Alexander Afanasyev | 181a8b9 | 2013-02-28 13:28:53 -0800 | [diff] [blame^] | 1 | // Copyright (c) 2005-2009 Tom Wu |
| 2 | // All Rights Reserved. |
| 3 | // See "LICENSE" for details. |
| 4 | |
| 5 | // Extended JavaScript BN functions, required for RSA private ops. |
| 6 | |
| 7 | // Version 1.1: new BigInteger("0", 10) returns "proper" zero |
| 8 | |
| 9 | // (public) |
| 10 | function bnClone() { var r = nbi(); this.copyTo(r); return r; } |
| 11 | |
| 12 | // (public) return value as integer |
| 13 | function bnIntValue() { |
| 14 | if(this.s < 0) { |
| 15 | if(this.t == 1) return this[0]-this.DV; |
| 16 | else if(this.t == 0) return -1; |
| 17 | } |
| 18 | else if(this.t == 1) return this[0]; |
| 19 | else if(this.t == 0) return 0; |
| 20 | // assumes 16 < DB < 32 |
| 21 | return ((this[1]&((1<<(32-this.DB))-1))<<this.DB)|this[0]; |
| 22 | } |
| 23 | |
| 24 | // (public) return value as byte |
| 25 | function bnByteValue() { return (this.t==0)?this.s:(this[0]<<24)>>24; } |
| 26 | |
| 27 | // (public) return value as short (assumes DB>=16) |
| 28 | function bnShortValue() { return (this.t==0)?this.s:(this[0]<<16)>>16; } |
| 29 | |
| 30 | // (protected) return x s.t. r^x < DV |
| 31 | function bnpChunkSize(r) { return Math.floor(Math.LN2*this.DB/Math.log(r)); } |
| 32 | |
| 33 | // (public) 0 if this == 0, 1 if this > 0 |
| 34 | function bnSigNum() { |
| 35 | if(this.s < 0) return -1; |
| 36 | else if(this.t <= 0 || (this.t == 1 && this[0] <= 0)) return 0; |
| 37 | else return 1; |
| 38 | } |
| 39 | |
| 40 | // (protected) convert to radix string |
| 41 | function bnpToRadix(b) { |
| 42 | if(b == null) b = 10; |
| 43 | if(this.signum() == 0 || b < 2 || b > 36) return "0"; |
| 44 | var cs = this.chunkSize(b); |
| 45 | var a = Math.pow(b,cs); |
| 46 | var d = nbv(a), y = nbi(), z = nbi(), r = ""; |
| 47 | this.divRemTo(d,y,z); |
| 48 | while(y.signum() > 0) { |
| 49 | r = (a+z.intValue()).toString(b).substr(1) + r; |
| 50 | y.divRemTo(d,y,z); |
| 51 | } |
| 52 | return z.intValue().toString(b) + r; |
| 53 | } |
| 54 | |
| 55 | // (protected) convert from radix string |
| 56 | function bnpFromRadix(s,b) { |
| 57 | this.fromInt(0); |
| 58 | if(b == null) b = 10; |
| 59 | var cs = this.chunkSize(b); |
| 60 | var d = Math.pow(b,cs), mi = false, j = 0, w = 0; |
| 61 | for(var i = 0; i < s.length; ++i) { |
| 62 | var x = intAt(s,i); |
| 63 | if(x < 0) { |
| 64 | if(s.charAt(i) == "-" && this.signum() == 0) mi = true; |
| 65 | continue; |
| 66 | } |
| 67 | w = b*w+x; |
| 68 | if(++j >= cs) { |
| 69 | this.dMultiply(d); |
| 70 | this.dAddOffset(w,0); |
| 71 | j = 0; |
| 72 | w = 0; |
| 73 | } |
| 74 | } |
| 75 | if(j > 0) { |
| 76 | this.dMultiply(Math.pow(b,j)); |
| 77 | this.dAddOffset(w,0); |
| 78 | } |
| 79 | if(mi) BigInteger.ZERO.subTo(this,this); |
| 80 | } |
| 81 | |
| 82 | // (protected) alternate constructor |
| 83 | function bnpFromNumber(a,b,c) { |
