blob: 928cc4f7bd56a8526c98bc240f9431f74be36564 [file] [log] [blame]
Alexander Afanasyev181a8b92013-02-28 13:28:53 -08001// Copyright (c) 2005 Tom Wu
2// All Rights Reserved.
3// See "LICENSE" for details.
4
5// Basic JavaScript BN library - subset useful for RSA encryption.
6
7// Bits per digit
8var dbits;
9
10// JavaScript engine analysis
11var canary = 0xdeadbeefcafe;
12var j_lm = ((canary&0xffffff)==0xefcafe);
13
14// (public) Constructor
15function BigInteger(a,b,c) {
16 if(a != null)
17 if("number" == typeof a) this.fromNumber(a,b,c);
18 else if(b == null && "string" != typeof a) this.fromString(a,256);
19 else this.fromString(a,b);
20}
21
22// return new, unset BigInteger
23function nbi() { return new BigInteger(null); }
24
25// am: Compute w_j += (x*this_i), propagate carries,
26// c is initial carry, returns final carry.
27// c < 3*dvalue, x < 2*dvalue, this_i < dvalue
28// We need to select the fastest one that works in this environment.
29
30// am1: use a single mult and divide to get the high bits,
31// max digit bits should be 26 because
32// max internal value = 2*dvalue^2-2*dvalue (< 2^53)
33function am1(i,x,w,j,c,n) {
34 while(--n >= 0) {
35 var v = x*this[i++]+w[j]+c;
36 c = Math.floor(v/0x4000000);
37 w[j++] = v&0x3ffffff;
38 }
39 return c;
40}
41// am2 avoids a big mult-and-extract completely.
42// Max digit bits should be <= 30 because we do bitwise ops
43// on values up to 2*hdvalue^2-hdvalue-1 (< 2^31)
44function am2(i,x,w,j,c,n) {
45 var xl = x&0x7fff, xh = x>>15;
46 while(--n >= 0) {
47 var l = this[i]&0x7fff;
48 var h = this[i++]>>15;
49 var m = xh*l+h*xl;
50 l = xl*l+((m&0x7fff)<<15)+w[j]+(c&0x3fffffff);
51 c = (l>>>30)+(m>>>15)+xh*h+(c>>>30);
52 w[j++] = l&0x3fffffff;
53 }
54 return c;
55}
56// Alternately, set max digit bits to 28 since some
57// browsers slow down when dealing with 32-bit numbers.
58function am3(i,x,w,j,c,n) {
59 var xl = x&0x3fff, xh = x>>14;
60 while(--n >= 0) {
61 var l = this[i]&0x3fff;
62 var h = this[i++]>>14;
63 var m = xh*l+h*xl;
64 l = xl*l+((m&0x3fff)<<14)+w[j]+c;
65 c = (l>>28)+(m>>14)+xh*h;
66 w[j++] = l&0xfffffff;
67 }
68 return c;
69}
70if(j_lm && (navigator.appName == "Microsoft Internet Explorer")) {
71 BigInteger.prototype.am = am2;
72 dbits = 30;
73}
74else if(j_lm && (navigator.appName != "Netscape")) {
75 BigInteger.prototype.am = am1;
76 dbits = 26;
77}
78else { // Mozilla/Netscape seems to prefer am3
79 BigInteger.prototype.am = am3;
80 dbits = 28;
81}
82
83BigInteger.prototype.DB = dbits;
84BigInteger.prototype.DM = ((1<<dbits)-1);
85BigInteger.prototype.DV = (1<<dbits);
86
87var BI_FP = 52;
88BigInteger.prototype.FV = Math.pow(2,BI_FP);
89BigInteger.prototype.F1 = BI_FP-dbits;
90BigInteger.prototype.F2 = 2*dbits-BI_FP;
91
92// Digit conversions
93var BI_RM = "0123456789abcdefghijklmnopqrstuvwxyz";
94var BI_RC = new Array();
95var rr,vv;
96rr = "0".charCodeAt(0);
97for(vv = 0; vv <= 9; ++vv) BI_RC[rr++] = vv;
98rr = "a".charCodeAt(0);
99for(vv = 10; vv < 36; ++vv) BI_RC[rr++] = vv;
100rr = "A".charCodeAt(0);
101for(vv = 10; vv < 36; ++vv) BI_RC[rr++] = vv;
102
103function int2char(n) { return BI_RM.charAt(n); }
104function intAt(s,i) {
