Alexander Afanasyev | 181a8b9 | 2013-02-28 13:28:53 -0800 | [diff] [blame] | 1 | /* |
| 2 | * A JavaScript implementation of the Secure Hash Algorithm, SHA-1, as defined |
| 3 | * in FIPS 180-1 |
| 4 | * Version 2.2 Copyright Paul Johnston 2000 - 2009. |
| 5 | * Other contributors: Greg Holt, Andrew Kepert, Ydnar, Lostinet |
| 6 | * Distributed under the BSD License |
| 7 | * See http://pajhome.org.uk/crypt/md5 for details. |
| 8 | */ |
| 9 | |
| 10 | /* |
| 11 | * Configurable variables. You may need to tweak these to be compatible with |
| 12 | * the server-side, but the defaults work in most cases. |
| 13 | */ |
| 14 | var hexcase = 0; /* hex output format. 0 - lowercase; 1 - uppercase */ |
| 15 | var b64pad = ""; /* base-64 pad character. "=" for strict RFC compliance */ |
| 16 | |
| 17 | /** |
| 18 | * These are the functions you'll usually want to call |
| 19 | * They take string arguments and return either hex or base-64 encoded strings |
| 20 | */ |
| 21 | function hex_sha1(s) { return rstr2hex(rstr_sha1(str2rstr_utf8(s))); } |
| 22 | function b64_sha1(s) { return rstr2b64(rstr_sha1(str2rstr_utf8(s))); } |
| 23 | function any_sha1(s, e) { return rstr2any(rstr_sha1(str2rstr_utf8(s)), e); } |
| 24 | function hex_hmac_sha1(k, d) |
| 25 | { return rstr2hex(rstr_hmac_sha1(str2rstr_utf8(k), str2rstr_utf8(d))); } |
| 26 | function b64_hmac_sha1(k, d) |
| 27 | { return rstr2b64(rstr_hmac_sha1(str2rstr_utf8(k), str2rstr_utf8(d))); } |
| 28 | function any_hmac_sha1(k, d, e) |
| 29 | { return rstr2any(rstr_hmac_sha1(str2rstr_utf8(k), str2rstr_utf8(d)), e); } |
| 30 | |
| 31 | /** |
| 32 | * Perform a simple self-test to see if the VM is working |
| 33 | */ |
| 34 | function sha1_vm_test() |
| 35 | { |
| 36 | return hex_sha1("abc").toLowerCase() == "a9993e364706816aba3e25717850c26c9cd0d89d"; |
| 37 | } |
| 38 | |
| 39 | /** |
| 40 | * Calculate the SHA1 of a raw string |
| 41 | */ |
| 42 | function rstr_sha1(s) |
| 43 | { |
| 44 | return binb2rstr(binb_sha1(rstr2binb(s), s.length * 8)); |
| 45 | } |
| 46 | |
| 47 | /** |
| 48 | * Calculate the HMAC-SHA1 of a key and some data (raw strings) |
| 49 | */ |
| 50 | function rstr_hmac_sha1(key, data) |
| 51 | { |
| 52 | var bkey = rstr2binb(key); |
| 53 | if(bkey.length > 16) bkey = binb_sha1(bkey, key.length * 8); |
| 54 | |
| 55 | var ipad = Array(16), opad = Array(16); |
| 56 | for(var i = 0; i < 16; i++) |
| 57 | { |
| 58 | ipad[i] = bkey[i] ^ 0x36363636; |
| 59 | opad[i] = bkey[i] ^ 0x5C5C5C5C; |
| 60 | } |
| 61 | |
| 62 | var hash = binb_sha1(ipad.concat(rstr2binb(data)), 512 + data.length * 8); |
| 63 | return binb2rstr(binb_sha1(opad.concat(hash), 512 + 160)); |
| 64 | } |
| 65 | |
| 66 | /** |
| 67 | * Convert a raw string to a hex string |
| 68 | */ |
| 69 | function rstr2hex(input) |
| 70 | { |
