Meki Cherkaoui | 88d59cd | 2012-05-14 07:34:58 -0700 | [diff] [blame] | 1 | // Copyright (c) 2005-2009 Tom Wu
|
| 2 | // All Rights Reserved.
|
| 3 | // See "LICENSE" for details.
|
| 4 |
|
| 5 | // Extended JavaScript BN functions, required for RSA private ops.
|
| 6 |
|
| 7 | // Version 1.1: new BigInteger("0", 10) returns "proper" zero
|
| 8 |
|
| 9 | // (public)
|
| 10 | function bnClone() { var r = nbi(); this.copyTo(r); return r; }
|
| 11 |
|
| 12 | // (public) return value as integer
|
| 13 | function bnIntValue() {
|
| 14 | if(this.s < 0) {
|
| 15 | if(this.t == 1) return this[0]-this.DV;
|
| 16 | else if(this.t == 0) return -1;
|
| 17 | }
|
| 18 | else if(this.t == 1) return this[0];
|
| 19 | else if(this.t == 0) return 0;
|
| 20 | // assumes 16 < DB < 32
|
| 21 | return ((this[1]&((1<<(32-this.DB))-1))<<this.DB)|this[0];
|
| 22 | }
|
| 23 |
|
| 24 | // (public) return value as byte
|
| 25 | function bnByteValue() { return (this.t==0)?this.s:(this[0]<<24)>>24; }
|
| 26 |
|
| 27 | // (public) return value as short (assumes DB>=16)
|
| 28 | function bnShortValue() { return (this.t==0)?this.s:(this[0]<<16)>>16; }
|
| 29 |
|
| 30 | // (protected) return x s.t. r^x < DV
|
| 31 | function bnpChunkSize(r) { return Math.floor(Math.LN2*this.DB/Math.log(r)); }
|
| 32 |
|
| 33 | // (public) 0 if this == 0, 1 if this > 0
|
| 34 | function bnSigNum() {
|
| 35 | if(this.s < 0) return -1;
|
| 36 | else if(this.t <= 0 || (this.t == 1 && this[0] <= 0)) return 0;
|
| 37 | else return 1;
|
| 38 | }
|
| 39 |
|
| 40 | // (protected) convert to radix string
|
| 41 | function bnpToRadix(b) {
|
| 42 | if(b == null) b = 10;
|
| 43 | if(this.signum() == 0 || b < 2 || b > 36) return "0";
|
| 44 | var cs = this.chunkSize(b);
|
| 45 | var a = Math.pow(b,cs);
|
| 46 | var d = nbv(a), y = nbi(), z = nbi(), r = "";
|
| 47 | this.divRemTo(d,y,z);
|
| 48 | while(y.signum() > 0) {
|
| 49 | r = (a+z.intValue()).toString(b).substr(1) + r;
|
| 50 | y.divRemTo(d,y,z);
|
| 51 | }
|
| 52 | return z.intValue().toString(b) + r;
|
| 53 | }
|
| 54 |
|
| 55 | // (protected) convert from radix string
|
| 56 | function bnpFromRadix(s,b) {
|
| 57 | this.fromInt(0);
|
| 58 | if(b == null) b = 10;
|
| 59 | var cs = this.chunkSize(b);
|
| 60 | var d = Math.pow(b,cs), mi = false, j = 0, w = 0;
|
| 61 | for(var i = 0; i < s.length; ++i) {
|
| 62 | var x = intAt(s,i);
|
| 63 | if(x < 0) {
|
| 64 | if(s.charAt(i) == "-" && this.signum() == 0) mi = true;
|
| 65 | continue;
|
| 66 | }
|
| 67 | w = b*w+x;
|
| 68 | if(++j >= cs) {
|
| 69 | this.dMultiply(d);
|
| 70 | this.dAddOffset(w,0);
|
| 71 | j = 0;
|
| 72 | w = 0;
|
| 73 | }
|
| 74 | }
|
| 75 | if(j > 0) {
|
| 76 | this.dMultiply(Math.pow(b,j));
|
| 77 | this.dAddOffset(w,0);
|
| 78 | }
|
| 79 | if(mi) BigInteger.ZERO.subTo(this,this);
|
| 80 | }
|
| 81 |
|
| 82 | // (protected) alternate constructor
|
| 83 | function bnpFromNumber(a,b,c) {
|
| 84 | if("number" == typeof b) {
|
| 85 | // new BigInteger(int,int,RNG)
|
