blob: e5f2837c3c14815b8ffba40e8cfed42a1ac07598 [file] [log] [blame]
/* This file is created by running make-ndn-js.jsm.sh in this directory.
* It concatenates ndn-js-header.txt with all the ndn-js source files to
* make ndn-js.jsm .
* author: ucla-cs
* See COPYING for copyright and distribution information.
*/
var EXPORTED_SYMBOLS = ["NDN", "DataUtils", "readAllFromSocket"];
Components.utils.import("resource://gre/modules/XPCOMUtils.jsm");
Components.utils.import("resource://gre/modules/NetUtil.jsm");
// LOG is used by some of the NDN code.
var LOG = 0;
// jsbn.js needs the navigator object which isn't defined in XPCOM, so make a local hack.
var navigator = {
appName: "Netscape"
};
// Some code calls console.log without checking LOG>0. Until this is cleaned up, make a local hack console.
var console = {
log: function(message) {
dump(message + "\n");
}
};
/*
* @author: ucla-cs
* See COPYING for copyright and distribution information.
* This class represents the top-level object for communicating with an NDN host.
*/
/**
* host is default '127.0.0.1'.
* port is default 9695.
*/
var NDN = function NDN(host, port){
this.host = (host || '127.0.0.1');
this.port = (port || 9695);
};
NDN.prototype.createRoute = function(host,port){
this.host=host;
this.port=port;
}
NDN.prototype.get = function(message){
if(this.host!=null && this.port!=null){
var output ='';
message = message.trim();
if(message==null || message =="" ){
console.log('INVALID INPUT TO GET');
return null;
}
//var array = Name.createNameArray(message);
int = new Interest(new Name(message));
int.InterestLifetime = 4200;
var hex = encodeToHexInterest(int);
//var result = get_java_socket_bridge().connectAndStart(ndnurl,ndnport,hex);
var result = get(this.host,this.port, hex);
if(LOG>0)console.log('BINARY RESPONSE IS ' +result);
if(result==null || result==undefined || result =="" ){
/*if(result[0] != '0'||result[1]!='4') {
if(LOG>2)console.log('INVALID ANSWER');
}*/
return null;
}
else{
co = decodeHexContentObject(result);
if(LOG>2) {
console.log('DECODED CONTENT OBJECT');
console.log(co);
}
return co;
}
}
else{
console.log('ERROR URL OR PORT NOT SET');
return null;
}
}
NDN.prototype.put = function(name,content){
if(this.host!=null && this.port!=null){
var co = this.get("/%C1.M.S.localhost/%C1.M.SRV/ccnd");
if(!co || !co.signedInfo || !co.signedInfo.publisher || !co.signedInfo.publisher.publisherPublicKeyDigest){
alert("Cannot contact router");
return null;
}
var ccnxnodename = co.signedInfo.publisher.publisherPublicKeyDigest;
name = name.trim();
var fe = new ForwardingEntry('selfreg',new Name(name),null, null, 3,2147483647);
var bytes = encodeForwardingEntry(fe);
var si = new SignedInfo();
si.setFields();
var co = new ContentObject(new Name(),si,bytes,new Signature());
co.sign();
var coBinary = encodeToBinaryContentObject(co);
//var ccnxnodename = unescape('%E0%A0%1E%099h%F9t%0C%E7%F46%1B%AB%F5%BB%05%A4%E5Z%AC%A5%E5%8Fs%ED%DE%B8%E0%13%AA%8F');
var interestName = new Name(['ccnx',ccnxnodename,'selfreg',coBinary]);
int = new Interest(interestName);
int.scope = 1;
var hex = encodeToHexInterest(int);
console.log('GOING TO PUT INTEREST OBJECT');
console.log(hex);
//var result = put(this.host,this.port, hex,name);
//if(LOG>3)console.log('received interest'); //from host'+ host +':'+port+' with name '+name);
//if(LOG>3)console.log('DATA ');
//if(LOG>3)console.log(result);
//interest = decodeHexInterest(result);
//console.log('SUCCESSFULLY PARSED INTEREST');
console.log('CREATING ANSWER');
var si = new SignedInfo();
si.setFields();
var answer = DataUtils.toNumbersFromString(content);
var co = new ContentObject(new Name(name),si,answer,new Signature());
co.sign();
var outputHex = encodeToHexContentObject(co);
//console.log('SENDING ANSWER');
//return get_java_socket_bridge().putAnswer(outputHex,name);
var result = put(this.host,this.port, hex,name,outputHex);
return result;
}
else{
console.log('ERROR URL OR PORT NOT SET');
return null;
}
}
/*
* @author: ucla-cs
* See COPYING for copyright and distribution information.