| 84 | if("number" == typeof b) { |
| 85 | // new BigInteger(int,int,RNG) |
| 86 | if(a < 2) this.fromInt(1); |
| 87 | else { |
| 88 | this.fromNumber(a,c); |
| 89 | if(!this.testBit(a-1)) // force MSB set |
| 90 | this.bitwiseTo(BigInteger.ONE.shiftLeft(a-1),op_or,this); |
| 91 | if(this.isEven()) this.dAddOffset(1,0); // force odd |
| 92 | while(!this.isProbablePrime(b)) { |
| 93 | this.dAddOffset(2,0); |
| 94 | if(this.bitLength() > a) this.subTo(BigInteger.ONE.shiftLeft(a-1),this); |
| 95 | } |
| 96 | } |
| 97 | } |
| 98 | else { |
| 99 | // new BigInteger(int,RNG) |
| 100 | var x = new Array(), t = a&7; |
| 101 | x.length = (a>>3)+1; |
| 102 | b.nextBytes(x); |
| 103 | if(t > 0) x[0] &= ((1<<t)-1); else x[0] = 0; |
| 104 | this.fromString(x,256); |
| 105 | } |
| 106 | } |
| 107 | |
| 108 | // (public) convert to bigendian byte array |
| 109 | function bnToByteArray() { |
| 110 | var i = this.t, r = new Array(); |
| 111 | r[0] = this.s; |
| 112 | var p = this.DB-(i*this.DB)%8, d, k = 0; |
| 113 | if(i-- > 0) { |
| 114 | if(p < this.DB && (d = this[i]>>p) != (this.s&this.DM)>>p) |
| 115 | r[k++] = d|(this.s<<(this.DB-p)); |
| 116 | while(i >= 0) { |
| 117 | if(p < 8) { |
| 118 | d = (this[i]&((1<<p)-1))<<(8-p); |
| 119 | d |= this[--i]>>(p+=this.DB-8); |
| 120 | } |
| 121 | else { |
| 122 | d = (this[i]>>(p-=8))&0xff; |
| 123 | if(p <= 0) { p += this.DB; --i; } |
| 124 | } |
| 125 | if((d&0x80) != 0) d |= -256; |
| 126 | if(k == 0 && (this.s&0x80) != (d&0x80)) ++k; |
| 127 | if(k > 0 || d != this.s) r[k++] = d; |
| 128 | } |
| 129 | } |
| 130 | return r; |
| 131 | } |
| 132 | |
| 133 | function bnEquals(a) { return(this.compareTo(a)==0); } |
| 134 | function bnMin(a) { return(this.compareTo(a)<0)?this:a; } |
| 135 | function bnMax(a) { return(this.compareTo(a)>0)?this:a; } |
| 136 | |
| 137 | // (protected) r = this op a (bitwise) |
| 138 | function bnpBitwiseTo(a,op,r) { |
| 139 | var i, f, m = Math.min(a.t,this.t); |
| 140 | for(i = 0; i < m; ++i) r[i] = op(this[i],a[i]); |
| 141 | if(a.t < this.t) { |
| 142 | f = a.s&this.DM; |
| 143 | for(i = m; i < this.t; ++i) r[i] = op(this[i],f); |
| 144 | r.t = this.t; |
| 145 | } |
| 146 | else { |
| 147 | f = this.s&this.DM; |
| 148 | for(i = m; i < a.t; ++i) r[i] = op(f,a[i]); |
| 149 | r.t = a.t; |
| 150 | } |
| 151 | r.s = op(this.s,a.s); |
| 152 | r.clamp(); |
| 153 | } |
| 154 | |
| 155 | // (public) this & a |
| 156 | function op_and(x,y) { return x&y; } |
| 157 | function bnAnd(a) { var r = nbi(); this.bitwiseTo(a,op_and,r); return r; } |
| 158 | |
| 159 | // (public) this | a |
| 160 | function op_or(x,y) { return x|y; } |
| 161 | function bnOr(a) { var r = nbi(); this.bitwiseTo(a,op_or,r); return r; } |
| 162 | |
| 163 | // (public) this ^ a |
| 164 | function op_xor(x,y) { return x^y; } |
| 165 | function bnXor(a) { var r = nbi(); this.bitwiseTo(a,op_xor,r); return r; } |