| 86 | if(a < 2) this.fromInt(1);
|
| 87 | else {
|
| 88 | this.fromNumber(a,c);
|
| 89 | if(!this.testBit(a-1)) // force MSB set
|
| 90 | this.bitwiseTo(BigInteger.ONE.shiftLeft(a-1),op_or,this);
|
| 91 | if(this.isEven()) this.dAddOffset(1,0); // force odd
|
| 92 | while(!this.isProbablePrime(b)) {
|
| 93 | this.dAddOffset(2,0);
|
| 94 | if(this.bitLength() > a) this.subTo(BigInteger.ONE.shiftLeft(a-1),this);
|
| 95 | }
|
| 96 | }
|
| 97 | }
|
| 98 | else {
|
| 99 | // new BigInteger(int,RNG)
|
| 100 | var x = new Array(), t = a&7;
|
| 101 | x.length = (a>>3)+1;
|
| 102 | b.nextBytes(x);
|
| 103 | if(t > 0) x[0] &= ((1<<t)-1); else x[0] = 0;
|
| 104 | this.fromString(x,256);
|
| 105 | }
|
| 106 | }
|
| 107 |
|
| 108 | // (public) convert to bigendian byte array
|
| 109 | function bnToByteArray() {
|
| 110 | var i = this.t, r = new Array();
|
| 111 | r[0] = this.s;
|
| 112 | var p = this.DB-(i*this.DB)%8, d, k = 0;
|
| 113 | if(i-- > 0) {
|
| 114 | if(p < this.DB && (d = this[i]>>p) != (this.s&this.DM)>>p)
|
| 115 | r[k++] = d|(this.s<<(this.DB-p));
|
| 116 | while(i >= 0) {
|
| 117 | if(p < 8) {
|
| 118 | d = (this[i]&((1<<p)-1))<<(8-p);
|
| 119 | d |= this[--i]>>(p+=this.DB-8);
|
| 120 | }
|
| 121 | else {
|
| 122 | d = (this[i]>>(p-=8))&0xff;
|
| 123 | if(p <= 0) { p += this.DB; --i; }
|
| 124 | }
|
| 125 | if((d&0x80) != 0) d |= -256;
|
| 126 | if(k == 0 && (this.s&0x80) != (d&0x80)) ++k;
|
| 127 | if(k > 0 || d != this.s) r[k++] = d;
|
| 128 | }
|
| 129 | }
|
| 130 | return r;
|
| 131 | }
|
| 132 |
|
| 133 | function bnEquals(a) { return(this.compareTo(a)==0); }
|
| 134 | function bnMin(a) { return(this.compareTo(a)<0)?this:a; }
|
| 135 | function bnMax(a) { return(this.compareTo(a)>0)?this:a; }
|
| 136 |
|
| 137 | // (protected) r = this op a (bitwise)
|
| 138 | function bnpBitwiseTo(a,op,r) {
|
| 139 | var i, f, m = Math.min(a.t,this.t);
|
| 140 | for(i = 0; i < m; ++i) r[i] = op(this[i],a[i]);
|
| 141 | if(a.t < this.t) {
|
| 142 | f = a.s&this.DM;
|
| 143 | for(i = m; i < this.t; ++i) r[i] = op(this[i],f);
|
| 144 | r.t = this.t;
|
| 145 | }
|
| 146 | else {
|
| 147 | f = this.s&this.DM;
|
| 148 | for(i = m; i < a.t; ++i) r[i] = op(f,a[i]);
|
| 149 | r.t = a.t;
|
| 150 | }
|
| 151 | r.s = op(this.s,a.s);
|
| 152 | r.clamp();
|
| 153 | }
|
| 154 |
|
| 155 | // (public) this & a
|
| 156 | function op_and(x,y) { return x&y; }
|
| 157 | function bnAnd(a) { var r = nbi(); this.bitwiseTo(a,op_and,r); return r; }
|
| 158 |
|
| 159 | // (public) this | a
|
| 160 | function op_or(x,y) { return x|y; }
|
| 161 | function bnOr(a) { var r = nbi(); this.bitwiseTo(a,op_or,r); return r; }
|
| 162 |
|
| 163 | // (public) this ^ a
|
| 164 | function op_xor(x,y) { return x^y; }
|
| 165 | function bnXor(a) { var r = nbi(); this.bitwiseTo(a,op_xor,r); return r; }
|
| 166 |
|
| 167 | // (public) this & ~a
|
| 168 | function op_andnot(x,y) { return x&~y; }
|
| 169 | function bnAndNot(a) { var r = nbi(); this.bitwiseTo(a,op_andnot,r); return r; }
