| // Copyright (c) 2005 Tom Wu |
| // All Rights Reserved. |
| // See "LICENSE" for details. |
| |
| // Basic JavaScript BN library - subset useful for RSA encryption. |
| |
| // Bits per digit |
| var dbits; |
| |
| // JavaScript engine analysis |
| var canary = 0xdeadbeefcafe; |
| var j_lm = ((canary&0xffffff)==0xefcafe); |
| |
| // (public) Constructor |
| function BigInteger(a,b,c) { |
| if(a != null) |
| if("number" == typeof a) this.fromNumber(a,b,c); |
| else if(b == null && "string" != typeof a) this.fromString(a,256); |
| else this.fromString(a,b); |
| } |
| |
| // return new, unset BigInteger |
| function nbi() { return new BigInteger(null); } |
| |
| // am: Compute w_j += (x*this_i), propagate carries, |
| // c is initial carry, returns final carry. |
| // c < 3*dvalue, x < 2*dvalue, this_i < dvalue |
| // We need to select the fastest one that works in this environment. |
| |
| // am1: use a single mult and divide to get the high bits, |
| // max digit bits should be 26 because |
| // max internal value = 2*dvalue^2-2*dvalue (< 2^53) |
| function am1(i,x,w,j,c,n) { |
| while(--n >= 0) { |
| var v = x*this[i++]+w[j]+c; |
| c = Math.floor(v/0x4000000); |
| w[j++] = v&0x3ffffff; |
| } |
| return c; |
| } |
| // am2 avoids a big mult-and-extract completely. |
| // Max digit bits should be <= 30 because we do bitwise ops |
| // on values up to 2*hdvalue^2-hdvalue-1 (< 2^31) |
| function am2(i,x,w,j,c,n) { |
| var xl = x&0x7fff, xh = x>>15; |
| while(--n >= 0) { |
| var l = this[i]&0x7fff; |
| var h = this[i++]>>15; |
| var m = xh*l+h*xl; |
| l = xl*l+((m&0x7fff)<<15)+w[j]+(c&0x3fffffff); |
| c = (l>>>30)+(m>>>15)+xh*h+(c>>>30); |
| w[j++] = l&0x3fffffff; |
| } |
| return c; |
| } |
| // Alternately, set max digit bits to 28 since some |
| // browsers slow down when dealing with 32-bit numbers. |
| function am3(i,x,w,j,c,n) { |
| var xl = x&0x3fff, xh = x>>14; |
| while(--n >= 0) { |
| var l = this[i]&0x3fff; |
| var h = this[i++]>>14; |
| var m = xh*l+h*xl; |
| l = xl*l+((m&0x3fff)<<14)+w[j]+c; |
| c = (l>>28)+(m>>14)+xh*h; |
| w[j++] = l&0xfffffff; |
| } |
| return c; |
| } |
| if(j_lm && (navigator.appName == "Microsoft Internet Explorer")) { |
| BigInteger.prototype.am = am2; |
| dbits = 30; |
| } |
| else if(j_lm && (navigator.appName != "Netscape")) { |
| BigInteger.prototype.am = am1; |
| dbits = 26; |
| } |
| else { // Mozilla/Netscape seems to prefer am3 |
| BigInteger.prototype.am = am3; |
| dbits = 28; |
| } |
| |
| BigInteger.prototype.DB = dbits; |
| BigInteger.prototype.DM = ((1<<dbits)-1); |
| BigInteger.prototype.DV = (1<<dbits); |
| |
| var BI_FP = 52; |
| BigInteger.prototype.FV = Math.pow(2,BI_FP); |
| BigInteger.prototype.F1 = BI_FP-dbits; |
| BigInteger.prototype.F2 = 2*dbits-BI_FP; |