| 71 | try { hexcase } catch(e) { hexcase=0; } |
| 72 | var hex_tab = hexcase ? "0123456789ABCDEF" : "0123456789abcdef"; |
| 73 | var output = ""; |
| 74 | var x; |
| 75 | for(var i = 0; i < input.length; i++) |
| 76 | { |
| 77 | x = input.charCodeAt(i); |
| 78 | output += hex_tab.charAt((x >>> 4) & 0x0F) |
| 79 | + hex_tab.charAt( x & 0x0F); |
| 80 | } |
| 81 | return output; |
| 82 | } |
| 83 | |
| 84 | /** |
| 85 | * Convert a raw string to a base-64 string |
| 86 | */ |
| 87 | function rstr2b64(input) |
| 88 | { |
| 89 | try { b64pad } catch(e) { b64pad=''; } |
| 90 | var tab = "ABCDEFGHIJKLMNOPQRSTUVWXYZabcdefghijklmnopqrstuvwxyz0123456789+/"; |
| 91 | var output = ""; |
| 92 | var len = input.length; |
| 93 | for(var i = 0; i < len; i += 3) |
| 94 | { |
| 95 | var triplet = (input.charCodeAt(i) << 16) |
| 96 | | (i + 1 < len ? input.charCodeAt(i+1) << 8 : 0) |
| 97 | | (i + 2 < len ? input.charCodeAt(i+2) : 0); |
| 98 | for(var j = 0; j < 4; j++) |
| 99 | { |
| 100 | if(i * 8 + j * 6 > input.length * 8) output += b64pad; |
| 101 | else output += tab.charAt((triplet >>> 6*(3-j)) & 0x3F); |
| 102 | } |
| 103 | } |
| 104 | return output; |
| 105 | } |
| 106 | |
| 107 | /** |
| 108 | * Convert a raw string to an arbitrary string encoding |
| 109 | */ |
| 110 | function rstr2any(input, encoding) |
| 111 | { |
| 112 | var divisor = encoding.length; |
| 113 | var remainders = Array(); |
| 114 | var i, q, x, quotient; |
| 115 | |
| 116 | /* Convert to an array of 16-bit big-endian values, forming the dividend */ |
| 117 | var dividend = Array(Math.ceil(input.length / 2)); |
| 118 | for(i = 0; i < dividend.length; i++) |
| 119 | { |
| 120 | dividend[i] = (input.charCodeAt(i * 2) << 8) | input.charCodeAt(i * 2 + 1); |
| 121 | } |
| 122 | |
| 123 | /* |
| 124 | * Repeatedly perform a long division. The binary array forms the dividend, |
| 125 | * the length of the encoding is the divisor. Once computed, the quotient |
| 126 | * forms the dividend for the next step. We stop when the dividend is zero. |
| 127 | * All remainders are stored for later use. |
| 128 | */ |
| 129 | while(dividend.length > 0) |
| 130 | { |
| 131 | quotient = Array(); |
| 132 | x = 0; |
| 133 | for(i = 0; i < dividend.length; i++) |
| 134 | { |
| 135 | x = (x << 16) + dividend[i]; |
| 136 | q = Math.floor(x / divisor); |
| 137 | x -= q * divisor; |
| 138 | if(quotient.length > 0 || q > 0) |
| 139 | quotient[quotient.length] = q; |
| 140 | } |
| 141 | remainders[remainders.length] = x; |
| 142 | dividend = quotient; |
| 143 | } |
| 144 | |
| 145 | /* Convert the remainders to the output string */ |
| 146 | var output = ""; |
| 147 | for(i = remainders.length - 1; i >= 0; i--) |
| 148 | output += encoding.charAt(remainders[i]); |
| 149 | |
| 150 | /* Append leading zero equivalents */ |