105 var c = BI_RC[s.charCodeAt(i)];
106 return (c==null)?-1:c;
107}
108
109// (protected) copy this to r
110function bnpCopyTo(r) {
111 for(var i = this.t-1; i >= 0; --i) r[i] = this[i];
112 r.t = this.t;
113 r.s = this.s;
114}
115
116// (protected) set from integer value x, -DV <= x < DV
117function bnpFromInt(x) {
118 this.t = 1;
119 this.s = (x<0)?-1:0;
120 if(x > 0) this[0] = x;
121 else if(x < -1) this[0] = x+DV;
122 else this.t = 0;
123}
124
125// return bigint initialized to value
126function nbv(i) { var r = nbi(); r.fromInt(i); return r; }
127
128// (protected) set from string and radix
129function bnpFromString(s,b) {
130 var k;
131 if(b == 16) k = 4;
132 else if(b == 8) k = 3;
133 else if(b == 256) k = 8; // byte array
134 else if(b == 2) k = 1;
135 else if(b == 32) k = 5;
136 else if(b == 4) k = 2;
137 else { this.fromRadix(s,b); return; }
138 this.t = 0;
139 this.s = 0;
140 var i = s.length, mi = false, sh = 0;
141 while(--i >= 0) {
142 var x = (k==8)?s[i]&0xff:intAt(s,i);
143 if(x < 0) {
144 if(s.charAt(i) == "-") mi = true;
145 continue;
146 }
147 mi = false;
148 if(sh == 0)
149 this[this.t++] = x;
150 else if(sh+k > this.DB) {
151 this[this.t-1] |= (x&((1<<(this.DB-sh))-1))<<sh;
152 this[this.t++] = (x>>(this.DB-sh));
153 }
154 else
155 this[this.t-1] |= x<<sh;
156 sh += k;
157 if(sh >= this.DB) sh -= this.DB;
158 }
159 if(k == 8 && (s[0]&0x80) != 0) {
160 this.s = -1;
161 if(sh > 0) this[this.t-1] |= ((1<<(this.DB-sh))-1)<<sh;
162 }
163 this.clamp();
164 if(mi) BigInteger.ZERO.subTo(this,this);
165}
166
167// (protected) clamp off excess high words
168function bnpClamp() {
169 var c = this.s&this.DM;
170 while(this.t > 0 && this[this.t-1] == c) --this.t;
171}
172
173// (public) return string representation in given radix
174function bnToString(b) {
175 if(this.s < 0) return "-"+this.negate().toString(b);
176 var k;
177 if(b == 16) k = 4;
178 else if(b == 8) k = 3;
179 else if(b == 2) k = 1;
180 else if(b == 32) k = 5;
181 else if(b == 4) k = 2;
182 else return this.toRadix(b);
183 var km = (1<<k)-1, d, m = false, r = "", i = this.t;
184 var p = this.DB-(i*this.DB)%k;
185 if(i-- > 0) {
186 if(p < this.DB && (d = this[i]>>p) > 0) { m = true; r = int2char(d); }
187 while(i >= 0) {
188 if(p < k) {
189 d = (this[i]&((1<<p)-1))<<(k-p);
190 d |= this[--i]>>(p+=this.DB-k);
191 }
192 else {
193 d = (this[i]>>(p-=k))&km;
194 if(p <= 0) { p += this.DB; --i; }
195 }
196 if(d > 0) m = true;
197 if(m) r += int2char(d);
198 }
199 }
200 return m?r:"0";
201}
202
203// (public) -this
204function bnNegate() { var r = nbi(); BigInteger.ZERO.subTo(this,r); return r; }
205
206// (public) |this|
207function bnAbs() { return (this.s<0)?this.negate():this; }
208
209// (public) return + if this > a, - if this < a, 0 if equal
210function bnCompareTo(a) {
211 var r = this.s-a.s;
212 if(r != 0) return r;
213 var i = this.t;
214 r = i-a.t;
215 if(r != 0) return r;
216 while(--i >= 0) if((r=this[i]-a[i]) != 0) return r;
217 return 0;
218}
219
220// returns bit length of the integer x
221function nbits(x) {
222 var r = 1, t;
223 if((t=x>>>16) != 0) { x = t; r += 16; }
224 if((t=x>>8) != 0) { x = t; r += 8; }