* Implement getAsync and putAsync used by NDN using nsISocketTransportService.
* This is used inside Firefox XPCOM modules.
*/
// Assume already imported the following:
// Components.utils.import("resource://gre/modules/XPCOMUtils.jsm");
// Components.utils.import("resource://gre/modules/NetUtil.jsm");
/** Convert outputHex to binary, send to host:port and call listener.onReceivedData(data)
* where data is a byte array.
*/
function getAsync(host, port, outputHex, listener) {
readAllFromSocket(host, port, DataUtils.hexToRawString(outputHex), listener);
}
/** Send outputData to host:port, read the entire response and call listener.onReceivedData(data)
* where data is a byte array.
* Code derived from http://stackoverflow.com/questions/7816386/why-nsiscriptableinputstream-is-not-working .
*/
function readAllFromSocket(host, port, outputData, listener) {
var transportService = Components.classes["@mozilla.org/network/socket-transport-service;1"].getService
(Components.interfaces.nsISocketTransportService);
var pump = Components.classes["@mozilla.org/network/input-stream-pump;1"].createInstance
(Components.interfaces.nsIInputStreamPump);
var transport = transportService.createTransport(null, 0, host, port, null);
var outStream = transport.openOutputStream(1, 0, 0);
outStream.write(outputData, outputData.length);
outStream.flush();
var inStream = transport.openInputStream(0, 0, 0);
var dataListener = {
data: [],
structureDecoder: new BinaryXMLStructureDecoder(),
calledOnReceivedData: false,
debugNOnDataAvailable: 0,
onStartRequest: function (request, context) {
},
onStopRequest: function (request, context, status) {
inStream.close();
outStream.close();
if (!this.calledOnReceivedData) {
this.calledOnReceivedData = true;
listener.onReceivedData(this.data);
}
},
onDataAvailable: function (request, context, _inputStream, offset, count) {
if (this.calledOnReceivedData)
// Already finished. Ignore extra data.
return;
try {
this.debugNOnDataAvailable += 1;
// Ignore _inputStream and use inStream.
// Use readInputStreamToString to handle binary data.
var rawData = NetUtil.readInputStreamToString(inStream, count);
this.data = this.data.concat(DataUtils.toNumbersFromString(rawData));
// Scan the input to check if a whole ccnb object has been read.
if (this.structureDecoder.findElementEnd(this.data))
// Finish.
this.onStopRequest();
} catch (ex) {
dump("onDataAvailable exception: " + ex + "\n");
}
}
};
pump.init(inStream, -1, -1, 0, 0, true);
pump.asyncRead(dataListener, null);
}
// TODO: This should be moved to the main NDN.js when we agree on how to do non-blocking get.
// For now, assume this is included after NDN.js and modify it.
/** Encode message as an Interest, send it to host:port, read the entire response and call
listener.onReceivedContentObject(contentObject).
*/
NDN.prototype.getAsync = function(message, listener) {
if (this.host != null && this.port != null) {
var output ='';
message = message.trim();
if(message==null || message =="" ){
dump('INVALID INPUT TO GET\n');
return null;
}
interest = new Interest(new Name(message));
interest.InterestLifetime = 4200;
var outputHex = encodeToHexInterest(interest);
var dataListener = {
onReceivedData : function(result) {
if (result == null || result == undefined || result.length == 0)
listener.onReceivedContentObject(null);
else {
var decoder = new BinaryXMLDecoder(result);
var co = new ContentObject();
co.from_ccnb(decoder);
if(LOG>2) {
dump('DECODED CONTENT OBJECT\n');
dump(co);
dump('\n');
}
listener.onReceivedContentObject(co);
}
}
}
return getAsync(this.host, this.port, outputHex, dataListener);
}
else {
dump('ERROR host OR port NOT SET\n');
}
}
/*
* @author: ucla-cs
* See COPYING for copyright and distribution information.