| 166 | |
| 167 | // (public) this & ~a |
| 168 | function op_andnot(x,y) { return x&~y; } |
| 169 | function bnAndNot(a) { var r = nbi(); this.bitwiseTo(a,op_andnot,r); return r; } |
| 170 | |
| 171 | // (public) ~this |
| 172 | function bnNot() { |
| 173 | var r = nbi(); |
| 174 | for(var i = 0; i < this.t; ++i) r[i] = this.DM&~this[i]; |
| 175 | r.t = this.t; |
| 176 | r.s = ~this.s; |
| 177 | return r; |
| 178 | } |
| 179 | |
| 180 | // (public) this << n |
| 181 | function bnShiftLeft(n) { |
| 182 | var r = nbi(); |
| 183 | if(n < 0) this.rShiftTo(-n,r); else this.lShiftTo(n,r); |
| 184 | return r; |
| 185 | } |
| 186 | |
| 187 | // (public) this >> n |
| 188 | function bnShiftRight(n) { |
| 189 | var r = nbi(); |
| 190 | if(n < 0) this.lShiftTo(-n,r); else this.rShiftTo(n,r); |
| 191 | return r; |
| 192 | } |
| 193 | |
| 194 | // return index of lowest 1-bit in x, x < 2^31 |
| 195 | function lbit(x) { |
| 196 | if(x == 0) return -1; |
| 197 | var r = 0; |
| 198 | if((x&0xffff) == 0) { x >>= 16; r += 16; } |
| 199 | if((x&0xff) == 0) { x >>= 8; r += 8; } |
| 200 | if((x&0xf) == 0) { x >>= 4; r += 4; } |
| 201 | if((x&3) == 0) { x >>= 2; r += 2; } |
| 202 | if((x&1) == 0) ++r; |
| 203 | return r; |
| 204 | } |
| 205 | |
| 206 | // (public) returns index of lowest 1-bit (or -1 if none) |
| 207 | function bnGetLowestSetBit() { |
| 208 | for(var i = 0; i < this.t; ++i) |
| 209 | if(this[i] != 0) return i*this.DB+lbit(this[i]); |
| 210 | if(this.s < 0) return this.t*this.DB; |
| 211 | return -1; |
| 212 | } |
| 213 | |
| 214 | // return number of 1 bits in x |
| 215 | function cbit(x) { |
| 216 | var r = 0; |
| 217 | while(x != 0) { x &= x-1; ++r; } |
| 218 | return r; |
| 219 | } |
| 220 | |
| 221 | // (public) return number of set bits |
| 222 | function bnBitCount() { |
| 223 | var r = 0, x = this.s&this.DM; |
| 224 | for(var i = 0; i < this.t; ++i) r += cbit(this[i]^x); |
| 225 | return r; |
| 226 | } |
| 227 | |
| 228 | // (public) true iff nth bit is set |
| 229 | function bnTestBit(n) { |
| 230 | var j = Math.floor(n/this.DB); |
| 231 | if(j >= this.t) return(this.s!=0); |
| 232 | return((this[j]&(1<<(n%this.DB)))!=0); |
| 233 | } |
| 234 | |
| 235 | // (protected) this op (1<<n) |
| 236 | function bnpChangeBit(n,op) { |
| 237 | var r = BigInteger.ONE.shiftLeft(n); |
| 238 | this.bitwiseTo(r,op,r); |
| 239 | return r; |
| 240 | } |
| 241 | |
| 242 | // (public) this | (1<<n) |
| 243 | function bnSetBit(n) { return this.changeBit(n,op_or); } |
| 244 | |
| 245 | // (public) this & ~(1<<n) |
| 246 | function bnClearBit(n) { return this.changeBit(n,op_andnot); } |
| 247 | |
| 248 | // (public) this ^ (1<<n) |
| 249 | function bnFlipBit(n) { return this.changeBit(n,op_xor); } |
| 250 | |
| 251 | // (protected) r = this + a |
| 252 | function bnpAddTo(a,r) { |
| 253 | var i = 0, c = 0, m = Math.min(a.t,this.t); |
| 254 | while(i < m) { |