225 if((t=x>>4) != 0) { x = t; r += 4; }
226 if((t=x>>2) != 0) { x = t; r += 2; }
227 if((t=x>>1) != 0) { x = t; r += 1; }
228 return r;
229}
230
231// (public) return the number of bits in "this"
232function bnBitLength() {
233 if(this.t <= 0) return 0;
234 return this.DB*(this.t-1)+nbits(this[this.t-1]^(this.s&this.DM));
235}
236
237// (protected) r = this << n*DB
238function bnpDLShiftTo(n,r) {
239 var i;
240 for(i = this.t-1; i >= 0; --i) r[i+n] = this[i];
241 for(i = n-1; i >= 0; --i) r[i] = 0;
242 r.t = this.t+n;
243 r.s = this.s;
244}
245
246// (protected) r = this >> n*DB
247function bnpDRShiftTo(n,r) {
248 for(var i = n; i < this.t; ++i) r[i-n] = this[i];
249 r.t = Math.max(this.t-n,0);
250 r.s = this.s;
251}
252
253// (protected) r = this << n
254function bnpLShiftTo(n,r) {
255 var bs = n%this.DB;
256 var cbs = this.DB-bs;
257 var bm = (1<<cbs)-1;
258 var ds = Math.floor(n/this.DB), c = (this.s<<bs)&this.DM, i;
259 for(i = this.t-1; i >= 0; --i) {
260 r[i+ds+1] = (this[i]>>cbs)|c;
261 c = (this[i]&bm)<<bs;
262 }
263 for(i = ds-1; i >= 0; --i) r[i] = 0;
264 r[ds] = c;
265 r.t = this.t+ds+1;
266 r.s = this.s;
267 r.clamp();
268}
269
270// (protected) r = this >> n
271function bnpRShiftTo(n,r) {
272 r.s = this.s;
273 var ds = Math.floor(n/this.DB);
274 if(ds >= this.t) { r.t = 0; return; }
275 var bs = n%this.DB;
276 var cbs = this.DB-bs;
277 var bm = (1<<bs)-1;
278 r[0] = this[ds]>>bs;
279 for(var i = ds+1; i < this.t; ++i) {
280 r[i-ds-1] |= (this[i]&bm)<<cbs;
281 r[i-ds] = this[i]>>bs;
282 }
283 if(bs > 0) r[this.t-ds-1] |= (this.s&bm)<<cbs;
284 r.t = this.t-ds;
285 r.clamp();
286}
287
288// (protected) r = this - a
289function bnpSubTo(a,r) {
290 var i = 0, c = 0, m = Math.min(a.t,this.t);
291 while(i < m) {
292 c += this[i]-a[i];
293 r[i++] = c&this.DM;
294 c >>= this.DB;
295 }
296 if(a.t < this.t) {
297 c -= a.s;
298 while(i < this.t) {
299 c += this[i];
300 r[i++] = c&this.DM;
301 c >>= this.DB;
302 }
303 c += this.s;
304 }
305 else {
306 c += this.s;
307 while(i < a.t) {
308 c -= a[i];
309 r[i++] = c&this.DM;
310 c >>= this.DB;
311 }
312 c -= a.s;
313 }
314 r.s = (c<0)?-1:0;
315 if(c < -1) r[i++] = this.DV+c;
316 else if(c > 0) r[i++] = c;
317 r.t = i;
318 r.clamp();
319}
320
321// (protected) r = this * a, r != this,a (HAC 14.12)
322// "this" should be the larger one if appropriate.
323function bnpMultiplyTo(a,r) {
324 var x = this.abs(), y = a.abs();
325 var i = x.t;
326 r.t = i+y.t;
327 while(--i >= 0) r[i] = 0;
328 for(i = 0; i < y.t; ++i) r[i+x.t] = x.am(0,y[i],r,i,0,x.t);
329 r.s = 0;
330 r.clamp();
331 if(this.s != a.s) BigInteger.ZERO.subTo(r,r);
332}
333
334// (protected) r = this^2, r != this (HAC 14.16)
335function bnpSquareTo(r) {
336 var x = this.abs();
337 var i = r.t = 2*x.t;
338 while(--i >= 0) r[i] = 0;
339 for(i = 0; i < x.t-1; ++i) {
340 var c = x.am(i,x[i],r,2*i,0,1);
341 if((r[i+x.t]+=x.am(i+1,2*x[i],r,2*i+1,c,x.t-i-1)) >= x.DV) {
342 r[i+x.t] -= x.DV;
343 r[i+x.t+1] = 1;
344 }
345 }
346 if(r.t > 0) r[r.t-1] += x.am(i,x[i],r,2*i,0,1);
347 r.s = 0;
348 r.clamp();
349}
350
351// (protected) divide this by m, quotient and remainder to q, r (HAC 14.20)
352// r != q, this != m. q or r may be null.
