Meki Cherkaoui | 88d59cd | 2012-05-14 07:34:58 -0700 | [diff] [blame^] | 1 | /*
|
| 2 | * A JavaScript implementation of the Secure Hash Algorithm, SHA-1, as defined
|
| 3 | * in FIPS 180-1
|
| 4 | * Version 2.2 Copyright Paul Johnston 2000 - 2009.
|
| 5 | * Other contributors: Greg Holt, Andrew Kepert, Ydnar, Lostinet
|
| 6 | * Distributed under the BSD License
|
| 7 | * See http://pajhome.org.uk/crypt/md5 for details.
|
| 8 | */
|
| 9 |
|
| 10 | /*
|
| 11 | * Configurable variables. You may need to tweak these to be compatible with
|
| 12 | * the server-side, but the defaults work in most cases.
|
| 13 | */
|
| 14 | var hexcase = 0; /* hex output format. 0 - lowercase; 1 - uppercase */
|
| 15 | var b64pad = ""; /* base-64 pad character. "=" for strict RFC compliance */
|
| 16 |
|
| 17 | /*
|
| 18 | * These are the functions you'll usually want to call
|
| 19 | * They take string arguments and return either hex or base-64 encoded strings
|
| 20 | */
|
| 21 | function hex_sha1(s) { return rstr2hex(rstr_sha1(str2rstr_utf8(s))); }
|
| 22 | function b64_sha1(s) { return rstr2b64(rstr_sha1(str2rstr_utf8(s))); }
|
| 23 | function any_sha1(s, e) { return rstr2any(rstr_sha1(str2rstr_utf8(s)), e); }
|
| 24 | function hex_hmac_sha1(k, d)
|
| 25 | { return rstr2hex(rstr_hmac_sha1(str2rstr_utf8(k), str2rstr_utf8(d))); }
|
| 26 | function b64_hmac_sha1(k, d)
|
| 27 | { return rstr2b64(rstr_hmac_sha1(str2rstr_utf8(k), str2rstr_utf8(d))); }
|
| 28 | function any_hmac_sha1(k, d, e)
|
| 29 | { return rstr2any(rstr_hmac_sha1(str2rstr_utf8(k), str2rstr_utf8(d)), e); }
|
| 30 |
|
| 31 | /*
|
| 32 | * Perform a simple self-test to see if the VM is working
|
| 33 | */
|
| 34 | function sha1_vm_test()
|
| 35 | {
|
| 36 | return hex_sha1("abc").toLowerCase() == "a9993e364706816aba3e25717850c26c9cd0d89d";
|
| 37 | }
|
| 38 |
|
| 39 | /*
|
| 40 | * Calculate the SHA1 of a raw string
|
| 41 | */
|
| 42 | function rstr_sha1(s)
|
| 43 | {
|
| 44 | return binb2rstr(binb_sha1(rstr2binb(s), s.length * 8));
|
| 45 | }
|
| 46 |
|
| 47 | /*
|
| 48 | * Calculate the HMAC-SHA1 of a key and some data (raw strings)
|
| 49 | */
|
| 50 | function rstr_hmac_sha1(key, data)
|
| 51 | {
|
| 52 | var bkey = rstr2binb(key);
|
| 53 | if(bkey.length > 16) bkey = binb_sha1(bkey, key.length * 8);
|
| 54 |
|
| 55 | var ipad = Array(16), opad = Array(16);
|
| 56 | for(var i = 0; i < 16; i++)
|
| 57 | {
|
| 58 | ipad[i] = bkey[i] ^ 0x36363636;
|
| 59 | opad[i] = bkey[i] ^ 0x5C5C5C5C;
|
| 60 | }
|
| 61 |
|
| 62 | var hash = binb_sha1(ipad.concat(rstr2binb(data)), 512 + data.length * 8);
|
| 63 | return binb2rstr(binb_sha1(opad.concat(hash), 512 + 160));
|
| 64 | }
|
| 65 |
|
| 66 | /*
|
| 67 | * Convert a raw string to a hex string
|
| 68 | */
|
| 69 | function rstr2hex(input)
|
| 70 | {
|
| 71 | try { hexcase } catch(e) { hexcase=0; }
|
| 72 | var hex_tab = hexcase ? "0123456789ABCDEF" : "0123456789abcdef";
|
| 73 | var output = "";
|
| 74 | var x;