| |
| // Digit conversions |
| var BI_RM = "0123456789abcdefghijklmnopqrstuvwxyz"; |
| var BI_RC = new Array(); |
| var rr,vv; |
| rr = "0".charCodeAt(0); |
| for(vv = 0; vv <= 9; ++vv) BI_RC[rr++] = vv; |
| rr = "a".charCodeAt(0); |
| for(vv = 10; vv < 36; ++vv) BI_RC[rr++] = vv; |
| rr = "A".charCodeAt(0); |
| for(vv = 10; vv < 36; ++vv) BI_RC[rr++] = vv; |
| |
| function int2char(n) { return BI_RM.charAt(n); } |
| function intAt(s,i) { |
| var c = BI_RC[s.charCodeAt(i)]; |
| return (c==null)?-1:c; |
| } |
| |
| // (protected) copy this to r |
| function bnpCopyTo(r) { |
| for(var i = this.t-1; i >= 0; --i) r[i] = this[i]; |
| r.t = this.t; |
| r.s = this.s; |
| } |
| |
| // (protected) set from integer value x, -DV <= x < DV |
| function bnpFromInt(x) { |
| this.t = 1; |
| this.s = (x<0)?-1:0; |
| if(x > 0) this[0] = x; |
| else if(x < -1) this[0] = x+DV; |
| else this.t = 0; |
| } |
| |
| // return bigint initialized to value |
| function nbv(i) { var r = nbi(); r.fromInt(i); return r; } |
| |
| // (protected) set from string and radix |
| function bnpFromString(s,b) { |
| var k; |
| if(b == 16) k = 4; |
| else if(b == 8) k = 3; |
| else if(b == 256) k = 8; // byte array |
| else if(b == 2) k = 1; |
| else if(b == 32) k = 5; |
| else if(b == 4) k = 2; |
| else { this.fromRadix(s,b); return; } |
| this.t = 0; |
| this.s = 0; |
| var i = s.length, mi = false, sh = 0; |
| while(--i >= 0) { |
| var x = (k==8)?s[i]&0xff:intAt(s,i); |
| if(x < 0) { |
| if(s.charAt(i) == "-") mi = true; |
| continue; |
| } |
| mi = false; |
| if(sh == 0) |
| this[this.t++] = x; |
| else if(sh+k > this.DB) { |
| this[this.t-1] |= (x&((1<<(this.DB-sh))-1))<<sh; |
| this[this.t++] = (x>>(this.DB-sh)); |
| } |
| else |
| this[this.t-1] |= x<<sh; |
| sh += k; |
| if(sh >= this.DB) sh -= this.DB; |
| } |
| if(k == 8 && (s[0]&0x80) != 0) { |
| this.s = -1; |
| if(sh > 0) this[this.t-1] |= ((1<<(this.DB-sh))-1)<<sh; |
| } |
| this.clamp(); |
| if(mi) BigInteger.ZERO.subTo(this,this); |
| } |
| |
| // (protected) clamp off excess high words |
| function bnpClamp() { |
| var c = this.s&this.DM; |
| while(this.t > 0 && this[this.t-1] == c) --this.t; |
| } |
| |
| // (public) return string representation in given radix |
| function bnToString(b) { |
| if(this.s < 0) return "-"+this.negate().toString(b); |
| var k; |
| if(b == 16) k = 4; |
| else if(b == 8) k = 3; |
| else if(b == 2) k = 1; |
| else if(b == 32) k = 5; |
| else if(b == 4) k = 2; |
| else return this.toRadix(b); |
| var km = (1<<k)-1, d, m = false, r = "", i = this.t; |
| var p = this.DB-(i*this.DB)%k; |
| if(i-- > 0) { |
| if(p < this.DB && (d = this[i]>>p) > 0) { m = true; r = int2char(d); } |
| while(i >= 0) { |
| if(p < k) { |