353function bnpDivRemTo(m,q,r) {
354 var pm = m.abs();
355 if(pm.t <= 0) return;
356 var pt = this.abs();
357 if(pt.t < pm.t) {
358 if(q != null) q.fromInt(0);
359 if(r != null) this.copyTo(r);
360 return;
361 }
362 if(r == null) r = nbi();
363 var y = nbi(), ts = this.s, ms = m.s;
364 var nsh = this.DB-nbits(pm[pm.t-1]); // normalize modulus
365 if(nsh > 0) { pm.lShiftTo(nsh,y); pt.lShiftTo(nsh,r); }
366 else { pm.copyTo(y); pt.copyTo(r); }
367 var ys = y.t;
368 var y0 = y[ys-1];
369 if(y0 == 0) return;
370 var yt = y0*(1<<this.F1)+((ys>1)?y[ys-2]>>this.F2:0);
371 var d1 = this.FV/yt, d2 = (1<<this.F1)/yt, e = 1<<this.F2;
372 var i = r.t, j = i-ys, t = (q==null)?nbi():q;
373 y.dlShiftTo(j,t);
374 if(r.compareTo(t) >= 0) {
375 r[r.t++] = 1;
376 r.subTo(t,r);
377 }
378 BigInteger.ONE.dlShiftTo(ys,t);
379 t.subTo(y,y); // "negative" y so we can replace sub with am later
380 while(y.t < ys) y[y.t++] = 0;
381 while(--j >= 0) {
382 // Estimate quotient digit
383 var qd = (r[--i]==y0)?this.DM:Math.floor(r[i]*d1+(r[i-1]+e)*d2);
384 if((r[i]+=y.am(0,qd,r,j,0,ys)) < qd) { // Try it out
385 y.dlShiftTo(j,t);
386 r.subTo(t,r);
387 while(r[i] < --qd) r.subTo(t,r);
388 }
389 }
390 if(q != null) {
391 r.drShiftTo(ys,q);
392 if(ts != ms) BigInteger.ZERO.subTo(q,q);
393 }
394 r.t = ys;
395 r.clamp();
396 if(nsh > 0) r.rShiftTo(nsh,r); // Denormalize remainder
397 if(ts < 0) BigInteger.ZERO.subTo(r,r);
398}
399
400// (public) this mod a
401function bnMod(a) {
402 var r = nbi();
403 this.abs().divRemTo(a,null,r);
404 if(this.s < 0 && r.compareTo(BigInteger.ZERO) > 0) a.subTo(r,r);
405 return r;
406}
407
408// Modular reduction using "classic" algorithm
409function Classic(m) { this.m = m; }
410function cConvert(x) {
411 if(x.s < 0 || x.compareTo(this.m) >= 0) return x.mod(this.m);
412 else return x;
413}
414function cRevert(x) { return x; }
415function cReduce(x) { x.divRemTo(this.m,null,x); }
416function cMulTo(x,y,r) { x.multiplyTo(y,r); this.reduce(r); }
417function cSqrTo(x,r) { x.squareTo(r); this.reduce(r); }
418
419Classic.prototype.convert = cConvert;
420Classic.prototype.revert = cRevert;
421Classic.prototype.reduce = cReduce;
422Classic.prototype.mulTo = cMulTo;
423Classic.prototype.sqrTo = cSqrTo;
424
425// (protected) return "-1/this % 2^DB"; useful for Mont. reduction
426// justification:
427// xy == 1 (mod m)
428// xy = 1+km
429// xy(2-xy) = (1+km)(1-km)
430// x[y(2-xy)] = 1-k^2m^2
431// x[y(2-xy)] == 1 (mod m^2)
432// if y is 1/x mod m, then y(2-xy) is 1/x mod m^2
433// should reduce x and y(2-xy) by m^2 at each step to keep size bounded.
434// JS multiply "overflows" differently from C/C++, so care is needed here.