|
| 170 |
|
| 171 | // (public) ~this
|
| 172 | function bnNot() {
|
| 173 | var r = nbi();
|
| 174 | for(var i = 0; i < this.t; ++i) r[i] = this.DM&~this[i];
|
| 175 | r.t = this.t;
|
| 176 | r.s = ~this.s;
|
| 177 | return r;
|
| 178 | }
|
| 179 |
|
| 180 | // (public) this << n
|
| 181 | function bnShiftLeft(n) {
|
| 182 | var r = nbi();
|
| 183 | if(n < 0) this.rShiftTo(-n,r); else this.lShiftTo(n,r);
|
| 184 | return r;
|
| 185 | }
|
| 186 |
|
| 187 | // (public) this >> n
|
| 188 | function bnShiftRight(n) {
|
| 189 | var r = nbi();
|
| 190 | if(n < 0) this.lShiftTo(-n,r); else this.rShiftTo(n,r);
|
| 191 | return r;
|
| 192 | }
|
| 193 |
|
| 194 | // return index of lowest 1-bit in x, x < 2^31
|
| 195 | function lbit(x) {
|
| 196 | if(x == 0) return -1;
|
| 197 | var r = 0;
|
| 198 | if((x&0xffff) == 0) { x >>= 16; r += 16; }
|
| 199 | if((x&0xff) == 0) { x >>= 8; r += 8; }
|
| 200 | if((x&0xf) == 0) { x >>= 4; r += 4; }
|
| 201 | if((x&3) == 0) { x >>= 2; r += 2; }
|
| 202 | if((x&1) == 0) ++r;
|
| 203 | return r;
|
| 204 | }
|
| 205 |
|
| 206 | // (public) returns index of lowest 1-bit (or -1 if none)
|
| 207 | function bnGetLowestSetBit() {
|
| 208 | for(var i = 0; i < this.t; ++i)
|
| 209 | if(this[i] != 0) return i*this.DB+lbit(this[i]);
|
| 210 | if(this.s < 0) return this.t*this.DB;
|
| 211 | return -1;
|
| 212 | }
|
| 213 |
|
| 214 | // return number of 1 bits in x
|
| 215 | function cbit(x) {
|
| 216 | var r = 0;
|
| 217 | while(x != 0) { x &= x-1; ++r; }
|
| 218 | return r;
|
| 219 | }
|
| 220 |
|
| 221 | // (public) return number of set bits
|
| 222 | function bnBitCount() {
|
| 223 | var r = 0, x = this.s&this.DM;
|
| 224 | for(var i = 0; i < this.t; ++i) r += cbit(this[i]^x);
|
| 225 | return r;
|
| 226 | }
|
| 227 |
|
| 228 | // (public) true iff nth bit is set
|
| 229 | function bnTestBit(n) {
|
| 230 | var j = Math.floor(n/this.DB);
|
| 231 | if(j >= this.t) return(this.s!=0);
|
| 232 | return((this[j]&(1<<(n%this.DB)))!=0);
|
| 233 | }
|
| 234 |
|
| 235 | // (protected) this op (1<<n)
|
| 236 | function bnpChangeBit(n,op) {
|
| 237 | var r = BigInteger.ONE.shiftLeft(n);
|
| 238 | this.bitwiseTo(r,op,r);
|
| 239 | return r;
|
| 240 | }
|
| 241 |
|
| 242 | // (public) this | (1<<n)
|
| 243 | function bnSetBit(n) { return this.changeBit(n,op_or); }
|
| 244 |
|
| 245 | // (public) this & ~(1<<n)
|
| 246 | function bnClearBit(n) { return this.changeBit(n,op_andnot); }
|
| 247 |
|
| 248 | // (public) this ^ (1<<n)
|
| 249 | function bnFlipBit(n) { return this.changeBit(n,op_xor); }
|
| 250 |
|
| 251 | // (protected) r = this + a
|
| 252 | function bnpAddTo(a,r) {
|
| 253 | var i = 0, c = 0, m = Math.min(a.t,this.t);
|
| 254 | while(i < m) {
|
| 255 | c += this[i]+a[i];
|
| 256 | r[i++] = c&this.DM;
|
| 257 | c >>= this.DB;
|
| 258 | }
|
| 259 | if(a.t < this.t) {
|
| 260 | c += a.s;
|
| 261 | while(i < this.t) {
|
| 262 | c += this[i];
|
| 263 | r[i++] = c&this.DM;
|
| 264 | c >>= this.DB;
|