* This class contains all CCNx tags
*/
var CCNProtocolDTags = {
/**
* Note if you add one of these, add it to the reverse string map as well.
* Emphasize getting the work done at compile time over trying to make something
* flexible and developer error-proof.
*/
Any : 13,
Name : 14,
Component : 15,
Certificate : 16,
Collection : 17,
CompleteName : 18,
Content : 19,
SignedInfo : 20,
ContentDigest : 21,
ContentHash : 22,
Count : 24,
Header : 25,
Interest : 26, /* 20090915 */
Key : 27,
KeyLocator : 28,
KeyName : 29,
Length : 30,
Link : 31,
LinkAuthenticator : 32,
NameComponentCount : 33, /* DeprecatedInInterest */
RootDigest : 36,
Signature : 37,
Start : 38,
Timestamp : 39,
Type : 40,
Nonce : 41,
Scope : 42,
Exclude : 43,
Bloom : 44,
BloomSeed : 45,
AnswerOriginKind : 47,
InterestLifetime : 48,
Witness : 53,
SignatureBits : 54,
DigestAlgorithm : 55,
BlockSize : 56,
FreshnessSeconds : 58,
FinalBlockID : 59,
PublisherPublicKeyDigest : 60,
PublisherCertificateDigest : 61,
PublisherIssuerKeyDigest : 62,
PublisherIssuerCertificateDigest : 63,
ContentObject : 64, /* 20090915 */
WrappedKey : 65,
WrappingKeyIdentifier : 66,
WrapAlgorithm : 67,
KeyAlgorithm : 68,
Label : 69,
EncryptedKey : 70,
EncryptedNonceKey : 71,
WrappingKeyName : 72,
Action : 73,
FaceID : 74,
IPProto : 75,
Host : 76,
Port : 77,
MulticastInterface : 78,
ForwardingFlags : 79,
FaceInstance : 80,
ForwardingEntry : 81,
MulticastTTL : 82,
MinSuffixComponents : 83,
MaxSuffixComponents : 84,
ChildSelector : 85,
RepositoryInfo : 86,
Version : 87,
RepositoryVersion : 88,
GlobalPrefix : 89,
LocalName : 90,
Policy : 91,
Namespace : 92,
GlobalPrefixName : 93,
PolicyVersion : 94,
KeyValueSet : 95,
KeyValuePair : 96,
IntegerValue : 97,
DecimalValue : 98,
StringValue : 99,
BinaryValue : 100,
NameValue : 101,
Entry : 102,
ACL : 103,
ParameterizedName : 104,
Prefix : 105,
Suffix : 106,
Root : 107,
ProfileName : 108,
Parameters : 109,
InfoString : 110,
// 111 unallocated
StatusResponse : 112,
StatusCode : 113,
StatusText : 114,
// Sync protocol
SyncNode : 115,
SyncNodeKind : 116,
SyncNodeElement : 117,
SyncVersion : 118,
SyncNodeElements : 119,
SyncContentHash : 120,
SyncLeafCount : 121,
SyncTreeDepth : 122,
SyncByteCount : 123,
ConfigSlice : 124,
ConfigSliceList : 125,
ConfigSliceOp : 126,
// Remember to keep in sync with schema/tagnames.csvsdict
CCNProtocolDataUnit : 17702112,
CCNPROTOCOL_DATA_UNIT : "CCNProtocolDataUnit"
};
var CCNProtocolDTagsStrings = [
null, null, null, null, null, null, null, null, null, null, null,
null, null,
"Any", "Name", "Component", "Certificate", "Collection", "CompleteName",
"Content", "SignedInfo", "ContentDigest", "ContentHash", null, "Count", "Header",
"Interest", "Key", "KeyLocator", "KeyName", "Length", "Link", "LinkAuthenticator",
"NameComponentCount", null, null, "RootDigest", "Signature", "Start", "Timestamp", "Type",
"Nonce", "Scope", "Exclude", "Bloom", "BloomSeed", null, "AnswerOriginKind",
"InterestLifetime", null, null, null, null, "Witness", "SignatureBits", "DigestAlgorithm", "BlockSize",