435function bnpInvDigit() {
436 if(this.t < 1) return 0;
437 var x = this[0];
438 if((x&1) == 0) return 0;
439 var y = x&3; // y == 1/x mod 2^2
440 y = (y*(2-(x&0xf)*y))&0xf; // y == 1/x mod 2^4
441 y = (y*(2-(x&0xff)*y))&0xff; // y == 1/x mod 2^8
442 y = (y*(2-(((x&0xffff)*y)&0xffff)))&0xffff; // y == 1/x mod 2^16
443 // last step - calculate inverse mod DV directly;
444 // assumes 16 < DB <= 32 and assumes ability to handle 48-bit ints
445 y = (y*(2-x*y%this.DV))%this.DV; // y == 1/x mod 2^dbits
446 // we really want the negative inverse, and -DV < y < DV
447 return (y>0)?this.DV-y:-y;
448}
449
450// Montgomery reduction
451function Montgomery(m) {
452 this.m = m;
453 this.mp = m.invDigit();
454 this.mpl = this.mp&0x7fff;
455 this.mph = this.mp>>15;
456 this.um = (1<<(m.DB-15))-1;
457 this.mt2 = 2*m.t;
458}
459
460// xR mod m
461function montConvert(x) {
462 var r = nbi();
463 x.abs().dlShiftTo(this.m.t,r);
464 r.divRemTo(this.m,null,r);
465 if(x.s < 0 && r.compareTo(BigInteger.ZERO) > 0) this.m.subTo(r,r);
466 return r;
467}
468
469// x/R mod m
470function montRevert(x) {
471 var r = nbi();
472 x.copyTo(r);
473 this.reduce(r);
474 return r;
475}
476
477// x = x/R mod m (HAC 14.32)
478function montReduce(x) {
479 while(x.t <= this.mt2) // pad x so am has enough room later
480 x[x.t++] = 0;
481 for(var i = 0; i < this.m.t; ++i) {
482 // faster way of calculating u0 = x[i]*mp mod DV
483 var j = x[i]&0x7fff;
484 var u0 = (j*this.mpl+(((j*this.mph+(x[i]>>15)*this.mpl)&this.um)<<15))&x.DM;
485 // use am to combine the multiply-shift-add into one call
486 j = i+this.m.t;
487 x[j] += this.m.am(0,u0,x,i,0,this.m.t);
488 // propagate carry
489 while(x[j] >= x.DV) { x[j] -= x.DV; x[++j]++; }
490 }
491 x.clamp();
492 x.drShiftTo(this.m.t,x);
493 if(x.compareTo(this.m) >= 0) x.subTo(this.m,x);
494}
495
496// r = "x^2/R mod m"; x != r
497function montSqrTo(x,r) { x.squareTo(r); this.reduce(r); }
498
499// r = "xy/R mod m"; x,y != r
500function montMulTo(x,y,r) { x.multiplyTo(y,r); this.reduce(r); }
501
502Montgomery.prototype.convert = montConvert;
503Montgomery.prototype.revert = montRevert;
504Montgomery.prototype.reduce = montReduce;
505Montgomery.prototype.mulTo = montMulTo;
506Montgomery.prototype.sqrTo = montSqrTo;
507
508// (protected) true iff this is even
509function bnpIsEven() { return ((this.t>0)?(this[0]&1):this.s) == 0; }
510
511// (protected) this^e, e < 2^32, doing sqr and mul with "r" (HAC 14.79)
512function bnpExp(e,z) {
513 if(e > 0xffffffff || e < 1) return BigInteger.ONE;
514 var r = nbi(), r2 = nbi(), g = z.convert(this), i = nbits(e)-1;
515 g.copyTo(r);
516 while(--i >= 0) {
517 z.sqrTo(r,r2);
518 if((e&(1<<i)) > 0) z.mulTo(r2,g,r);
519 else { var t = r; r = r2; r2 = t; }
520 }
521 return z.revert(r);
522}
523
524// (public) this^e % m, 0 <= e < 2^32
525function bnModPowInt(e,m) {
526 var z;
527 if(e < 256 || m.isEven()) z = new Classic(m); else z = new Montgomery(m);
528 return this.exp(e,z);
529}
530
531// protected
532BigInteger.prototype.copyTo = bnpCopyTo;
533BigInteger.prototype.fromInt = bnpFromInt;
534BigInteger.prototype.fromString = bnpFromString;
535BigInteger.prototype.clamp = bnpClamp;
536BigInteger.prototype.dlShiftTo = bnpDLShiftTo;
537BigInteger.prototype.drShiftTo = bnpDRShiftTo;
538BigInteger.prototype.lShiftTo = bnpLShiftTo;
539BigInteger.prototype.rShiftTo = bnpRShiftTo;
540BigInteger.prototype.subTo = bnpSubTo;
541BigInteger.prototype.multiplyTo = bnpMultiplyTo;
542BigInteger.prototype.squareTo = bnpSquareTo;
543BigInteger.prototype.divRemTo = bnpDivRemTo;
544BigInteger.prototype.invDigit = bnpInvDigit;
545BigInteger.prototype.isEven = bnpIsEven;
546BigInteger.prototype.exp = bnpExp;
547
548// public
549BigInteger.prototype.toString = bnToString;
550BigInteger.prototype.negate = bnNegate;
551BigInteger.prototype.abs = bnAbs;
552BigInteger.prototype.compareTo = bnCompareTo;
553BigInteger.prototype.bitLength = bnBitLength;
554BigInteger.prototype.mod = bnMod;
555BigInteger.prototype.modPowInt = bnModPowInt;
556
557// "constants"
558BigInteger.ZERO = nbv(0);
559BigInteger.ONE = nbv(1);