| 255 | c += this[i]+a[i]; |
| 256 | r[i++] = c&this.DM; |
| 257 | c >>= this.DB; |
| 258 | } |
| 259 | if(a.t < this.t) { |
| 260 | c += a.s; |
| 261 | while(i < this.t) { |
| 262 | c += this[i]; |
| 263 | r[i++] = c&this.DM; |
| 264 | c >>= this.DB; |
| 265 | } |
| 266 | c += this.s; |
| 267 | } |
| 268 | else { |
| 269 | c += this.s; |
| 270 | while(i < a.t) { |
| 271 | c += a[i]; |
| 272 | r[i++] = c&this.DM; |
| 273 | c >>= this.DB; |
| 274 | } |
| 275 | c += a.s; |
| 276 | } |
| 277 | r.s = (c<0)?-1:0; |
| 278 | if(c > 0) r[i++] = c; |
| 279 | else if(c < -1) r[i++] = this.DV+c; |
| 280 | r.t = i; |
| 281 | r.clamp(); |
| 282 | } |
| 283 | |
| 284 | // (public) this + a |
| 285 | function bnAdd(a) { var r = nbi(); this.addTo(a,r); return r; } |
| 286 | |
| 287 | // (public) this - a |
| 288 | function bnSubtract(a) { var r = nbi(); this.subTo(a,r); return r; } |
| 289 | |
| 290 | // (public) this * a |
| 291 | function bnMultiply(a) { var r = nbi(); this.multiplyTo(a,r); return r; } |
| 292 | |
| 293 | // (public) this / a |
| 294 | function bnDivide(a) { var r = nbi(); this.divRemTo(a,r,null); return r; } |
| 295 | |
| 296 | // (public) this % a |
| 297 | function bnRemainder(a) { var r = nbi(); this.divRemTo(a,null,r); return r; } |
| 298 | |
| 299 | // (public) [this/a,this%a] |
| 300 | function bnDivideAndRemainder(a) { |
| 301 | var q = nbi(), r = nbi(); |
| 302 | this.divRemTo(a,q,r); |
| 303 | return new Array(q,r); |
| 304 | } |
| 305 | |
| 306 | // (protected) this *= n, this >= 0, 1 < n < DV |
| 307 | function bnpDMultiply(n) { |
| 308 | this[this.t] = this.am(0,n-1,this,0,0,this.t); |
| 309 | ++this.t; |
| 310 | this.clamp(); |
| 311 | } |
| 312 | |
| 313 | // (protected) this += n << w words, this >= 0 |
| 314 | function bnpDAddOffset(n,w) { |
| 315 | if(n == 0) return; |
| 316 | while(this.t <= w) this[this.t++] = 0; |
| 317 | this[w] += n; |
| 318 | while(this[w] >= this.DV) { |
| 319 | this[w] -= this.DV; |
| 320 | if(++w >= this.t) this[this.t++] = 0; |
| 321 | ++this[w]; |
| 322 | } |
| 323 | } |
| 324 | |
| 325 | // A "null" reducer |
| 326 | function NullExp() {} |
| 327 | function nNop(x) { return x; } |
| 328 | function nMulTo(x,y,r) { x.multiplyTo(y,r); } |
| 329 | function nSqrTo(x,r) { x.squareTo(r); } |
| 330 | |
| 331 | NullExp.prototype.convert = nNop; |
| 332 | NullExp.prototype.revert = nNop; |
| 333 | NullExp.prototype.mulTo = nMulTo; |
| 334 | NullExp.prototype.sqrTo = nSqrTo; |
| 335 | |
| 336 | // (public) this^e |
| 337 | function bnPow(e) { return this.exp(e,new NullExp()); } |
| 338 | |
| 339 | // (protected) r = lower n words of "this * a", a.t <= n |
| 340 | // "this" should be the larger one if appropriate. |
| 341 | function bnpMultiplyLowerTo(a,n,r) { |
| 342 | var i = Math.min(this.t+a.t,n); |
| 343 | r.s = 0; // assumes a,this >= 0 |
| 344 | r.t = i; |
| 345 | while(i > 0) r[--i] = 0; |
