blob: 4b3c05265489386bbac4ff9bb3bd9a165ff28fdb [file] [log] [blame]
/* -*- Mode: C++; c-file-style: "gnu"; indent-tabs-mode:nil -*- */
/*
* Copyright (c) 2011,2012 University of California, Los Angeles
*
* This program is free software; you can redistribute it and/or modify
* it under the terms of the GNU General Public License version 2 as
* published by the Free Software Foundation;
*
* This program is distributed in the hope that it will be useful,
* but WITHOUT ANY WARRANTY; without even the implied warranty of
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
* GNU General Public License for more details.
*
* You should have received a copy of the GNU General Public License
* along with this program; if not, write to the Free Software
* Foundation, Inc., 59 Temple Place, Suite 330, Boston, MA 02111-1307 USA
*
* Author: Alexander Afanasyev <alexander.afanasyev@ucla.edu>
*/
#ifndef BASE_EXPERIMENT_H
#define BASE_EXPERIMENT_H
#include "ns3/rocketfuel-topology-reader.h"
void PrintTime ()
{
cout << "Progress: " << Simulator::Now ().ToDouble (Time::S) << "s" << endl;
Simulator::Schedule (Seconds (5.0), PrintTime);
}
class BaseExperiment
{
public:
BaseExperiment ()
: m_rand (0,52)
, reader (0)
, m_numNodes (52)
{ }
~BaseExperiment ()
{
if (reader != 0) delete reader;
}
void
ConfigureTopology ()
{
Names::Clear ();
cout << "Configure Topology\n";
if (reader != 0) delete reader;
reader = new RocketfuelWeightsReader ("/sprint");
string weights ("./src/NDNabstraction/examples/sprint-pops.weights");
string latencies ("./src/NDNabstraction/examples/sprint-pops.latencies");
string positions ("./src/NDNabstraction/examples/sprint-pops.positions");
reader->SetFileName (positions);
reader->SetFileType (RocketfuelWeightsReader::POSITIONS);
reader->Read ();
reader->SetFileName (weights);
reader->SetFileType (RocketfuelWeightsReader::WEIGHTS);
reader->Read ();
reader->SetFileName (latencies);
reader->SetFileType (RocketfuelWeightsReader::LATENCIES);
reader->Read ();
reader->Commit ();
}
void InstallCcnxStackImpl ()
{
InternetStackHelper stack;
Ipv4GlobalRoutingHelper ipv4RoutingHelper ("ns3::Ipv4GlobalRoutingOrderedNexthops");
stack.SetRoutingHelper (ipv4RoutingHelper);
stack.Install (reader->GetNodes ());
reader->AssignIpv4Addresses (Ipv4Address ("10.0.0.0"));
// Install CCNx stack
cout << "Installing CCNx stack\n";
CcnxStackHelper ccnxHelper;
ccnxHelper.SetForwardingStrategy ("ns3::CcnxBestRouteStrategy");
ccnxHelper.EnableLimits (true, Seconds(0.1));
ccnxHelper.SetDefaultRoutes (false);
ccnxHelper.InstallAll ();
reader->ApplyOspfMetric ();
}
void InstallCcnxStack (bool installFIBs = true)
{
InstallCcnxStackImpl ();
CcnxStackHelper ccnxHelper;
ccnxHelper.InstallFakeGlobalRoutes ();
if (installFIBs)
{
// // Populate FIB based on IPv4 global routing controller
ccnxHelper.InstallRoutesToAll ();
}
}
void InstallIpStack ()
{
InternetStackHelper stack;
stack.Install (reader->GetNodes ());
reader->AssignIpv4Addresses (Ipv4Address ("10.0.0.0"));
reader->ApplyOspfMetric ();
Ipv4GlobalRoutingHelper::PopulateRoutingTables ();
}
void
GenerateRandomPairs (uint16_t numStreams)
{
m_pairs.clear ();
// map<uint32_t, set<uint32_t> > streams;
m_usedNodes.clear ();
uint16_t createdStreams = 0;
uint16_t guard = 0;
while (createdStreams < numStreams && guard < (numeric_limits<uint16_t>::max ()-1))
{
guard ++;
uint32_t node1_num = m_rand.GetValue (); //43;//
uint32_t node2_num = m_rand.GetValue (); //38;//
if (node1_num == node2_num)
continue;
if (m_usedNodes.count (node1_num) > 0 ||
m_usedNodes.count (node2_num) > 0 )
{
continue; // don't reuse nodes
}
m_usedNodes.insert (node1_num);
m_usedNodes.insert (node2_num);
m_pairs.push_back (make_tuple (node1_num, node2_num));
createdStreams ++;
}
}
void
SetPair (uint32_t pairId)
{
m_pairs.clear ();
m_usedNodes.clear ();
uint32_t i = 0;
for (uint32_t node1_num = 0; node1_num < 52; node1_num++)
for (uint32_t node2_num = 0; node2_num < 52; node2_num++)
{
if (node1_num == node2_num) continue;
// std::cout << "i = " << i << ", pairId = " << pairId << "\n";
if (i++ != pairId) continue;
m_usedNodes.insert (node1_num);
m_usedNodes.insert (node2_num);
m_pairs.push_back (make_tuple (node1_num, node2_num));
return;
}
}
void
Run (const Time &finishTime)
{
cout << "Run Simulation.\n";
Simulator::Stop (finishTime);
Simulator::Schedule (Seconds (5.0), PrintTime);
Simulator::Run ();
Simulator::Destroy ();
cout << "Done.\n";
}
UniformVariable m_rand;
RocketfuelWeightsReader *reader;
list<tuple<uint32_t,uint32_t> > m_pairs;
set<uint32_t> m_usedNodes;
const int m_numNodes;
};
#endif