|
| 75 | for(var i = 0; i < input.length; i++)
|
| 76 | {
|
| 77 | x = input.charCodeAt(i);
|
| 78 | output += hex_tab.charAt((x >>> 4) & 0x0F)
|
| 79 | + hex_tab.charAt( x & 0x0F);
|
| 80 | }
|
| 81 | return output;
|
| 82 | }
|
| 83 |
|
| 84 | /*
|
| 85 | * Convert a raw string to a base-64 string
|
| 86 | */
|
| 87 | function rstr2b64(input)
|
| 88 | {
|
| 89 | try { b64pad } catch(e) { b64pad=''; }
|
| 90 | var tab = "ABCDEFGHIJKLMNOPQRSTUVWXYZabcdefghijklmnopqrstuvwxyz0123456789+/";
|
| 91 | var output = "";
|
| 92 | var len = input.length;
|
| 93 | for(var i = 0; i < len; i += 3)
|
| 94 | {
|
| 95 | var triplet = (input.charCodeAt(i) << 16)
|
| 96 | | (i + 1 < len ? input.charCodeAt(i+1) << 8 : 0)
|
| 97 | | (i + 2 < len ? input.charCodeAt(i+2) : 0);
|
| 98 | for(var j = 0; j < 4; j++)
|
| 99 | {
|
| 100 | if(i * 8 + j * 6 > input.length * 8) output += b64pad;
|
| 101 | else output += tab.charAt((triplet >>> 6*(3-j)) & 0x3F);
|
| 102 | }
|
| 103 | }
|
| 104 | return output;
|
| 105 | }
|
| 106 |
|
| 107 | /*
|
| 108 | * Convert a raw string to an arbitrary string encoding
|
| 109 | */
|
| 110 | function rstr2any(input, encoding)
|
| 111 | {
|
| 112 | var divisor = encoding.length;
|
| 113 | var remainders = Array();
|
| 114 | var i, q, x, quotient;
|
| 115 |
|
| 116 | /* Convert to an array of 16-bit big-endian values, forming the dividend */
|
| 117 | var dividend = Array(Math.ceil(input.length / 2));
|
| 118 | for(i = 0; i < dividend.length; i++)
|
| 119 | {
|
| 120 | dividend[i] = (input.charCodeAt(i * 2) << 8) | input.charCodeAt(i * 2 + 1);
|
| 121 | }
|
| 122 |
|
| 123 | /*
|
| 124 | * Repeatedly perform a long division. The binary array forms the dividend,
|
| 125 | * the length of the encoding is the divisor. Once computed, the quotient
|
| 126 | * forms the dividend for the next step. We stop when the dividend is zero.
|
| 127 | * All remainders are stored for later use.
|
| 128 | */
|
| 129 | while(dividend.length > 0)
|
| 130 | {
|
| 131 | quotient = Array();
|
| 132 | x = 0;
|
| 133 | for(i = 0; i < dividend.length; i++)
|
| 134 | {
|
| 135 | x = (x << 16) + dividend[i];
|
| 136 | q = Math.floor(x / divisor);
|
| 137 | x -= q * divisor;
|
| 138 | if(quotient.length > 0 || q > 0)
|
| 139 | quotient[quotient.length] = q;
|
| 140 | }
|
| 141 | remainders[remainders.length] = x;
|
| 142 | dividend = quotient;
|
| 143 | }
|
| 144 |
|
| 145 | /* Convert the remainders to the output string */
|
| 146 | var output = "";
|
| 147 | for(i = remainders.length - 1; i >= 0; i--)
|
| 148 | output += encoding.charAt(remainders[i]);
|
| 149 |
|
| 150 | /* Append leading zero equivalents */
|
| 151 | var full_length = Math.ceil(input.length * 8 /
|
| 152 | (Math.log(encoding.length) / Math.log(2)))
|
| 153 | for(i = output.length; i < full_length; i++)
|
| 154 | output = encoding[0] + output;
|
| 155 |
|
| 156 | return output;
|
| 157 | }
|
| 158 |
|
| 159 | /*
|
| 160 | * Encode a string as utf-8.