| 346 | var j; |
| 347 | for(j = r.t-this.t; i < j; ++i) r[i+this.t] = this.am(0,a[i],r,i,0,this.t); |
| 348 | for(j = Math.min(a.t,n); i < j; ++i) this.am(0,a[i],r,i,0,n-i); |
| 349 | r.clamp(); |
| 350 | } |
| 351 | |
| 352 | // (protected) r = "this * a" without lower n words, n > 0 |
| 353 | // "this" should be the larger one if appropriate. |
| 354 | function bnpMultiplyUpperTo(a,n,r) { |
| 355 | --n; |
| 356 | var i = r.t = this.t+a.t-n; |
| 357 | r.s = 0; // assumes a,this >= 0 |
| 358 | while(--i >= 0) r[i] = 0; |
| 359 | for(i = Math.max(n-this.t,0); i < a.t; ++i) |
| 360 | r[this.t+i-n] = this.am(n-i,a[i],r,0,0,this.t+i-n); |
| 361 | r.clamp(); |
| 362 | r.drShiftTo(1,r); |
| 363 | } |
| 364 | |
| 365 | // Barrett modular reduction |
| 366 | function Barrett(m) { |
| 367 | // setup Barrett |
| 368 | this.r2 = nbi(); |
| 369 | this.q3 = nbi(); |
| 370 | BigInteger.ONE.dlShiftTo(2*m.t,this.r2); |
| 371 | this.mu = this.r2.divide(m); |
| 372 | this.m = m; |
| 373 | } |
| 374 | |
| 375 | function barrettConvert(x) { |
| 376 | if(x.s < 0 || x.t > 2*this.m.t) return x.mod(this.m); |
| 377 | else if(x.compareTo(this.m) < 0) return x; |
| 378 | else { var r = nbi(); x.copyTo(r); this.reduce(r); return r; } |
| 379 | } |
| 380 | |
| 381 | function barrettRevert(x) { return x; } |
| 382 | |
| 383 | // x = x mod m (HAC 14.42) |
| 384 | function barrettReduce(x) { |
| 385 | x.drShiftTo(this.m.t-1,this.r2); |
| 386 | if(x.t > this.m.t+1) { x.t = this.m.t+1; x.clamp(); } |
| 387 | this.mu.multiplyUpperTo(this.r2,this.m.t+1,this.q3); |
| 388 | this.m.multiplyLowerTo(this.q3,this.m.t+1,this.r2); |
| 389 | while(x.compareTo(this.r2) < 0) x.dAddOffset(1,this.m.t+1); |
| 390 | x.subTo(this.r2,x); |
| 391 | while(x.compareTo(this.m) >= 0) x.subTo(this.m,x); |
| 392 | } |
| 393 | |
| 394 | // r = x^2 mod m; x != r |
| 395 | function barrettSqrTo(x,r) { x.squareTo(r); this.reduce(r); } |
| 396 | |
| 397 | // r = x*y mod m; x,y != r |
| 398 | function barrettMulTo(x,y,r) { x.multiplyTo(y,r); this.reduce(r); } |
| 399 | |
| 400 | Barrett.prototype.convert = barrettConvert; |
| 401 | Barrett.prototype.revert = barrettRevert; |
| 402 | Barrett.prototype.reduce = barrettReduce; |
| 403 | Barrett.prototype.mulTo = barrettMulTo; |
| 404 | Barrett.prototype.sqrTo = barrettSqrTo; |
| 405 | |
| 406 | // (public) this^e % m (HAC 14.85) |
| 407 | function bnModPow(e,m) { |
| 408 | var i = e.bitLength(), k, r = nbv(1), z; |
| 409 | if(i <= 0) return r; |
| 410 | else if(i < 18) k = 1; |
| 411 | else if(i < 48) k = 3; |
| 412 | else if(i < 144) k = 4; |
| 413 | else if(i < 768) k = 5; |
| 414 | else k = 6; |
| 415 | if(i < 8) |
| 416 | z = new Classic(m); |
| 417 | else if(m.isEven()) |
| 418 | z = new Barrett(m); |
| 419 | else |
| 420 | z = new Montgomery(m); |
| 421 | |
| 422 | // precomputation |
| 423 | var g = new Array(), n = 3, k1 = k-1, km = (1<<k)-1; |