| d = (this[i]&((1<<p)-1))<<(k-p); |
| d |= this[--i]>>(p+=this.DB-k); |
| } |
| else { |
| d = (this[i]>>(p-=k))&km; |
| if(p <= 0) { p += this.DB; --i; } |
| } |
| if(d > 0) m = true; |
| if(m) r += int2char(d); |
| } |
| } |
| return m?r:"0"; |
| } |
| |
| // (public) -this |
| function bnNegate() { var r = nbi(); BigInteger.ZERO.subTo(this,r); return r; } |
| |
| // (public) |this| |
| function bnAbs() { return (this.s<0)?this.negate():this; } |
| |
| // (public) return + if this > a, - if this < a, 0 if equal |
| function bnCompareTo(a) { |
| var r = this.s-a.s; |
| if(r != 0) return r; |
| var i = this.t; |
| r = i-a.t; |
| if(r != 0) return r; |
| while(--i >= 0) if((r=this[i]-a[i]) != 0) return r; |
| return 0; |
| } |
| |
| // returns bit length of the integer x |
| function nbits(x) { |
| var r = 1, t; |
| if((t=x>>>16) != 0) { x = t; r += 16; } |
| if((t=x>>8) != 0) { x = t; r += 8; } |
| if((t=x>>4) != 0) { x = t; r += 4; } |
| if((t=x>>2) != 0) { x = t; r += 2; } |
| if((t=x>>1) != 0) { x = t; r += 1; } |
| return r; |
| } |
| |
| // (public) return the number of bits in "this" |
| function bnBitLength() { |
| if(this.t <= 0) return 0; |
| return this.DB*(this.t-1)+nbits(this[this.t-1]^(this.s&this.DM)); |
| } |
| |
| // (protected) r = this << n*DB |
| function bnpDLShiftTo(n,r) { |
| var i; |
| for(i = this.t-1; i >= 0; --i) r[i+n] = this[i]; |
| for(i = n-1; i >= 0; --i) r[i] = 0; |
| r.t = this.t+n; |
| r.s = this.s; |
| } |
| |
| // (protected) r = this >> n*DB |
| function bnpDRShiftTo(n,r) { |
| for(var i = n; i < this.t; ++i) r[i-n] = this[i]; |
| r.t = Math.max(this.t-n,0); |
| r.s = this.s; |
| } |
| |
| // (protected) r = this << n |
| function bnpLShiftTo(n,r) { |
| var bs = n%this.DB; |
| var cbs = this.DB-bs; |
| var bm = (1<<cbs)-1; |
| var ds = Math.floor(n/this.DB), c = (this.s<<bs)&this.DM, i; |
| for(i = this.t-1; i >= 0; --i) { |
| r[i+ds+1] = (this[i]>>cbs)|c; |
| c = (this[i]&bm)<<bs; |
| } |
| for(i = ds-1; i >= 0; --i) r[i] = 0; |
| r[ds] = c; |
| r.t = this.t+ds+1; |
| r.s = this.s; |
| r.clamp(); |
| } |
| |
| // (protected) r = this >> n |
| function bnpRShiftTo(n,r) { |
| r.s = this.s; |
| var ds = Math.floor(n/this.DB); |
| if(ds >= this.t) { r.t = 0; return; } |
| var bs = n%this.DB; |
| var cbs = this.DB-bs; |
| var bm = (1<<bs)-1; |
| r[0] = this[ds]>>bs; |
| for(var i = ds+1; i < this.t; ++i) { |
| r[i-ds-1] |= (this[i]&bm)<<cbs; |
| r[i-ds] = this[i]>>bs; |
| } |
| if(bs > 0) r[this.t-ds-1] |= (this.s&bm)<<cbs; |
| r.t = this.t-ds; |
| r.clamp(); |
| } |
| |
| // (protected) r = this - a |
| function bnpSubTo(a,r) { |
| var i = 0, c = 0, m = Math.min(a.t,this.t); |
| while(i < m) { |
| c += this[i]-a[i]; |
| r[i++] = c&this.DM; |
| c >>= this.DB; |
