |
| |
| uint8_t* |
| ECDHState::deriveSecret(const std::string& peerKeyStr) |
| { |
| namespace t = ndn::security::transform; |
| |
| OBufferStream os; |
| t::bufferSource(peerKeyStr) >> t::base64Decode(false) >> t::streamSink(os); |
| auto result = os.buf(); |
| |
| return this->deriveSecret(result->data(), result->size()); |
| } |
| |
| int |
| ndn_compute_hmac_sha256(const uint8_t *data, const unsigned data_length, |
| const uint8_t *key, const unsigned key_length, |
| uint8_t *prk) |
| { |
| HMAC(EVP_sha256(), key, key_length, |
| (unsigned char*)data, data_length, |
| (unsigned char*)prk, nullptr); |
| return 0; |
| } |
| |
| // avoid dependency on OpenSSL >= 1.1 |
| int |
| hkdf(const uint8_t* secret, int secretLen, const uint8_t* salt, |
| int saltLen, uint8_t* okm, int okm_len, |
| const uint8_t* info, int info_len) |
| { |
| namespace t = ndn::security::transform; |
| |
| // hkdf generate prk |
| uint8_t prk[HASH_SIZE]; |
| if (saltLen == 0) { |
| uint8_t realSalt[HASH_SIZE] = {0}; |
| ndn_compute_hmac_sha256(secret, secretLen, realSalt, HASH_SIZE, prk); |
| } |
| else { |
| ndn_compute_hmac_sha256(secret, secretLen, salt, saltLen, prk); |
| } |
| |
| // hkdf expand |
| uint8_t prev[HASH_SIZE] = {0}; |
| int done_len = 0, dig_len = HASH_SIZE, n = okm_len / dig_len; |
| if (okm_len % dig_len) |
| n++; |
| if (n > 255 || okm == nullptr) |
| return 0; |
| |
| for (int i = 1; i <= n; i++) { |
| size_t copy_len; |
| const uint8_t ctr = i; |
| |
| t::StepSource source; |
| t::PrivateKey privKey; |
| privKey.loadRaw(KeyType::HMAC, prk, dig_len); |
| OBufferStream os; |
| source >> t::signerFilter(DigestAlgorithm::SHA256, privKey) |
| >> t::streamSink(os); |
| |
| if (i > 1) { |
| source.write(prev, dig_len); |
| } |
| source.write(info, info_len); |
| source.write(&ctr, 1); |
| source.end(); |
| |
| auto result = os.buf(); |
| memcpy(prev, result->data(), dig_len); |
| copy_len = (done_len + dig_len > okm_len) ? okm_len - done_len : dig_len; |
| memcpy(okm + done_len, prev, copy_len); |
| done_len += copy_len; |
| } |
| return done_len; |
| } |
| |
| int |
| aes_gcm_128_encrypt(const uint8_t* plaintext, size_t plaintext_len, const uint8_t* associated, size_t associated_len, |
| const uint8_t* key, const uint8_t* iv, uint8_t* ciphertext, uint8_t* tag) |
| { |
| EVP_CIPHER_CTX *ctx; |
| int len; |
| int ciphertext_len; |
| |
| // Create and initialise the context |
| if (!(ctx = EVP_CIPHER_CTX_new())) { |
| handleErrors("Cannot create and initialise the context when calling EVP_CIPHER_CTX_new()"); |
| } |
| |
| // Initialise the encryption operation. |
| if (1 != EVP_EncryptInit_ex(ctx, EVP_aes_128_gcm(), nullptr, nullptr, nullptr)) { |
| handleErrors("Cannot initialise the encryption operation when calling EVP_EncryptInit_ex()"); |
| } |
| |
| // Set IV length if default 12 bytes (96 bits) is not appropriate |
| if (1 != EVP_CIPHER_CTX_ctrl(ctx, EVP_CTRL_GCM_SET_IVLEN, 12, nullptr)) { |
| handleErrors("Cannot set IV length when calling EVP_CIPHER_CTX_ctrl()"); |
| } |
| |
| // Initialise key and IV |
| if (1 != EVP_EncryptInit_ex(ctx, nullptr, nullptr, key, iv)) { |
| handleErrors("Cannot initialize key and IV when calling EVP_EncryptInit_ex()"); |
| } |
| |
| // Provide any AAD data. This can be called zero or more times as required |
| if (1 != EVP_EncryptUpdate(ctx, nullptr, &len, associated, associated_len)) { |
| handleErrors("Cannot set associated authentication data when calling EVP_EncryptUpdate()"); |
| } |
| |