| 151 | var full_length = Math.ceil(input.length * 8 / |
| 152 | (Math.log(encoding.length) / Math.log(2))); |
| 153 | for(i = output.length; i < full_length; i++) |
| 154 | output = encoding[0] + output; |
| 155 | |
| 156 | return output; |
| 157 | } |
| 158 | |
| 159 | /** |
| 160 | * Encode a string as utf-8. |
| 161 | * For efficiency, this assumes the input is valid utf-16. |
| 162 | */ |
| 163 | function str2rstr_utf8(input) |
| 164 | { |
| 165 | var output = ""; |
| 166 | var i = -1; |
| 167 | var x, y; |
| 168 | |
| 169 | while(++i < input.length) |
| 170 | { |
| 171 | /* Decode utf-16 surrogate pairs */ |
| 172 | x = input.charCodeAt(i); |
| 173 | y = i + 1 < input.length ? input.charCodeAt(i + 1) : 0; |
| 174 | if(0xD800 <= x && x <= 0xDBFF && 0xDC00 <= y && y <= 0xDFFF) |
| 175 | { |
| 176 | x = 0x10000 + ((x & 0x03FF) << 10) + (y & 0x03FF); |
| 177 | i++; |
| 178 | } |
| 179 | |
| 180 | /* Encode output as utf-8 */ |
| 181 | if(x <= 0x7F) |
| 182 | output += String.fromCharCode(x); |
| 183 | else if(x <= 0x7FF) |
| 184 | output += String.fromCharCode(0xC0 | ((x >>> 6 ) & 0x1F), |
| 185 | 0x80 | ( x & 0x3F)); |
| 186 | else if(x <= 0xFFFF) |
| 187 | output += String.fromCharCode(0xE0 | ((x >>> 12) & 0x0F), |
| 188 | 0x80 | ((x >>> 6 ) & 0x3F), |
| 189 | 0x80 | ( x & 0x3F)); |
| 190 | else if(x <= 0x1FFFFF) |
| 191 | output += String.fromCharCode(0xF0 | ((x >>> 18) & 0x07), |
| 192 | 0x80 | ((x >>> 12) & 0x3F), |
| 193 | 0x80 | ((x >>> 6 ) & 0x3F), |
| 194 | 0x80 | ( x & 0x3F)); |
| 195 | } |
| 196 | return output; |
| 197 | } |
| 198 | |
| 199 | /** |
| 200 | * Encode a string as utf-16 |
| 201 | */ |
| 202 | function str2rstr_utf16le(input) |
| 203 | { |
| 204 | var output = ""; |
| 205 | for(var i = 0; i < input.length; i++) |
| 206 | output += String.fromCharCode( input.charCodeAt(i) & 0xFF, |
| 207 | (input.charCodeAt(i) >>> 8) & 0xFF); |
| 208 | return output; |
| 209 | } |
| 210 | |
| 211 | function str2rstr_utf16be(input) |
| 212 | { |
| 213 | var output = ""; |
| 214 | for(var i = 0; i < input.length; i++) |
| 215 | output += String.fromCharCode((input.charCodeAt(i) >>> 8) & 0xFF, |
| 216 | input.charCodeAt(i) & 0xFF); |
| 217 | return output; |
| 218 | } |
| 219 | |
| 220 | /** |
| 221 | * Convert a raw string to an array of big-endian words |
| 222 | * Characters >255 have their high-byte silently ignored. |
| 223 | */ |
| 224 | function rstr2binb(input) |
| 225 | { |
| 226 | var output = Array(input.length >> 2); |
| 227 | for(var i = 0; i < output.length; i++) |
| 228 | output[i] = 0; |
| 229 | for(var i = 0; i < input.length * 8; i += 8) |
| 230 | output[i>>5] |= (input.charCodeAt(i / 8) & 0xFF) << (24 - i % 32); |
| 231 | return output; |
| 232 | } |
| 233 | |
| 234 | /** |
| 235 | * Convert an array of big-endian words to a string |
| 236 | */ |
| 237 | function binb2rstr(input) |