| } |
| if(a.t < this.t) { |
| c -= a.s; |
| while(i < this.t) { |
| c += this[i]; |
| r[i++] = c&this.DM; |
| c >>= this.DB; |
| } |
| c += this.s; |
| } |
| else { |
| c += this.s; |
| while(i < a.t) { |
| c -= a[i]; |
| r[i++] = c&this.DM; |
| c >>= this.DB; |
| } |
| c -= a.s; |
| } |
| r.s = (c<0)?-1:0; |
| if(c < -1) r[i++] = this.DV+c; |
| else if(c > 0) r[i++] = c; |
| r.t = i; |
| r.clamp(); |
| } |
| |
| // (protected) r = this * a, r != this,a (HAC 14.12) |
| // "this" should be the larger one if appropriate. |
| function bnpMultiplyTo(a,r) { |
| var x = this.abs(), y = a.abs(); |
| var i = x.t; |
| r.t = i+y.t; |
| while(--i >= 0) r[i] = 0; |
| for(i = 0; i < y.t; ++i) r[i+x.t] = x.am(0,y[i],r,i,0,x.t); |
| r.s = 0; |
| r.clamp(); |
| if(this.s != a.s) BigInteger.ZERO.subTo(r,r); |
| } |
| |
| // (protected) r = this^2, r != this (HAC 14.16) |
| function bnpSquareTo(r) { |
| var x = this.abs(); |
| var i = r.t = 2*x.t; |
| while(--i >= 0) r[i] = 0; |
| for(i = 0; i < x.t-1; ++i) { |
| var c = x.am(i,x[i],r,2*i,0,1); |
| if((r[i+x.t]+=x.am(i+1,2*x[i],r,2*i+1,c,x.t-i-1)) >= x.DV) { |
| r[i+x.t] -= x.DV; |
| r[i+x.t+1] = 1; |
| } |
| } |
| if(r.t > 0) r[r.t-1] += x.am(i,x[i],r,2*i,0,1); |
| r.s = 0; |
| r.clamp(); |
| } |
| |
| // (protected) divide this by m, quotient and remainder to q, r (HAC 14.20) |
| // r != q, this != m. q or r may be null. |
| function bnpDivRemTo(m,q,r) { |
| var pm = m.abs(); |
| if(pm.t <= 0) return; |
| var pt = this.abs(); |
| if(pt.t < pm.t) { |
| if(q != null) q.fromInt(0); |
| if(r != null) this.copyTo(r); |
| return; |
| } |
| if(r == null) r = nbi(); |
| var y = nbi(), ts = this.s, ms = m.s; |
| var nsh = this.DB-nbits(pm[pm.t-1]); // normalize modulus |
| if(nsh > 0) { pm.lShiftTo(nsh,y); pt.lShiftTo(nsh,r); } |
| else { pm.copyTo(y); pt.copyTo(r); } |
| var ys = y.t; |
| var y0 = y[ys-1]; |
| if(y0 == 0) return; |
| var yt = y0*(1<<this.F1)+((ys>1)?y[ys-2]>>this.F2:0); |
| var d1 = this.FV/yt, d2 = (1<<this.F1)/yt, e = 1<<this.F2; |
| var i = r.t, j = i-ys, t = (q==null)?nbi():q; |
| y.dlShiftTo(j,t); |
| if(r.compareTo(t) >= 0) { |
| r[r.t++] = 1; |
| r.subTo(t,r); |
| } |
| BigInteger.ONE.dlShiftTo(ys,t); |
| t.subTo(y,y); // "negative" y so we can replace sub with am later |
| while(y.t < ys) y[y.t++] = 0; |
| while(--j >= 0) { |
| // Estimate quotient digit |
| var qd = (r[--i]==y0)?this.DM:Math.floor(r[i]*d1+(r[i-1]+e)*d2); |
| if((r[i]+=y.am(0,qd,r,j,0,ys)) < qd) { // Try it out |
| y.dlShiftTo(j,t); |
| r.subTo(t,r); |
| while(r[i] < --qd) r.subTo(t,r); |
| } |
| } |
| if(q != null) { |
| r.drShiftTo(ys,q); |
| if(ts != ms) BigInteger.ZERO.subTo(q,q); |
| } |
| r.t = ys; |
| r.clamp(); |
| if(nsh > 0) r.rShiftTo(nsh,r); // Denormalize remainder |