| // Provide the message to be encrypted, and obtain the encrypted output. |
| // EVP_EncryptUpdate can be called multiple times if necessary |
| if (1 != EVP_EncryptUpdate(ctx, ciphertext, &len, plaintext, plaintext_len)) { |
| handleErrors("Cannot encrypt when calling EVP_EncryptUpdate()"); |
| } |
| ciphertext_len = len; |
| |
| // Finalise the encryption. Normally ciphertext bytes may be written at |
| // this stage, but this does not occur in GCM mode |
| if (1 != EVP_EncryptFinal_ex(ctx, ciphertext + len, &len)) { |
| handleErrors("Cannot finalise the encryption when calling EVP_EncryptFinal_ex()"); |
| } |
| ciphertext_len += len; |
| |
| // Get the tag |
| if (1 != EVP_CIPHER_CTX_ctrl(ctx, EVP_CTRL_GCM_GET_TAG, 16, tag)) { |
| handleErrors("Cannot get tag when calling EVP_CIPHER_CTX_ctrl()"); |
| } |
| |
| // Clean up |
| EVP_CIPHER_CTX_free(ctx); |
| return ciphertext_len; |
| } |
| |
| int |
| aes_gcm_128_decrypt(const uint8_t* ciphertext, size_t ciphertext_len, const uint8_t* associated, size_t associated_len, |
| const uint8_t* tag, const uint8_t* key, const uint8_t* iv, uint8_t* plaintext) |
| { |
| EVP_CIPHER_CTX* ctx; |
| int len; |
| int plaintext_len; |
| int ret; |
| |
| // Create and initialise the context |
| if (!(ctx = EVP_CIPHER_CTX_new())) { |
| handleErrors("Cannot create and initialise the context when calling EVP_CIPHER_CTX_new()"); |
| } |
| |
| // Initialise the decryption operation. |
| if (!EVP_DecryptInit_ex(ctx, EVP_aes_128_gcm(), nullptr, nullptr, nullptr)) { |
| handleErrors("Cannot initialise the decryption operation when calling EVP_DecryptInit_ex()"); |
| } |
| |
| // Set IV length. Not necessary if this is 12 bytes (96 bits) |
| if (!EVP_CIPHER_CTX_ctrl(ctx, EVP_CTRL_GCM_SET_IVLEN, 12, nullptr)) { |
| handleErrors("Cannot set IV length when calling EVP_CIPHER_CTX_ctrl"); |
| } |
| |
| // Initialise key and IV |
| if (!EVP_DecryptInit_ex(ctx, nullptr, nullptr, key, iv)) { |
| handleErrors("Cannot initialise key and IV when calling EVP_DecryptInit_ex()"); |
| } |
| |
| // Provide any AAD data. This can be called zero or more times as required |
| if (!EVP_DecryptUpdate(ctx, nullptr, &len, associated, associated_len)) { |
| handleErrors("Cannot set associated authentication data when calling EVP_EncryptUpdate()"); |
| } |
| |
| // Provide the message to be decrypted, and obtain the plaintext output. |
| // EVP_DecryptUpdate can be called multiple times if necessary |
| if (!EVP_DecryptUpdate(ctx, plaintext, &len, ciphertext, ciphertext_len)) { |
| handleErrors("Cannot decrypt when calling EVP_DecryptUpdate()"); |
| } |
| plaintext_len = len; |
| |
| // Set expected tag value. Works in OpenSSL 1.0.1d and later |
| if (!EVP_CIPHER_CTX_ctrl(ctx, EVP_CTRL_GCM_SET_TAG, 16, (void*)tag)) { |
| handleErrors("Cannot set tag value when calling EVP_CIPHER_CTX_ctrl"); |
| } |
| |
| // Finalise the decryption. A positive return value indicates success, |
| // anything else is a failure - the plaintext is not trustworthy. |
| ret = EVP_DecryptFinal_ex(ctx, plaintext + len, &len); |
| |
| // Clean up |
| EVP_CIPHER_CTX_free(ctx); |
| |
| if (ret > 0) { |
| // Success |
| plaintext_len += len; |
| return plaintext_len; |
| } |
| else { |
| // Verify failed |
| return -1; |
| } |
| } |
| |
| void |
| handleErrors(const std::string& errorInfo) |
| { |
| _LOG_DEBUG("Error in CRYPTO SUPPORT " << errorInfo); |
| BOOST_THROW_EXCEPTION(CryptoError("Error in CRYPTO SUPPORT: " + errorInfo)); |
| } |
| |
| } // namespace ndncert |
| } // namespace ndn |