| 265 | }
|
| 266 | c += this.s;
|
| 267 | }
|
| 268 | else {
|
| 269 | c += this.s;
|
| 270 | while(i < a.t) {
|
| 271 | c += a[i];
|
| 272 | r[i++] = c&this.DM;
|
| 273 | c >>= this.DB;
|
| 274 | }
|
| 275 | c += a.s;
|
| 276 | }
|
| 277 | r.s = (c<0)?-1:0;
|
| 278 | if(c > 0) r[i++] = c;
|
| 279 | else if(c < -1) r[i++] = this.DV+c;
|
| 280 | r.t = i;
|
| 281 | r.clamp();
|
| 282 | }
|
| 283 |
|
| 284 | // (public) this + a
|
| 285 | function bnAdd(a) { var r = nbi(); this.addTo(a,r); return r; }
|
| 286 |
|
| 287 | // (public) this - a
|
| 288 | function bnSubtract(a) { var r = nbi(); this.subTo(a,r); return r; }
|
| 289 |
|
| 290 | // (public) this * a
|
| 291 | function bnMultiply(a) { var r = nbi(); this.multiplyTo(a,r); return r; }
|
| 292 |
|
| 293 | // (public) this / a
|
| 294 | function bnDivide(a) { var r = nbi(); this.divRemTo(a,r,null); return r; }
|
| 295 |
|
| 296 | // (public) this % a
|
| 297 | function bnRemainder(a) { var r = nbi(); this.divRemTo(a,null,r); return r; }
|
| 298 |
|
| 299 | // (public) [this/a,this%a]
|
| 300 | function bnDivideAndRemainder(a) {
|
| 301 | var q = nbi(), r = nbi();
|
| 302 | this.divRemTo(a,q,r);
|
| 303 | return new Array(q,r);
|
| 304 | }
|
| 305 |
|
| 306 | // (protected) this *= n, this >= 0, 1 < n < DV
|
| 307 | function bnpDMultiply(n) {
|
| 308 | this[this.t] = this.am(0,n-1,this,0,0,this.t);
|
| 309 | ++this.t;
|
| 310 | this.clamp();
|
| 311 | }
|
| 312 |
|
| 313 | // (protected) this += n << w words, this >= 0
|
| 314 | function bnpDAddOffset(n,w) {
|
| 315 | if(n == 0) return;
|
| 316 | while(this.t <= w) this[this.t++] = 0;
|
| 317 | this[w] += n;
|
| 318 | while(this[w] >= this.DV) {
|
| 319 | this[w] -= this.DV;
|
| 320 | if(++w >= this.t) this[this.t++] = 0;
|
| 321 | ++this[w];
|
| 322 | }
|
| 323 | }
|
| 324 |
|
| 325 | // A "null" reducer
|
| 326 | function NullExp() {}
|
| 327 | function nNop(x) { return x; }
|
| 328 | function nMulTo(x,y,r) { x.multiplyTo(y,r); }
|
| 329 | function nSqrTo(x,r) { x.squareTo(r); }
|
| 330 |
|
| 331 | NullExp.prototype.convert = nNop;
|
| 332 | NullExp.prototype.revert = nNop;
|
| 333 | NullExp.prototype.mulTo = nMulTo;
|
| 334 | NullExp.prototype.sqrTo = nSqrTo;
|
| 335 |
|
| 336 | // (public) this^e
|
| 337 | function bnPow(e) { return this.exp(e,new NullExp()); }
|
| 338 |
|
| 339 | // (protected) r = lower n words of "this * a", a.t <= n
|
| 340 | // "this" should be the larger one if appropriate.
|
| 341 | function bnpMultiplyLowerTo(a,n,r) {
|
| 342 | var i = Math.min(this.t+a.t,n);
|
| 343 | r.s = 0; // assumes a,this >= 0
|
| 344 | r.t = i;
|
| 345 | while(i > 0) r[--i] = 0;
|
| 346 | var j;
|
| 347 | for(j = r.t-this.t; i < j; ++i) r[i+this.t] = this.am(0,a[i],r,i,0,this.t);
|
| 348 | for(j = Math.min(a.t,n); i < j; ++i) this.am(0,a[i],r,i,0,n-i);
|
| 349 | r.clamp();
|
| 350 | }
|
| 351 |
|
| 352 | // (protected) r = "this * a" without lower n words, n > 0
|
| 353 | // "this" should be the larger one if appropriate.