| if(ts < 0) BigInteger.ZERO.subTo(r,r); |
| } |
| |
| // (public) this mod a |
| function bnMod(a) { |
| var r = nbi(); |
| this.abs().divRemTo(a,null,r); |
| if(this.s < 0 && r.compareTo(BigInteger.ZERO) > 0) a.subTo(r,r); |
| return r; |
| } |
| |
| // Modular reduction using "classic" algorithm |
| function Classic(m) { this.m = m; } |
| function cConvert(x) { |
| if(x.s < 0 || x.compareTo(this.m) >= 0) return x.mod(this.m); |
| else return x; |
| } |
| function cRevert(x) { return x; } |
| function cReduce(x) { x.divRemTo(this.m,null,x); } |
| function cMulTo(x,y,r) { x.multiplyTo(y,r); this.reduce(r); } |
| function cSqrTo(x,r) { x.squareTo(r); this.reduce(r); } |
| |
| Classic.prototype.convert = cConvert; |
| Classic.prototype.revert = cRevert; |
| Classic.prototype.reduce = cReduce; |
| Classic.prototype.mulTo = cMulTo; |
| Classic.prototype.sqrTo = cSqrTo; |
| |
| // (protected) return "-1/this % 2^DB"; useful for Mont. reduction |
| // justification: |
| // xy == 1 (mod m) |
| // xy = 1+km |
| // xy(2-xy) = (1+km)(1-km) |
| // x[y(2-xy)] = 1-k^2m^2 |
| // x[y(2-xy)] == 1 (mod m^2) |
| // if y is 1/x mod m, then y(2-xy) is 1/x mod m^2 |
| // should reduce x and y(2-xy) by m^2 at each step to keep size bounded. |
| // JS multiply "overflows" differently from C/C++, so care is needed here. |
| function bnpInvDigit() { |
| if(this.t < 1) return 0; |
| var x = this[0]; |
| if((x&1) == 0) return 0; |
| var y = x&3; // y == 1/x mod 2^2 |
| y = (y*(2-(x&0xf)*y))&0xf; // y == 1/x mod 2^4 |
| y = (y*(2-(x&0xff)*y))&0xff; // y == 1/x mod 2^8 |
| y = (y*(2-(((x&0xffff)*y)&0xffff)))&0xffff; // y == 1/x mod 2^16 |
| // last step - calculate inverse mod DV directly; |
| // assumes 16 < DB <= 32 and assumes ability to handle 48-bit ints |
| y = (y*(2-x*y%this.DV))%this.DV; // y == 1/x mod 2^dbits |
| // we really want the negative inverse, and -DV < y < DV |
| return (y>0)?this.DV-y:-y; |
| } |
| |
| // Montgomery reduction |
| function Montgomery(m) { |
| this.m = m; |
| this.mp = m.invDigit(); |
| this.mpl = this.mp&0x7fff; |
| this.mph = this.mp>>15; |
| this.um = (1<<(m.DB-15))-1; |
| this.mt2 = 2*m.t; |
| } |
| |
| // xR mod m |
| function montConvert(x) { |
| var r = nbi(); |
| x.abs().dlShiftTo(this.m.t,r); |
| r.divRemTo(this.m,null,r); |
| if(x.s < 0 && r.compareTo(BigInteger.ZERO) > 0) this.m.subTo(r,r); |
| return r; |
| } |
| |
| // x/R mod m |
| function montRevert(x) { |
| var r = nbi(); |
| x.copyTo(r); |
| this.reduce(r); |
| return r; |
| } |
| |
| // x = x/R mod m (HAC 14.32) |
| function montReduce(x) { |
| while(x.t <= this.mt2) // pad x so am has enough room later |
| x[x.t++] = 0; |
| for(var i = 0; i < this.m.t; ++i) { |
| // faster way of calculating u0 = x[i]*mp mod DV |