null, "FreshnessSeconds", "FinalBlockID", "PublisherPublicKeyDigest", "PublisherCertificateDigest",
"PublisherIssuerKeyDigest", "PublisherIssuerCertificateDigest", "ContentObject",
"WrappedKey", "WrappingKeyIdentifier", "WrapAlgorithm", "KeyAlgorithm", "Label",
"EncryptedKey", "EncryptedNonceKey", "WrappingKeyName", "Action", "FaceID", "IPProto",
"Host", "Port", "MulticastInterface", "ForwardingFlags", "FaceInstance",
"ForwardingEntry", "MulticastTTL", "MinSuffixComponents", "MaxSuffixComponents", "ChildSelector",
"RepositoryInfo", "Version", "RepositoryVersion", "GlobalPrefix", "LocalName",
"Policy", "Namespace", "GlobalPrefixName", "PolicyVersion", "KeyValueSet", "KeyValuePair",
"IntegerValue", "DecimalValue", "StringValue", "BinaryValue", "NameValue", "Entry",
"ACL", "ParameterizedName", "Prefix", "Suffix", "Root", "ProfileName", "Parameters",
"InfoString", null,
"StatusResponse", "StatusCode", "StatusText", "SyncNode", "SyncNodeKind", "SyncNodeElement",
"SyncVersion", "SyncNodeElements", "SyncContentHash", "SyncLeafCount", "SyncTreeDepth", "SyncByteCount",
"ConfigSlice", "ConfigSliceList", "ConfigSliceOp" ];
//TESTING
//console.log(exports.CCNProtocolDTagsStrings[17]);
/*
* @author: ucla-cs
* See COPYING for copyright and distribution information.
* This class represents CCNTime Objects
*/
var CCNTime = function CCNTime(
input) {
this.NANOS_MAX = 999877929;
/*if(typeof input =='object'){
this.longDate = DataUtils.byteArrayToUnsignedLong(input);
this.binaryDate = input;
}*/
if(typeof input =='number'){
this.msec = input;
//this.binaryDate = DataUtils.unsignedLongToByteArray(input);
}
else{
if(LOG>1) console.log('UNRECOGNIZED TYPE FOR TIME');
}
};
CCNTime.prototype.getJavascriptDate = function(){
var d = new Date();
d.setTime( this.msec );
return d
};
/**
* Create a CCNTime
* @param timestamp source timestamp to initialize from, some precision will be lost
*/
/**
* Create a CCNTime from its binary encoding
* @param binaryTime12 the binary representation of a CCNTime
*/
/*CCNTime.prototype.setDateBinary = function(
//byte []
binaryTime12) {
if ((null == binaryTime12) || (binaryTime12.length == 0)) {
throw new IllegalArgumentException("Invalid binary time!");
}
value = 0;
for(i = 0; i < binaryTime12.length; i++) {
value = value << 8;
b = (binaryTime12[i]) & 0xFF;
value |= b;
}
//this.date = new Date(value);
};
//byte[]
CCNTime.prototype.toBinaryTime = function() {
return this.msec; //unsignedLongToByteArray(this.date.getTime());
}*/
/*
unsignedLongToByteArray= function( value) {
if( 0 == value )
return [0];
if( 0 <= value && value <= 0x00FF ) {
//byte []
bb = new Array[1];
bb[0] = (value & 0x00FF);
return bb;
}
//byte []
out = null;
//int
offset = -1;
for(var i = 7; i >=0; --i) {
//byte
b = ((value >> (i * 8)) & 0xFF);
if( out == null && b != 0 ) {
out = new Array(i+1);//byte[i+1];
offset = i;
}
if( out != null )
out[ offset - i ] = b;
}
return out;
}*/
/*
* @author: ucla-cs
* See COPYING for copyright and distribution information.