| 424 | g[1] = z.convert(this); |
| 425 | if(k > 1) { |
| 426 | var g2 = nbi(); |
| 427 | z.sqrTo(g[1],g2); |
| 428 | while(n <= km) { |
| 429 | g[n] = nbi(); |
| 430 | z.mulTo(g2,g[n-2],g[n]); |
| 431 | n += 2; |
| 432 | } |
| 433 | } |
| 434 | |
| 435 | var j = e.t-1, w, is1 = true, r2 = nbi(), t; |
| 436 | i = nbits(e[j])-1; |
| 437 | while(j >= 0) { |
| 438 | if(i >= k1) w = (e[j]>>(i-k1))&km; |
| 439 | else { |
| 440 | w = (e[j]&((1<<(i+1))-1))<<(k1-i); |
| 441 | if(j > 0) w |= e[j-1]>>(this.DB+i-k1); |
| 442 | } |
| 443 | |
| 444 | n = k; |
| 445 | while((w&1) == 0) { w >>= 1; --n; } |
| 446 | if((i -= n) < 0) { i += this.DB; --j; } |
| 447 | if(is1) { // ret == 1, don't bother squaring or multiplying it |
| 448 | g[w].copyTo(r); |
| 449 | is1 = false; |
| 450 | } |
| 451 | else { |
| 452 | while(n > 1) { z.sqrTo(r,r2); z.sqrTo(r2,r); n -= 2; } |
| 453 | if(n > 0) z.sqrTo(r,r2); else { t = r; r = r2; r2 = t; } |
| 454 | z.mulTo(r2,g[w],r); |
| 455 | } |
| 456 | |
| 457 | while(j >= 0 && (e[j]&(1<<i)) == 0) { |
| 458 | z.sqrTo(r,r2); t = r; r = r2; r2 = t; |
| 459 | if(--i < 0) { i = this.DB-1; --j; } |
| 460 | } |
| 461 | } |
| 462 | return z.revert(r); |
| 463 | } |
| 464 | |
| 465 | // (public) gcd(this,a) (HAC 14.54) |
| 466 | function bnGCD(a) { |
| 467 | var x = (this.s<0)?this.negate():this.clone(); |
| 468 | var y = (a.s<0)?a.negate():a.clone(); |
| 469 | if(x.compareTo(y) < 0) { var t = x; x = y; y = t; } |
| 470 | var i = x.getLowestSetBit(), g = y.getLowestSetBit(); |
| 471 | if(g < 0) return x; |
| 472 | if(i < g) g = i; |
| 473 | if(g > 0) { |
| 474 | x.rShiftTo(g,x); |
| 475 | y.rShiftTo(g,y); |
| 476 | } |
| 477 | while(x.signum() > 0) { |
| 478 | if((i = x.getLowestSetBit()) > 0) x.rShiftTo(i,x); |
| 479 | if((i = y.getLowestSetBit()) > 0) y.rShiftTo(i,y); |
| 480 | if(x.compareTo(y) >= 0) { |
| 481 | x.subTo(y,x); |
| 482 | x.rShiftTo(1,x); |
| 483 | } |
| 484 | else { |
| 485 | y.subTo(x,y); |
| 486 | y.rShiftTo(1,y); |
| 487 | } |
| 488 | } |
| 489 | if(g > 0) y.lShiftTo(g,y); |
| 490 | return y; |
| 491 | } |
| 492 | |
| 493 | // (protected) this % n, n < 2^26 |
| 494 | function bnpModInt(n) { |
| 495 | if(n <= 0) return 0; |
| 496 | var d = this.DV%n, r = (this.s<0)?n-1:0; |
| 497 | if(this.t > 0) |
| 498 | if(d == 0) r = this[0]%n; |
| 499 | else for(var i = this.t-1; i >= 0; --i) r = (d*r+this[i])%n; |
| 500 | return r; |
| 501 | } |
| 502 | |
| 503 | // (public) 1/this % m (HAC 14.61) |
| 504 | function bnModInverse(m) { |
| 505 | var ac = m.isEven(); |
| 506 | if((this.isEven() && ac) || m.signum() == 0) return BigInteger.ZERO; |
| 507 | var u = m.clone(), v = this.clone(); |
| 508 | var a = nbv(1), b = nbv(0), c = nbv(0), d = nbv(1); |
| 509 | while(u.signum() != 0) { |
| 510 | while(u.isEven()) { |
| 511 | u.rShiftTo(1,u); |
| 512 | if(ac) { |
| 513 | if(!a.isEven() || !b.isEven()) { a.addTo(this,a); b.subTo(m,b); } |