|
| 354 | function bnpMultiplyUpperTo(a,n,r) {
|
| 355 | --n;
|
| 356 | var i = r.t = this.t+a.t-n;
|
| 357 | r.s = 0; // assumes a,this >= 0
|
| 358 | while(--i >= 0) r[i] = 0;
|
| 359 | for(i = Math.max(n-this.t,0); i < a.t; ++i)
|
| 360 | r[this.t+i-n] = this.am(n-i,a[i],r,0,0,this.t+i-n);
|
| 361 | r.clamp();
|
| 362 | r.drShiftTo(1,r);
|
| 363 | }
|
| 364 |
|
| 365 | // Barrett modular reduction
|
| 366 | function Barrett(m) {
|
| 367 | // setup Barrett
|
| 368 | this.r2 = nbi();
|
| 369 | this.q3 = nbi();
|
| 370 | BigInteger.ONE.dlShiftTo(2*m.t,this.r2);
|
| 371 | this.mu = this.r2.divide(m);
|
| 372 | this.m = m;
|
| 373 | }
|
| 374 |
|
| 375 | function barrettConvert(x) {
|
| 376 | if(x.s < 0 || x.t > 2*this.m.t) return x.mod(this.m);
|
| 377 | else if(x.compareTo(this.m) < 0) return x;
|
| 378 | else { var r = nbi(); x.copyTo(r); this.reduce(r); return r; }
|
| 379 | }
|
| 380 |
|
| 381 | function barrettRevert(x) { return x; }
|
| 382 |
|
| 383 | // x = x mod m (HAC 14.42)
|
| 384 | function barrettReduce(x) {
|
| 385 | x.drShiftTo(this.m.t-1,this.r2);
|
| 386 | if(x.t > this.m.t+1) { x.t = this.m.t+1; x.clamp(); }
|
| 387 | this.mu.multiplyUpperTo(this.r2,this.m.t+1,this.q3);
|
| 388 | this.m.multiplyLowerTo(this.q3,this.m.t+1,this.r2);
|
| 389 | while(x.compareTo(this.r2) < 0) x.dAddOffset(1,this.m.t+1);
|
| 390 | x.subTo(this.r2,x);
|
| 391 | while(x.compareTo(this.m) >= 0) x.subTo(this.m,x);
|
| 392 | }
|
| 393 |
|
| 394 | // r = x^2 mod m; x != r
|
| 395 | function barrettSqrTo(x,r) { x.squareTo(r); this.reduce(r); }
|
| 396 |
|
| 397 | // r = x*y mod m; x,y != r
|
| 398 | function barrettMulTo(x,y,r) { x.multiplyTo(y,r); this.reduce(r); }
|
| 399 |
|
| 400 | Barrett.prototype.convert = barrettConvert;
|
| 401 | Barrett.prototype.revert = barrettRevert;
|
| 402 | Barrett.prototype.reduce = barrettReduce;
|
| 403 | Barrett.prototype.mulTo = barrettMulTo;
|
| 404 | Barrett.prototype.sqrTo = barrettSqrTo;
|
| 405 |
|
| 406 | // (public) this^e % m (HAC 14.85)
|
| 407 | function bnModPow(e,m) {
|
| 408 | var i = e.bitLength(), k, r = nbv(1), z;
|
| 409 | if(i <= 0) return r;
|
| 410 | else if(i < 18) k = 1;
|
| 411 | else if(i < 48) k = 3;
|
| 412 | else if(i < 144) k = 4;
|
| 413 | else if(i < 768) k = 5;
|
| 414 | else k = 6;
|
| 415 | if(i < 8)
|
| 416 | z = new Classic(m);
|
| 417 | else if(m.isEven())
|
| 418 | z = new Barrett(m);
|
| 419 | else
|
| 420 | z = new Montgomery(m);
|
| 421 |
|
| 422 | // precomputation
|
| 423 | var g = new Array(), n = 3, k1 = k-1, km = (1<<k)-1;
|
| 424 | g[1] = z.convert(this);
|
| 425 | if(k > 1) {
|
| 426 | var g2 = nbi();
|
| 427 | z.sqrTo(g[1],g2);
|
| 428 | while(n <= km) {
|
| 429 | g[n] = nbi();
|
| 430 | z.mulTo(g2,g[n-2],g[n]);
|
| 431 | n += 2;
|
| 432 | }
|
| 433 | }
|
| 434 |
|