* This class represents a Name
*/
var Name = function Name(_components){
if( typeof _components == 'string') {
if(LOG>3)console.log('Content Name String '+_components);
this.components = Name.makeBlob(Name.createNameArray(_components));
}
else if(typeof _components === 'object' && _components instanceof Array ){
if(LOG>4)console.log('Content Name Array '+_components);
this.components = Name.makeBlob(_components);
}
else if(_components==null){
this.components =[];
}
else{
if(LOG>1)console.log("NO CONTENT NAME GIVEN");
}
};
Name.prototype.getName=function(){
var output = "";
for(var i=0;i<this.components.length;i++){
output+= "/"+ DataUtils.toString(this.components[i]);
}
return output;
};
Name.makeBlob=function(name){
var blobArrays = new Array(name.length);
for(var i=0;i<name.length;i++){
if(typeof name[i] == 'string')
blobArrays[i]= DataUtils.toNumbersFromString( name[i] );
else if(typeof name[i] == 'object')
blobArrays[i]= name[i] ;
else
if(LOG>4)console.log('NAME COMPONENT INVALID');
}
return blobArrays;
};
Name.createNameArray=function(name){
name = unescape(name);
var array = name.split('/');
if(name[0]=="/")
array=array.slice(1,array.length);
if(name[name.length-1]=="/")
array=array.slice(0,array.length-1);
return array;
}
Name.prototype.from_ccnb = function(/*XMLDecoder*/ decoder) {
decoder.readStartElement(this.getElementLabel());
this.components = new Array(); //new ArrayList<byte []>();
while (decoder.peekStartElement(CCNProtocolDTags.Component)) {
this.add(decoder.readBinaryElement(CCNProtocolDTags.Component));
}
decoder.readEndElement();
};
Name.prototype.to_ccnb = function(/*XMLEncoder*/ encoder) {
if( this.components ==null )
throw new Error("CANNOT ENCODE EMPTY CONTENT NAME");
encoder.writeStartElement(this.getElementLabel());
var count = this.components.length;
for (var i=0; i < count; i++) {
encoder.writeElement(CCNProtocolDTags.Component, this.components[i]);
}
encoder.writeEndElement();
};
Name.prototype.getElementLabel = function(){
return CCNProtocolDTags.Name;
};
Name.prototype.add = function(param){
return this.components.push(param);
};
/*
* @author: ucla-cs
* See COPYING for copyright and distribution information.
* This class represents ContentObject Objects
*/
var ContentObject = function ContentObject(_name,_signedInfo,_content,_signature){
if (typeof _name === 'string'){
this.name = new Name(_name);
}
else{
//TODO Check the class of _name
this.name = _name;
}
this.signedInfo = _signedInfo;
this.content=_content;
this.signature = _signature;
this.startSIG = null;
this.endSIG = null;
this.startSignedInfo = null;
this.endContent = null;
this.rawSignatureData = null;
};
ContentObject.prototype.sign = function(){
var n1 = this.encodeObject(this.name);
var n2 = this.encodeObject(this.signedInfo);
var n3 = this.encodeContent();
var n = n1.concat(n2,n3);
if(LOG>2)console.log('Signature Data is (binary) '+n);
if(LOG>2)console.log('Signature Data is (RawString)');
if(LOG>2)console.log( DataUtils.toString(n) );
var sig = DataUtils.toString(n);
var rsa = new RSAKey();
rsa.readPrivateKeyFromPEMString(globalKeyManager.privateKey);
//var hSig = rsa.signString(sig, "sha256");
var hSig = rsa.signByteArrayWithSHA256(n);
if(LOG>2)console.log('SIGNATURE SAVED IS');
if(LOG>2)console.log(hSig);
if(LOG>2)console.log( DataUtils.toNumbers(hSig.trim()));
this.signature.signature = DataUtils.toNumbers(hSig.trim());
};
ContentObject.prototype.encodeObject = function encodeObject(obj){
var enc = new BinaryXMLEncoder();
obj.to_ccnb(enc);
var num = enc.getReducedOstream();
return num;
};
ContentObject.prototype.encodeContent = function encodeContent(obj){
