Alexander Afanasyev | 181a8b9 | 2013-02-28 13:28:53 -0800 | [diff] [blame^] | 1 | // Depends on rsa.js and jsbn2.js |
| 2 | |
| 3 | // Version 1.1: support utf-8 decoding in pkcs1unpad2 |
| 4 | |
| 5 | // Undo PKCS#1 (type 2, random) padding and, if valid, return the plaintext |
| 6 | function pkcs1unpad2(d,n) { |
| 7 | var b = d.toByteArray(); |
| 8 | var i = 0; |
| 9 | while(i < b.length && b[i] == 0) ++i; |
| 10 | if(b.length-i != n-1 || b[i] != 2) |
| 11 | return null; |
| 12 | ++i; |
| 13 | while(b[i] != 0) |
| 14 | if(++i >= b.length) return null; |
| 15 | var ret = ""; |
| 16 | while(++i < b.length) { |
| 17 | var c = b[i] & 255; |
| 18 | if(c < 128) { // utf-8 decode |
| 19 | ret += String.fromCharCode(c); |
| 20 | } |
| 21 | else if((c > 191) && (c < 224)) { |
| 22 | ret += String.fromCharCode(((c & 31) << 6) | (b[i+1] & 63)); |
| 23 | ++i; |
| 24 | } |
| 25 | else { |
| 26 | ret += String.fromCharCode(((c & 15) << 12) | ((b[i+1] & 63) << 6) | (b[i+2] & 63)); |
| 27 | i += 2; |
| 28 | } |
| 29 | } |
| 30 | return ret; |
| 31 | } |
| 32 | |
| 33 | // Set the private key fields N, e, and d from hex strings |
| 34 | function RSASetPrivate(N,E,D) { |
| 35 | if(N != null && E != null && N.length > 0 && E.length > 0) { |
| 36 | this.n = parseBigInt(N,16); |
| 37 | this.e = parseInt(E,16); |
| 38 | this.d = parseBigInt(D,16); |
| 39 | } |
| 40 | else |
| 41 | alert("Invalid RSA private key"); |
| 42 | } |
| 43 | |
| 44 | // Set the private key fields N, e, d and CRT params from hex strings |
| 45 | function RSASetPrivateEx(N,E,D,P,Q,DP,DQ,C) { |
| 46 | if(N != null && E != null && N.length > 0 && E.length > 0) { |
| 47 | this.n = parseBigInt(N,16); |
| 48 | this.e = parseInt(E,16); |
| 49 | this.d = parseBigInt(D,16); |
| 50 | this.p = parseBigInt(P,16); |
| 51 | this.q = parseBigInt(Q,16); |
| 52 | this.dmp1 = parseBigInt(DP,16); |
| 53 | this.dmq1 = parseBigInt(DQ,16); |
| 54 | this.coeff = parseBigInt(C,16); |
| 55 | } |
| 56 | else |
| 57 | alert("Invalid RSA private key"); |
| 58 | } |
| 59 | |
| 60 | /** |
| 61 | * Generate a new random private key B bits long, using public expt E |
| 62 | */ |
| 63 | function RSAGenerate(B,E) { |
| 64 | var rng = new SecureRandom(); |
| 65 | var qs = B>>1; |
| 66 | this.e = parseInt(E,16); |
| 67 | var ee = new BigInteger(E,16); |
| 68 | for(;;) { |
| 69 | for(;;) { |
| 70 | this.p = new BigInteger(B-qs,1,rng); |
| 71 | if(this.p.subtract(BigInteger.ONE).gcd(ee).compareTo(BigInteger.ONE) == 0 && this.p.isProbablePrime(10)) break; |
| 72 | } |
| 73 | for(;;) { |
| 74 | this.q = new BigInteger(qs,1,rng); |
| 75 | if(this.q.subtract(BigInteger.ONE).gcd(ee).compareTo(BigInteger.ONE) == 0 && this.q.isProbablePrime(10)) break; |