| 435 | var j = e.t-1, w, is1 = true, r2 = nbi(), t;
|
| 436 | i = nbits(e[j])-1;
|
| 437 | while(j >= 0) {
|
| 438 | if(i >= k1) w = (e[j]>>(i-k1))&km;
|
| 439 | else {
|
| 440 | w = (e[j]&((1<<(i+1))-1))<<(k1-i);
|
| 441 | if(j > 0) w |= e[j-1]>>(this.DB+i-k1);
|
| 442 | }
|
| 443 |
|
| 444 | n = k;
|
| 445 | while((w&1) == 0) { w >>= 1; --n; }
|
| 446 | if((i -= n) < 0) { i += this.DB; --j; }
|
| 447 | if(is1) { // ret == 1, don't bother squaring or multiplying it
|
| 448 | g[w].copyTo(r);
|
| 449 | is1 = false;
|
| 450 | }
|
| 451 | else {
|
| 452 | while(n > 1) { z.sqrTo(r,r2); z.sqrTo(r2,r); n -= 2; }
|
| 453 | if(n > 0) z.sqrTo(r,r2); else { t = r; r = r2; r2 = t; }
|
| 454 | z.mulTo(r2,g[w],r);
|
| 455 | }
|
| 456 |
|
| 457 | while(j >= 0 && (e[j]&(1<<i)) == 0) {
|
| 458 | z.sqrTo(r,r2); t = r; r = r2; r2 = t;
|
| 459 | if(--i < 0) { i = this.DB-1; --j; }
|
| 460 | }
|
| 461 | }
|
| 462 | return z.revert(r);
|
| 463 | }
|
| 464 |
|
| 465 | // (public) gcd(this,a) (HAC 14.54)
|
| 466 | function bnGCD(a) {
|
| 467 | var x = (this.s<0)?this.negate():this.clone();
|
| 468 | var y = (a.s<0)?a.negate():a.clone();
|
| 469 | if(x.compareTo(y) < 0) { var t = x; x = y; y = t; }
|
| 470 | var i = x.getLowestSetBit(), g = y.getLowestSetBit();
|
| 471 | if(g < 0) return x;
|
| 472 | if(i < g) g = i;
|
| 473 | if(g > 0) {
|
| 474 | x.rShiftTo(g,x);
|
| 475 | y.rShiftTo(g,y);
|
| 476 | }
|
| 477 | while(x.signum() > 0) {
|
| 478 | if((i = x.getLowestSetBit()) > 0) x.rShiftTo(i,x);
|
| 479 | if((i = y.getLowestSetBit()) > 0) y.rShiftTo(i,y);
|
| 480 | if(x.compareTo(y) >= 0) {
|
| 481 | x.subTo(y,x);
|
| 482 | x.rShiftTo(1,x);
|
| 483 | }
|
| 484 | else {
|
| 485 | y.subTo(x,y);
|
| 486 | y.rShiftTo(1,y);
|
| 487 | }
|
| 488 | }
|
| 489 | if(g > 0) y.lShiftTo(g,y);
|
| 490 | return y;
|
| 491 | }
|
| 492 |
|
| 493 | // (protected) this % n, n < 2^26
|
| 494 | function bnpModInt(n) {
|
| 495 | if(n <= 0) return 0;
|
| 496 | var d = this.DV%n, r = (this.s<0)?n-1:0;
|
| 497 | if(this.t > 0)
|
| 498 | if(d == 0) r = this[0]%n;
|
| 499 | else for(var i = this.t-1; i >= 0; --i) r = (d*r+this[i])%n;
|
| 500 | return r;
|
| 501 | }
|
| 502 |
|
| 503 | // (public) 1/this % m (HAC 14.61)
|
| 504 | function bnModInverse(m) {
|
| 505 | var ac = m.isEven();
|
| 506 | if((this.isEven() && ac) || m.signum() == 0) return BigInteger.ZERO;
|
| 507 | var u = m.clone(), v = this.clone();
|
| 508 | var a = nbv(1), b = nbv(0), c = nbv(0), d = nbv(1);
|
| 509 | while(u.signum() != 0) {
|
| 510 | while(u.isEven()) {
|
| 511 | u.rShiftTo(1,u);
|
| 512 | if(ac) {
|
| 513 | if(!a.isEven() || !b.isEven()) { a.addTo(this,a); b.subTo(m,b); }
|
| 514 | a.rShiftTo(1,a);
|
| 515 | }
|
| 516 | else if(!b.isEven()) b.subTo(m,b);
|
| 517 | b.rShiftTo(1,b);
|
| 518 | }
|
| 519 | while(v.isEven()) {
|
| 520 | v.rShiftTo(1,v);