| 514 | a.rShiftTo(1,a); |
| 515 | } |
| 516 | else if(!b.isEven()) b.subTo(m,b); |
| 517 | b.rShiftTo(1,b); |
| 518 | } |
| 519 | while(v.isEven()) { |
| 520 | v.rShiftTo(1,v); |
| 521 | if(ac) { |
| 522 | if(!c.isEven() || !d.isEven()) { c.addTo(this,c); d.subTo(m,d); } |
| 523 | c.rShiftTo(1,c); |
| 524 | } |
| 525 | else if(!d.isEven()) d.subTo(m,d); |
| 526 | d.rShiftTo(1,d); |
| 527 | } |
| 528 | if(u.compareTo(v) >= 0) { |
| 529 | u.subTo(v,u); |
| 530 | if(ac) a.subTo(c,a); |
| 531 | b.subTo(d,b); |
| 532 | } |
| 533 | else { |
| 534 | v.subTo(u,v); |
| 535 | if(ac) c.subTo(a,c); |
| 536 | d.subTo(b,d); |
| 537 | } |
| 538 | } |
| 539 | if(v.compareTo(BigInteger.ONE) != 0) return BigInteger.ZERO; |
| 540 | if(d.compareTo(m) >= 0) return d.subtract(m); |
| 541 | if(d.signum() < 0) d.addTo(m,d); else return d; |
| 542 | if(d.signum() < 0) return d.add(m); else return d; |
| 543 | } |
| 544 | |
| 545 | var lowprimes = [2,3,5,7,11,13,17,19,23,29,31,37,41,43,47,53,59,61,67,71,73,79,83,89,97,101,103,107,109,113,127,131,137,139,149,151,157,163,167,173,179,181,191,193,197,199,211,223,227,229,233,239,241,251,257,263,269,271,277,281,283,293,307,311,313,317,331,337,347,349,353,359,367,373,379,383,389,397,401,409,419,421,431,433,439,443,449,457,461,463,467,479,487,491,499,503,509]; |
| 546 | var lplim = (1<<26)/lowprimes[lowprimes.length-1]; |
| 547 | |
| 548 | // (public) test primality with certainty >= 1-.5^t |
| 549 | function bnIsProbablePrime(t) { |
| 550 | var i, x = this.abs(); |
| 551 | if(x.t == 1 && x[0] <= lowprimes[lowprimes.length-1]) { |
| 552 | for(i = 0; i < lowprimes.length; ++i) |
| 553 | if(x[0] == lowprimes[i]) return true; |
| 554 | return false; |
| 555 | } |
| 556 | if(x.isEven()) return false; |
| 557 | i = 1; |
| 558 | while(i < lowprimes.length) { |
| 559 | var m = lowprimes[i], j = i+1; |
| 560 | while(j < lowprimes.length && m < lplim) m *= lowprimes[j++]; |
| 561 | m = x.modInt(m); |
| 562 | while(i < j) if(m%lowprimes[i++] == 0) return false; |
| 563 | } |
| 564 | return x.millerRabin(t); |
| 565 | } |
| 566 | |
| 567 | // (protected) true if probably prime (HAC 4.24, Miller-Rabin) |
| 568 | function bnpMillerRabin(t) { |
| 569 | var n1 = this.subtract(BigInteger.ONE); |
| 570 | var k = n1.getLowestSetBit(); |
| 571 | if(k <= 0) return false; |
| 572 | var r = n1.shiftRight(k); |
| 573 | t = (t+1)>>1; |
| 574 | if(t > lowprimes.length) t = lowprimes.length; |
| 575 | var a = nbi(); |
| 576 | for(var i = 0; i < t; ++i) { |
| 577 | a.fromInt(lowprimes[i]); |
| 578 | var y = a.modPow(r,this); |
| 579 | if(y.compareTo(BigInteger.ONE) != 0 && y.compareTo(n1) != 0) { |
| 580 | var j = 1; |
| 581 | while(j++ < k && y.compareTo(n1) != 0) { |
| 582 | y = y.modPowInt(2,this); |
| 583 | if(y.compareTo(BigInteger.ONE) == 0) return false; |
| 584 | } |
| 585 | if(y.compareTo(n1) != 0) return false; |
| 586 | } |
| 587 | } |