var enc = new BinaryXMLEncoder();
enc.writeElement(CCNProtocolDTags.Content, this.content);
var num = enc.getReducedOstream();
return num;
};
ContentObject.prototype.saveRawData = function(bytes){
var sigBits = bytes.slice(this.startSIG, this.endSIG );
this.rawSignatureData = sigBits;
};
ContentObject.prototype.from_ccnb = function(/*XMLDecoder*/ decoder) {
// TODO VALIDATE THAT ALL FIELDS EXCEPT SIGNATURE ARE PRESENT
decoder.readStartElement(this.getElementLabel());
if( decoder.peekStartElement(CCNProtocolDTags.Signature) ){
this.signature = new Signature();
this.signature.from_ccnb(decoder);
}
//this.endSIG = decoder.offset;
this.startSIG = decoder.offset;
this.name = new Name();
this.name.from_ccnb(decoder);
//this.startSignedInfo = decoder.offset;
if( decoder.peekStartElement(CCNProtocolDTags.SignedInfo) ){
this.signedInfo = new SignedInfo();
this.signedInfo.from_ccnb(decoder);
}
this.content = decoder.readBinaryElement(CCNProtocolDTags.Content);
//this.endContent = decoder.offset;
this.endSIG = decoder.offset;
decoder.readEndElement();
this.saveRawData(decoder.istream);
};
ContentObject.prototype.to_ccnb = function(/*XMLEncoder*/ encoder) {
//TODO verify name, SignedInfo and Signature is present
encoder.writeStartElement(this.getElementLabel());
if(null!=this.signature) this.signature.to_ccnb(encoder);
this.startSIG = encoder.offset;
if(null!=this.name) this.name.to_ccnb(encoder);
//this.endSIG = encoder.offset;
//this.startSignedInfo = encoder.offset;
if(null!=this.signedInfo) this.signedInfo.to_ccnb(encoder);
encoder.writeElement(CCNProtocolDTags.Content, this.content);
this.endSIG = encoder.offset;
//this.endContent = encoder.offset;
encoder.writeEndElement();
this.saveRawData(encoder.ostream);
};
ContentObject.prototype.getElementLabel= function(){return CCNProtocolDTags.ContentObject;};
/**
* Signature
*/
var Signature = function Signature(_witness,_signature,_digestAlgorithm) {
this.Witness = _witness;//byte [] _witness;
this.signature = _signature;//byte [] _signature;
this.digestAlgorithm = _digestAlgorithm//String _digestAlgorithm;
};
var generateSignature = function(contentName,content,signedinfo){
var enc = new BinaryXMLEncoder();
contentName.to_ccnb(enc);
var hex1 = toHex(enc.getReducedOstream());
var enc = new BinaryXMLEncoder();
content.to_ccnb(enc);
var hex2 = toHex(enc.getReducedOstream());
var enc = new BinaryXMLEncoder();
signedinfo.to_ccnb(enc);
var hex3 = toHex(enc.getReducedOstream());
var hex = hex1+hex2+hex3;
//globalKeyManager.sig
};
Signature.prototype.from_ccnb =function( decoder) {
decoder.readStartElement(this.getElementLabel());
if(LOG>4)console.log('STARTED DECODING SIGNATURE ');
if (decoder.peekStartElement(CCNProtocolDTags.DigestAlgorithm)) {
if(LOG>4)console.log('DIGIEST ALGORITHM FOUND');
this.digestAlgorithm = decoder.readUTF8Element(CCNProtocolDTags.DigestAlgorithm);
}
if (decoder.peekStartElement(CCNProtocolDTags.Witness)) {
if(LOG>4)console.log('WITNESS FOUND FOUND');
this.Witness = decoder.readBinaryElement(CCNProtocolDTags.Witness);
}
//FORCE TO READ A SIGNATURE
//if(LOG>4)console.log('SIGNATURE FOUND ');
this.signature = decoder.readBinaryElement(CCNProtocolDTags.SignatureBits);
if(LOG>4)console.log('READ SIGNATURE ');
decoder.readEndElement();
};
Signature.prototype.to_ccnb= function( encoder){
if (!this.validate()) {
throw new Error("Cannot encode: field values missing.");
}
encoder.writeStartElement(this.getElementLabel());
if ((null != this.digestAlgorithm) && (!this.digestAlgorithm.equals(CCNDigestHelper.DEFAULT_DIGEST_ALGORITHM))) {