|
| 521 | if(ac) {
|
| 522 | if(!c.isEven() || !d.isEven()) { c.addTo(this,c); d.subTo(m,d); }
|
| 523 | c.rShiftTo(1,c);
|
| 524 | }
|
| 525 | else if(!d.isEven()) d.subTo(m,d);
|
| 526 | d.rShiftTo(1,d);
|
| 527 | }
|
| 528 | if(u.compareTo(v) >= 0) {
|
| 529 | u.subTo(v,u);
|
| 530 | if(ac) a.subTo(c,a);
|
| 531 | b.subTo(d,b);
|
| 532 | }
|
| 533 | else {
|
| 534 | v.subTo(u,v);
|
| 535 | if(ac) c.subTo(a,c);
|
| 536 | d.subTo(b,d);
|
| 537 | }
|
| 538 | }
|
| 539 | if(v.compareTo(BigInteger.ONE) != 0) return BigInteger.ZERO;
|
| 540 | if(d.compareTo(m) >= 0) return d.subtract(m);
|
| 541 | if(d.signum() < 0) d.addTo(m,d); else return d;
|
| 542 | if(d.signum() < 0) return d.add(m); else return d;
|
| 543 | }
|
| 544 |
|
| 545 | var lowprimes = [2,3,5,7,11,13,17,19,23,29,31,37,41,43,47,53,59,61,67,71,73,79,83,89,97,101,103,107,109,113,127,131,137,139,149,151,157,163,167,173,179,181,191,193,197,199,211,223,227,229,233,239,241,251,257,263,269,271,277,281,283,293,307,311,313,317,331,337,347,349,353,359,367,373,379,383,389,397,401,409,419,421,431,433,439,443,449,457,461,463,467,479,487,491,499,503,509];
|
| 546 | var lplim = (1<<26)/lowprimes[lowprimes.length-1];
|
| 547 |
|
| 548 | // (public) test primality with certainty >= 1-.5^t
|
| 549 | function bnIsProbablePrime(t) {
|
| 550 | var i, x = this.abs();
|
| 551 | if(x.t == 1 && x[0] <= lowprimes[lowprimes.length-1]) {
|
| 552 | for(i = 0; i < lowprimes.length; ++i)
|
| 553 | if(x[0] == lowprimes[i]) return true;
|
| 554 | return false;
|
| 555 | }
|
| 556 | if(x.isEven()) return false;
|
| 557 | i = 1;
|
| 558 | while(i < lowprimes.length) {
|
| 559 | var m = lowprimes[i], j = i+1;
|
| 560 | while(j < lowprimes.length && m < lplim) m *= lowprimes[j++];
|
| 561 | m = x.modInt(m);
|
| 562 | while(i < j) if(m%lowprimes[i++] == 0) return false;
|
| 563 | }
|
| 564 | return x.millerRabin(t);
|
| 565 | }
|
| 566 |
|
| 567 | // (protected) true if probably prime (HAC 4.24, Miller-Rabin)
|
| 568 | function bnpMillerRabin(t) {
|
| 569 | var n1 = this.subtract(BigInteger.ONE);
|
| 570 | var k = n1.getLowestSetBit();
|
| 571 | if(k <= 0) return false;
|
| 572 | var r = n1.shiftRight(k);
|
| 573 | t = (t+1)>>1;
|
| 574 | if(t > lowprimes.length) t = lowprimes.length;
|
| 575 | var a = nbi();
|
| 576 | for(var i = 0; i < t; ++i) {
|
| 577 | a.fromInt(lowprimes[i]);
|
| 578 | var y = a.modPow(r,this);
|
| 579 | if(y.compareTo(BigInteger.ONE) != 0 && y.compareTo(n1) != 0) {
|
| 580 | var j = 1;
|
| 581 | while(j++ < k && y.compareTo(n1) != 0) {
|
| 582 | y = y.modPowInt(2,this);
|
| 583 | if(y.compareTo(BigInteger.ONE) == 0) return false;
|
| 584 | }
|
| 585 | if(y.compareTo(n1) != 0) return false;
|
| 586 | }
|
| 587 | }
|
| 588 | return true;
|
| 589 | }
|
| 590 |
|
| 591 | // protected
|