| 76 | } |
| 77 | if(this.p.compareTo(this.q) <= 0) { |
| 78 | var t = this.p; |
| 79 | this.p = this.q; |
| 80 | this.q = t; |
| 81 | } |
| 82 | var p1 = this.p.subtract(BigInteger.ONE); // p1 = p - 1 |
| 83 | var q1 = this.q.subtract(BigInteger.ONE); // q1 = q - 1 |
| 84 | var phi = p1.multiply(q1); |
| 85 | if(phi.gcd(ee).compareTo(BigInteger.ONE) == 0) { |
| 86 | this.n = this.p.multiply(this.q); // this.n = p * q |
| 87 | this.d = ee.modInverse(phi); // this.d = |
| 88 | this.dmp1 = this.d.mod(p1); // this.dmp1 = d mod (p - 1) |
| 89 | this.dmq1 = this.d.mod(q1); // this.dmq1 = d mod (q - 1) |
| 90 | this.coeff = this.q.modInverse(this.p); // this.coeff = (q ^ -1) mod p |
| 91 | break; |
| 92 | } |
| 93 | } |
| 94 | } |
| 95 | |
| 96 | /** |
| 97 | * Perform raw private operation on "x": return x^d (mod n) |
| 98 | * @return x^d (mod n) |
| 99 | */ |
| 100 | function RSADoPrivate(x) { |
| 101 | if(this.p == null || this.q == null) |
| 102 | return x.modPow(this.d, this.n); |
| 103 | |
| 104 | // TODO: re-calculate any missing CRT params |
| 105 | var xp = x.mod(this.p).modPow(this.dmp1, this.p); // xp=cp? |
| 106 | var xq = x.mod(this.q).modPow(this.dmq1, this.q); // xq=cq? |
| 107 | |
| 108 | while(xp.compareTo(xq) < 0) |
| 109 | xp = xp.add(this.p); |
| 110 | // NOTE: |
| 111 | // xp.subtract(xq) => cp -cq |
| 112 | // xp.subtract(xq).multiply(this.coeff).mod(this.p) => (cp - cq) * u mod p = h |
| 113 | // xp.subtract(xq).multiply(this.coeff).mod(this.p).multiply(this.q).add(xq) => cq + (h * q) = M |
| 114 | return xp.subtract(xq).multiply(this.coeff).mod(this.p).multiply(this.q).add(xq); |
| 115 | } |
| 116 | |
| 117 | // Return the PKCS#1 RSA decryption of "ctext". |
| 118 | // "ctext" is an even-length hex string and the output is a plain string. |
| 119 | function RSADecrypt(ctext) { |
| 120 | var c = parseBigInt(ctext, 16); |
| 121 | var m = this.doPrivate(c); |
| 122 | if(m == null) return null; |
| 123 | return pkcs1unpad2(m, (this.n.bitLength()+7)>>3); |
| 124 | } |
| 125 | |
| 126 | // Return the PKCS#1 RSA decryption of "ctext". |
| 127 | // "ctext" is a Base64-encoded string and the output is a plain string. |
| 128 | //function RSAB64Decrypt(ctext) { |
| 129 | // var h = b64tohex(ctext); |
| 130 | // if(h) return this.decrypt(h); else return null; |
| 131 | //} |
| 132 | |
| 133 | // protected |
| 134 | RSAKey.prototype.doPrivate = RSADoPrivate; |
| 135 | |
| 136 | // public |
| 137 | RSAKey.prototype.setPrivate = RSASetPrivate; |
| 138 | RSAKey.prototype.setPrivateEx = RSASetPrivateEx; |
| 139 | RSAKey.prototype.generate = RSAGenerate; |
| 140 | RSAKey.prototype.decrypt = RSADecrypt; |
| 141 | //RSAKey.prototype.b64_decrypt = RSAB64Decrypt; |