encoder.writeElement(CCNProtocolDTags.DigestAlgorithm, OIDLookup.getDigestOID(this.DigestAlgorithm));
}
if (null != this.Witness) {
// needs to handle null witness
encoder.writeElement(CCNProtocolDTags.Witness, this.Witness);
}
encoder.writeElement(CCNProtocolDTags.SignatureBits, this.signature);
encoder.writeEndElement();
};
Signature.prototype.getElementLabel = function() { return CCNProtocolDTags.Signature; };
Signature.prototype.validate = function() {
return null != this.signature;
};
/**
* SignedInfo
*/
var ContentType = {DATA:0, ENCR:1, GONE:2, KEY:3, LINK:4, NACK:5};
var ContentTypeValue = {0:0x0C04C0, 1:0x10D091,2:0x18E344,3:0x28463F,4:0x2C834A,5:0x34008A};
var ContentTypeValueReverse = {0x0C04C0:0, 0x10D091:1,0x18E344:2,0x28463F:3,0x2C834A:4,0x34008A:5};
var SignedInfo = function SignedInfo(_publisher,_timestamp,_type,_locator,_freshnessSeconds,_finalBlockID){
//TODO, Check types
this.publisher = _publisher; //publisherPublicKeyDigest
this.timestamp=_timestamp; // CCN Time
this.type=_type; // ContentType
this.locator =_locator;//KeyLocator
this.freshnessSeconds =_freshnessSeconds; // Integer
this.finalBlockID=_finalBlockID; //byte array
};
SignedInfo.prototype.setFields = function(){
//BASE64 -> RAW STRING
//this.locator = new KeyLocator( DataUtils.toNumbersFromString(stringCertificate) ,KeyLocatorType.CERTIFICATE );
var publicKeyHex = globalKeyManager.publicKey;
console.log('PUBLIC KEY TO WRITE TO CONTENT OBJECT IS ');
console.log(publicKeyHex);
var publicKeyBytes = DataUtils.toNumbers(globalKeyManager.publicKey) ;
//var stringCertificate = DataUtils.base64toString(globalKeyManager.certificate);
//if(LOG>3)console.log('string Certificate is '+stringCertificate);
//HEX -> BYTE ARRAY
//var publisherkey = DataUtils.toNumbers(hex_sha256(stringCertificate));
//if(LOG>3)console.log('publisher key is ');
//if(LOG>3)console.log(publisherkey);
var publisherKeyDigest = hex_sha256_from_bytes(publicKeyBytes);
this.publisher = new PublisherPublicKeyDigest( DataUtils.toNumbers( publisherKeyDigest ) );
//this.publisher = new PublisherPublicKeyDigest(publisherkey);
var d = new Date();
var time = d.getTime();
this.timestamp = new CCNTime( time );
if(LOG>4)console.log('TIME msec is');
if(LOG>4)console.log(this.timestamp.msec);
//DATA
this.type = 0;//0x0C04C0;//ContentTypeValue[ContentType.DATA];
//if(LOG>4)console.log('toNumbersFromString(stringCertificate) '+DataUtils.toNumbersFromString(stringCertificate));
console.log('PUBLIC KEY TO WRITE TO CONTENT OBJECT IS ');
console.log(publicKeyBytes);
this.locator = new KeyLocator( publicKeyBytes ,KeyLocatorType.KEY );
//this.locator = new KeyLocator( DataUtils.toNumbersFromString(stringCertificate) ,KeyLocatorType.CERTIFICATE );
};
SignedInfo.prototype.from_ccnb = function( decoder){
decoder.readStartElement( this.getElementLabel() );
if (decoder.peekStartElement(CCNProtocolDTags.PublisherPublicKeyDigest)) {
if(LOG>3) console.log('DECODING PUBLISHER KEY');
this.publisher = new PublisherPublicKeyDigest();
this.publisher.from_ccnb(decoder);
}
if (decoder.peekStartElement(CCNProtocolDTags.Timestamp)) {
this.timestamp = decoder.readDateTime(CCNProtocolDTags.Timestamp);
if(LOG>4)console.log('TIMESTAMP FOUND IS '+this.timestamp);
}
if (decoder.peekStartElement(CCNProtocolDTags.Type)) {
binType = decoder.readBinaryElement(CCNProtocolDTags.Type);//byte []
//TODO Implement type of Key Reading
if(LOG>4)console.log('Binary Type of of Signed Info is '+binType);
this.type = binType;
//TODO Implement type of Key Reading
if (null == this.type) {
throw new Error("Cannot parse signedInfo type: bytes.");
}