|
| 161 | * For efficiency, this assumes the input is valid utf-16.
|
| 162 | */
|
| 163 | function str2rstr_utf8(input)
|
| 164 | {
|
| 165 | var output = "";
|
| 166 | var i = -1;
|
| 167 | var x, y;
|
| 168 |
|
| 169 | while(++i < input.length)
|
| 170 | {
|
| 171 | /* Decode utf-16 surrogate pairs */
|
| 172 | x = input.charCodeAt(i);
|
| 173 | y = i + 1 < input.length ? input.charCodeAt(i + 1) : 0;
|
| 174 | if(0xD800 <= x && x <= 0xDBFF && 0xDC00 <= y && y <= 0xDFFF)
|
| 175 | {
|
| 176 | x = 0x10000 + ((x & 0x03FF) << 10) + (y & 0x03FF);
|
| 177 | i++;
|
| 178 | }
|
| 179 |
|
| 180 | /* Encode output as utf-8 */
|
| 181 | if(x <= 0x7F)
|
| 182 | output += String.fromCharCode(x);
|
| 183 | else if(x <= 0x7FF)
|
| 184 | output += String.fromCharCode(0xC0 | ((x >>> 6 ) & 0x1F),
|
| 185 | 0x80 | ( x & 0x3F));
|
| 186 | else if(x <= 0xFFFF)
|
| 187 | output += String.fromCharCode(0xE0 | ((x >>> 12) & 0x0F),
|
| 188 | 0x80 | ((x >>> 6 ) & 0x3F),
|
| 189 | 0x80 | ( x & 0x3F));
|
| 190 | else if(x <= 0x1FFFFF)
|
| 191 | output += String.fromCharCode(0xF0 | ((x >>> 18) & 0x07),
|
| 192 | 0x80 | ((x >>> 12) & 0x3F),
|
| 193 | 0x80 | ((x >>> 6 ) & 0x3F),
|
| 194 | 0x80 | ( x & 0x3F));
|
| 195 | }
|
| 196 | return output;
|
| 197 | }
|
| 198 |
|
| 199 | /*
|
| 200 | * Encode a string as utf-16
|
| 201 | */
|
| 202 | function str2rstr_utf16le(input)
|
| 203 | {
|
| 204 | var output = "";
|
| 205 | for(var i = 0; i < input.length; i++)
|
| 206 | output += String.fromCharCode( input.charCodeAt(i) & 0xFF,
|
| 207 | (input.charCodeAt(i) >>> 8) & 0xFF);
|
| 208 | return output;
|
| 209 | }
|
| 210 |
|
| 211 | function str2rstr_utf16be(input)
|
| 212 | {
|
| 213 | var output = "";
|
| 214 | for(var i = 0; i < input.length; i++)
|
| 215 | output += String.fromCharCode((input.charCodeAt(i) >>> 8) & 0xFF,
|
| 216 | input.charCodeAt(i) & 0xFF);
|
| 217 | return output;
|
| 218 | }
|
| 219 |
|
| 220 | /*
|
| 221 | * Convert a raw string to an array of big-endian words
|
| 222 | * Characters >255 have their high-byte silently ignored.