| 238 | { |
| 239 | var output = ""; |
| 240 | for(var i = 0; i < input.length * 32; i += 8) |
| 241 | output += String.fromCharCode((input[i>>5] >>> (24 - i % 32)) & 0xFF); |
| 242 | return output; |
| 243 | } |
| 244 | |
| 245 | /** |
| 246 | * Calculate the SHA-1 of an array of big-endian words, and a bit length |
| 247 | */ |
| 248 | function binb_sha1(x, len) |
| 249 | { |
| 250 | /* append padding */ |
| 251 | x[len >> 5] |= 0x80 << (24 - len % 32); |
| 252 | x[((len + 64 >> 9) << 4) + 15] = len; |
| 253 | |
| 254 | var w = Array(80); |
| 255 | var a = 1732584193; |
| 256 | var b = -271733879; |
| 257 | var c = -1732584194; |
| 258 | var d = 271733878; |
| 259 | var e = -1009589776; |
| 260 | |
| 261 | for(var i = 0; i < x.length; i += 16) |
| 262 | { |
| 263 | var olda = a; |
| 264 | var oldb = b; |
| 265 | var oldc = c; |
| 266 | var oldd = d; |
| 267 | var olde = e; |
| 268 | |
| 269 | for(var j = 0; j < 80; j++) |
| 270 | { |
| 271 | if(j < 16) w[j] = x[i + j]; |
| 272 | else w[j] = bit_rol(w[j-3] ^ w[j-8] ^ w[j-14] ^ w[j-16], 1); |
| 273 | var t = safe_add(safe_add(bit_rol(a, 5), sha1_ft(j, b, c, d)), |
| 274 | safe_add(safe_add(e, w[j]), sha1_kt(j))); |
| 275 | e = d; |
| 276 | d = c; |
| 277 | c = bit_rol(b, 30); |
| 278 | b = a; |
| 279 | a = t; |
| 280 | } |
| 281 | |
| 282 | a = safe_add(a, olda); |
| 283 | b = safe_add(b, oldb); |
| 284 | c = safe_add(c, oldc); |
| 285 | d = safe_add(d, oldd); |
| 286 | e = safe_add(e, olde); |
| 287 | } |
| 288 | return Array(a, b, c, d, e); |
| 289 | |
| 290 | } |
| 291 | |
| 292 | /** |
| 293 | * Perform the appropriate triplet combination function for the current |
| 294 | * iteration |
| 295 | */ |
| 296 | function sha1_ft(t, b, c, d) |
| 297 | { |
| 298 | if(t < 20) return (b & c) | ((~b) & d); |
| 299 | if(t < 40) return b ^ c ^ d; |
| 300 | if(t < 60) return (b & c) | (b & d) | (c & d); |
| 301 | return b ^ c ^ d; |
| 302 | } |
| 303 | |
| 304 | /** |
| 305 | * Determine the appropriate additive constant for the current iteration |
| 306 | */ |
| 307 | function sha1_kt(t) |
| 308 | { |
| 309 | return (t < 20) ? 1518500249 : (t < 40) ? 1859775393 : |
| 310 | (t < 60) ? -1894007588 : -899497514; |
| 311 | } |
| 312 | |
| 313 | /** |
| 314 | * Add integers, wrapping at 2^32. This uses 16-bit operations internally |
| 315 | * to work around bugs in some JS interpreters. |
| 316 | */ |
| 317 | function safe_add(x, y) |
| 318 | { |
| 319 | var lsw = (x & 0xFFFF) + (y & 0xFFFF); |
| 320 | var msw = (x >> 16) + (y >> 16) + (lsw >> 16); |
| 321 | return (msw << 16) | (lsw & 0xFFFF); |
| 322 | } |
| 323 | |
| 324 | /** |
| 325 | * Bitwise rotate a 32-bit number to the left. |
| 326 | */ |
| 327 | function bit_rol(num, cnt) |
| 328 | { |
| 329 | return (num << cnt) | (num >>> (32 - cnt)); |
| 330 | } |