| var j = x[i]&0x7fff; |
| var u0 = (j*this.mpl+(((j*this.mph+(x[i]>>15)*this.mpl)&this.um)<<15))&x.DM; |
| // use am to combine the multiply-shift-add into one call |
| j = i+this.m.t; |
| x[j] += this.m.am(0,u0,x,i,0,this.m.t); |
| // propagate carry |
| while(x[j] >= x.DV) { x[j] -= x.DV; x[++j]++; } |
| } |
| x.clamp(); |
| x.drShiftTo(this.m.t,x); |
| if(x.compareTo(this.m) >= 0) x.subTo(this.m,x); |
| } |
| |
| // r = "x^2/R mod m"; x != r |
| function montSqrTo(x,r) { x.squareTo(r); this.reduce(r); } |
| |
| // r = "xy/R mod m"; x,y != r |
| function montMulTo(x,y,r) { x.multiplyTo(y,r); this.reduce(r); } |
| |
| Montgomery.prototype.convert = montConvert; |
| Montgomery.prototype.revert = montRevert; |
| Montgomery.prototype.reduce = montReduce; |
| Montgomery.prototype.mulTo = montMulTo; |
| Montgomery.prototype.sqrTo = montSqrTo; |
| |
| // (protected) true iff this is even |
| function bnpIsEven() { return ((this.t>0)?(this[0]&1):this.s) == 0; } |
| |
| // (protected) this^e, e < 2^32, doing sqr and mul with "r" (HAC 14.79) |
| function bnpExp(e,z) { |
| if(e > 0xffffffff || e < 1) return BigInteger.ONE; |
| var r = nbi(), r2 = nbi(), g = z.convert(this), i = nbits(e)-1; |
| g.copyTo(r); |
| while(--i >= 0) { |
| z.sqrTo(r,r2); |
| if((e&(1<<i)) > 0) z.mulTo(r2,g,r); |
| else { var t = r; r = r2; r2 = t; } |
| } |
| return z.revert(r); |
| } |
| |
| // (public) this^e % m, 0 <= e < 2^32 |
| function bnModPowInt(e,m) { |
| var z; |
| if(e < 256 || m.isEven()) z = new Classic(m); else z = new Montgomery(m); |
| return this.exp(e,z); |
| } |
| |
| // protected |
| BigInteger.prototype.copyTo = bnpCopyTo; |
| BigInteger.prototype.fromInt = bnpFromInt; |
| BigInteger.prototype.fromString = bnpFromString; |
| BigInteger.prototype.clamp = bnpClamp; |
| BigInteger.prototype.dlShiftTo = bnpDLShiftTo; |
| BigInteger.prototype.drShiftTo = bnpDRShiftTo; |
| BigInteger.prototype.lShiftTo = bnpLShiftTo; |
| BigInteger.prototype.rShiftTo = bnpRShiftTo; |
| BigInteger.prototype.subTo = bnpSubTo; |
| BigInteger.prototype.multiplyTo = bnpMultiplyTo; |
| BigInteger.prototype.squareTo = bnpSquareTo; |
| BigInteger.prototype.divRemTo = bnpDivRemTo; |
| BigInteger.prototype.invDigit = bnpInvDigit; |
| BigInteger.prototype.isEven = bnpIsEven; |
| BigInteger.prototype.exp = bnpExp; |
| |
| // public |
| BigInteger.prototype.toString = bnToString; |
| BigInteger.prototype.negate = bnNegate; |
| BigInteger.prototype.abs = bnAbs; |
| BigInteger.prototype.compareTo = bnCompareTo; |
| BigInteger.prototype.bitLength = bnBitLength; |
| BigInteger.prototype.mod = bnMod; |
| BigInteger.prototype.modPowInt = bnModPowInt; |
| |
| // "constants" |
| BigInteger.ZERO = nbv(0); |
| BigInteger.ONE = nbv(1); |