|
| 223 | */
|
| 224 | function rstr2binb(input)
|
| 225 | {
|
| 226 | var output = Array(input.length >> 2);
|
| 227 | for(var i = 0; i < output.length; i++)
|
| 228 | output[i] = 0;
|
| 229 | for(var i = 0; i < input.length * 8; i += 8)
|
| 230 | output[i>>5] |= (input.charCodeAt(i / 8) & 0xFF) << (24 - i % 32);
|
| 231 | return output;
|
| 232 | }
|
| 233 |
|
| 234 | /*
|
| 235 | * Convert an array of big-endian words to a string
|
| 236 | */
|
| 237 | function binb2rstr(input)
|
| 238 | {
|
| 239 | var output = "";
|
| 240 | for(var i = 0; i < input.length * 32; i += 8)
|
| 241 | output += String.fromCharCode((input[i>>5] >>> (24 - i % 32)) & 0xFF);
|
| 242 | return output;
|
| 243 | }
|
| 244 |
|
| 245 | /*
|
| 246 | * Calculate the SHA-1 of an array of big-endian words, and a bit length
|
| 247 | */
|
| 248 | function binb_sha1(x, len)
|
| 249 | {
|
| 250 | /* append padding */
|
| 251 | x[len >> 5] |= 0x80 << (24 - len % 32);
|
| 252 | x[((len + 64 >> 9) << 4) + 15] = len;
|
| 253 |
|
| 254 | var w = Array(80);
|
| 255 | var a = 1732584193;
|
| 256 | var b = -271733879;
|
| 257 | var c = -1732584194;
|
| 258 | var d = 271733878;
|
| 259 | var e = -1009589776;
|
| 260 |
|
| 261 | for(var i = 0; i < x.length; i += 16)
|
| 262 | {
|
| 263 | var olda = a;
|
| 264 | var oldb = b;
|
| 265 | var oldc = c;
|
| 266 | var oldd = d;
|
| 267 | var olde = e;
|
| 268 |
|
| 269 | for(var j = 0; j < 80; j++)
|
| 270 | {
|
| 271 | if(j < 16) w[j] = x[i + j];
|
| 272 | else w[j] = bit_rol(w[j-3] ^ w[j-8] ^ w[j-14] ^ w[j-16], 1);
|
| 273 | var t = safe_add(safe_add(bit_rol(a, 5), sha1_ft(j, b, c, d)),
|
| 274 | safe_add(safe_add(e, w[j]), sha1_kt(j)));
|
| 275 | e = d;
|
| 276 | d = c;
|
| 277 | c = bit_rol(b, 30);
|
| 278 | b = a;
|
| 279 | a = t;
|
| 280 | }
|
| 281 |
|
| 282 | a = safe_add(a, olda);
|
| 283 | b = safe_add(b, oldb);
|
| 284 | c = safe_add(c, oldc);
|
| 285 | d = safe_add(d, oldd);
|
| 286 | e = safe_add(e, olde);
|
| 287 | }
|
| 288 | return Array(a, b, c, d, e);
|
| 289 |
|
| 290 | }
|
| 291 |
|
| 292 | /*
|
| 293 | * Perform the appropriate triplet combination function for the current
|
| 294 | * iteration
|
| 295 | */
|
| 296 | function sha1_ft(t, b, c, d)
|
| 297 | {
|
| 298 | if(t < 20) return (b & c) | ((~b) & d);
|
| 299 | if(t < 40) return b ^ c ^ d;
|
| 300 | if(t < 60) return (b & c) | (b & d) | (c & d);
|
| 301 | return b ^ c ^ d;
|
| 302 | }
|
| 303 |
|
| 304 | /*
|
| 305 | * Determine the appropriate additive constant for the current iteration
|
| 306 | */
|
| 307 | function sha1_kt(t)
|
| 308 | {
|
| 309 | return (t < 20) ? 1518500249 : (t < 40) ? 1859775393 :
|
| 310 | (t < 60) ? -1894007588 : -899497514;
|
| 311 | }
|
| 312 |
|
| 313 | /*
|
| 314 | * Add integers, wrapping at 2^32. This uses 16-bit operations internally
|
| 315 | * to work around bugs in some JS interpreters.
|
| 316 | */
|
| 317 | function safe_add(x, y)
|
| 318 | {
|
| 319 | var lsw = (x & 0xFFFF) + (y & 0xFFFF);
|
| 320 | var msw = (x >> 16) + (y >> 16) + (lsw >> 16);
|
| 321 | return (msw << 16) | (lsw & 0xFFFF);
|
| 322 | }
|
| 323 |
|
| 324 | /*
|
| 325 | * Bitwise rotate a 32-bit number to the left.
|
| 326 | */
|
| 327 | function bit_rol(num, cnt)
|
| 328 | {
|
| 329 | return (num << cnt) | (num >>> (32 - cnt));
|
| 330 | }
|