| 592 | BigInteger.prototype.chunkSize = bnpChunkSize;
|
| 593 | BigInteger.prototype.toRadix = bnpToRadix;
|
| 594 | BigInteger.prototype.fromRadix = bnpFromRadix;
|
| 595 | BigInteger.prototype.fromNumber = bnpFromNumber;
|
| 596 | BigInteger.prototype.bitwiseTo = bnpBitwiseTo;
|
| 597 | BigInteger.prototype.changeBit = bnpChangeBit;
|
| 598 | BigInteger.prototype.addTo = bnpAddTo;
|
| 599 | BigInteger.prototype.dMultiply = bnpDMultiply;
|
| 600 | BigInteger.prototype.dAddOffset = bnpDAddOffset;
|
| 601 | BigInteger.prototype.multiplyLowerTo = bnpMultiplyLowerTo;
|
| 602 | BigInteger.prototype.multiplyUpperTo = bnpMultiplyUpperTo;
|
| 603 | BigInteger.prototype.modInt = bnpModInt;
|
| 604 | BigInteger.prototype.millerRabin = bnpMillerRabin;
|
| 605 |
|
| 606 | // public
|
| 607 | BigInteger.prototype.clone = bnClone;
|
| 608 | BigInteger.prototype.intValue = bnIntValue;
|
| 609 | BigInteger.prototype.byteValue = bnByteValue;
|
| 610 | BigInteger.prototype.shortValue = bnShortValue;
|
| 611 | BigInteger.prototype.signum = bnSigNum;
|
| 612 | BigInteger.prototype.toByteArray = bnToByteArray;
|
| 613 | BigInteger.prototype.equals = bnEquals;
|
| 614 | BigInteger.prototype.min = bnMin;
|
| 615 | BigInteger.prototype.max = bnMax;
|
| 616 | BigInteger.prototype.and = bnAnd;
|
| 617 | BigInteger.prototype.or = bnOr;
|
| 618 | BigInteger.prototype.xor = bnXor;
|
| 619 | BigInteger.prototype.andNot = bnAndNot;
|
| 620 | BigInteger.prototype.not = bnNot;
|
| 621 | BigInteger.prototype.shiftLeft = bnShiftLeft;
|
| 622 | BigInteger.prototype.shiftRight = bnShiftRight;
|
| 623 | BigInteger.prototype.getLowestSetBit = bnGetLowestSetBit;
|
| 624 | BigInteger.prototype.bitCount = bnBitCount;
|
| 625 | BigInteger.prototype.testBit = bnTestBit;
|
| 626 | BigInteger.prototype.setBit = bnSetBit;
|
| 627 | BigInteger.prototype.clearBit = bnClearBit;
|
| 628 | BigInteger.prototype.flipBit = bnFlipBit;
|
| 629 | BigInteger.prototype.add = bnAdd;
|
| 630 | BigInteger.prototype.subtract = bnSubtract;
|
| 631 | BigInteger.prototype.multiply = bnMultiply;
|
| 632 | BigInteger.prototype.divide = bnDivide;
|
| 633 | BigInteger.prototype.remainder = bnRemainder;
|
| 634 | BigInteger.prototype.divideAndRemainder = bnDivideAndRemainder;
|
| 635 | BigInteger.prototype.modPow = bnModPow;
|
| 636 | BigInteger.prototype.modInverse = bnModInverse;
|
| 637 | BigInteger.prototype.pow = bnPow;
|
| 638 | BigInteger.prototype.gcd = bnGCD;
|
| 639 | BigInteger.prototype.isProbablePrime = bnIsProbablePrime;
|
| 640 |
|
| 641 | // BigInteger interfaces not implemented in jsbn:
|
| 642 |
|
| 643 | // BigInteger(int signum, byte[] magnitude)
|
| 644 | // double doubleValue()
|
| 645 | // float floatValue()
|
| 646 | // int hashCode()
|
| 647 | // long longValue()
|
| 648 | // static BigInteger valueOf(long val)
|