| 588 | return true; |
| 589 | } |
| 590 | |
| 591 | // protected |
| 592 | BigInteger.prototype.chunkSize = bnpChunkSize; |
| 593 | BigInteger.prototype.toRadix = bnpToRadix; |
| 594 | BigInteger.prototype.fromRadix = bnpFromRadix; |
| 595 | BigInteger.prototype.fromNumber = bnpFromNumber; |
| 596 | BigInteger.prototype.bitwiseTo = bnpBitwiseTo; |
| 597 | BigInteger.prototype.changeBit = bnpChangeBit; |
| 598 | BigInteger.prototype.addTo = bnpAddTo; |
| 599 | BigInteger.prototype.dMultiply = bnpDMultiply; |
| 600 | BigInteger.prototype.dAddOffset = bnpDAddOffset; |
| 601 | BigInteger.prototype.multiplyLowerTo = bnpMultiplyLowerTo; |
| 602 | BigInteger.prototype.multiplyUpperTo = bnpMultiplyUpperTo; |
| 603 | BigInteger.prototype.modInt = bnpModInt; |
| 604 | BigInteger.prototype.millerRabin = bnpMillerRabin; |
| 605 | |
| 606 | // public |
| 607 | BigInteger.prototype.clone = bnClone; |
| 608 | BigInteger.prototype.intValue = bnIntValue; |
| 609 | BigInteger.prototype.byteValue = bnByteValue; |
| 610 | BigInteger.prototype.shortValue = bnShortValue; |
| 611 | BigInteger.prototype.signum = bnSigNum; |
| 612 | BigInteger.prototype.toByteArray = bnToByteArray; |
| 613 | BigInteger.prototype.equals = bnEquals; |
| 614 | BigInteger.prototype.min = bnMin; |
| 615 | BigInteger.prototype.max = bnMax; |
| 616 | BigInteger.prototype.and = bnAnd; |
| 617 | BigInteger.prototype.or = bnOr; |
| 618 | BigInteger.prototype.xor = bnXor; |
| 619 | BigInteger.prototype.andNot = bnAndNot; |
| 620 | BigInteger.prototype.not = bnNot; |
| 621 | BigInteger.prototype.shiftLeft = bnShiftLeft; |
| 622 | BigInteger.prototype.shiftRight = bnShiftRight; |
| 623 | BigInteger.prototype.getLowestSetBit = bnGetLowestSetBit; |
| 624 | BigInteger.prototype.bitCount = bnBitCount; |
| 625 | BigInteger.prototype.testBit = bnTestBit; |
| 626 | BigInteger.prototype.setBit = bnSetBit; |
| 627 | BigInteger.prototype.clearBit = bnClearBit; |
| 628 | BigInteger.prototype.flipBit = bnFlipBit; |
| 629 | BigInteger.prototype.add = bnAdd; |
| 630 | BigInteger.prototype.subtract = bnSubtract; |
| 631 | BigInteger.prototype.multiply = bnMultiply; |
| 632 | BigInteger.prototype.divide = bnDivide; |
| 633 | BigInteger.prototype.remainder = bnRemainder; |
| 634 | BigInteger.prototype.divideAndRemainder = bnDivideAndRemainder; |
| 635 | BigInteger.prototype.modPow = bnModPow; |
| 636 | BigInteger.prototype.modInverse = bnModInverse; |
| 637 | BigInteger.prototype.pow = bnPow; |
| 638 | BigInteger.prototype.gcd = bnGCD; |
| 639 | BigInteger.prototype.isProbablePrime = bnIsProbablePrime; |
| 640 | |
| 641 | // BigInteger interfaces not implemented in jsbn: |
| 642 | |
| 643 | // BigInteger(int signum, byte[] magnitude) |
| 644 | // double doubleValue() |
| 645 | // float floatValue() |
| 646 | // int hashCode() |
| 647 | // long longValue() |
| 648 | // static BigInteger valueOf(long val) |