} else {
this.type = ContentType.DATA; // default
}
if (decoder.peekStartElement(CCNProtocolDTags.FreshnessSeconds)) {
this.freshnessSeconds = decoder.readIntegerElement(CCNProtocolDTags.FreshnessSeconds);
if(LOG>4) console.log('FRESHNESS IN SECONDS IS '+ this.freshnessSeconds);
}
if (decoder.peekStartElement(CCNProtocolDTags.FinalBlockID)) {
this.finalBlockID = decoder.readBinaryElement(CCNProtocolDTags.FinalBlockID);
}
if (decoder.peekStartElement(CCNProtocolDTags.KeyLocator)) {
this.locator = new KeyLocator();
this.locator.from_ccnb(decoder);
}
decoder.readEndElement();
};
SignedInfo.prototype.to_ccnb = function( encoder) {
if (!this.validate()) {
throw new Error("Cannot encode : field values missing.");
}
encoder.writeStartElement(this.getElementLabel());
if (null!=this.publisher) {
if(LOG>3) console.log('ENCODING PUBLISHER KEY' + this.publisher.publisherPublicKeyDigest);
this.publisher.to_ccnb(encoder);
}
if (null!=this.timestamp) {
encoder.writeDateTime(CCNProtocolDTags.Timestamp, this.timestamp );
}
if (null!=this.type && this.type !=0) {
encoder.writeElement(CCNProtocolDTags.type, this.type);
}
if (null!=this.freshnessSeconds) {
encoder.writeElement(CCNProtocolDTags.FreshnessSeconds, this.freshnessSeconds);
}
if (null!=this.finalBlockID) {
encoder.writeElement(CCNProtocolDTags.FinalBlockID, this.finalBlockID);
}
if (null!=this.locator) {
this.locator.to_ccnb(encoder);
}
encoder.writeEndElement();
};
SignedInfo.prototype.valueToType = function(){
//for (Entry<byte [], ContentType> entry : ContentValueTypes.entrySet()) {
//if (Arrays.equals(value, entry.getKey()))
//return entry.getValue();
//}
return null;
};
SignedInfo.prototype.getElementLabel = function() {
return CCNProtocolDTags.SignedInfo;
};
SignedInfo.prototype.validate = function() {
// We don't do partial matches any more, even though encoder/decoder
// is still pretty generous.
if (null ==this.publisher || null==this.timestamp ||null== this.locator)
return false;
return true;
};
/*
* Date Format 1.2.3
* (c) 2007-2009 Steven Levithan <stevenlevithan.com>
* MIT license
*
* Includes enhancements by Scott Trenda <scott.trenda.net>
* and Kris Kowal <cixar.com/~kris.kowal/>
*
* Accepts a date, a mask, or a date and a mask.
* Returns a formatted version of the given date.
* The date defaults to the current date/time.
* The mask defaults to dateFormat.masks.default.
*/
var DateFormat = function () {
var token = /d{1,4}|m{1,4}|yy(?:yy)?|([HhMsTt])\1?|[LloSZ]|"[^"]*"|'[^']*'/g,
timezone = /\b(?:[PMCEA][SDP]T|(?:Pacific|Mountain|Central|Eastern|Atlantic) (?:Standard|Daylight|Prevailing) Time|(?:GMT|UTC)(?:[-+]\d{4})?)\b/g,
timezoneClip = /[^-+\dA-Z]/g,
pad = function (val, len) {
val = String(val);
len = len || 2;
while (val.length < len) val = "0" + val;
return val;
};
// Regexes and supporting functions are cached through closure
return function (date, mask, utc) {
var dF = dateFormat;
// You can't provide utc if you skip other args (use the "UTC:" mask prefix)
if (arguments.length == 1 && Object.prototype.toString.call(date) == "[object String]" && !/\d/.test(date)) {
mask = date;
date = undefined;
}
// Passing date through Date applies Date.parse, if necessary
date = date ? new Date(date) : new Date;
if (isNaN(date)) throw SyntaxError("invalid date");
mask = String(dF.masks[mask] || mask || dF.masks["default"]);
// Allow setting the utc argument via the mask
if (mask.slice(0, 4) == "UTC:") {
mask = mask.slice(4);
utc = true;
}
var _ = utc ? "getUTC" : "get",
d = date[_ + "Date"](),
D = date[_ + "Day"](),
m = date[_ + "Month"](),
y = date[_ + "FullYear"](),
H = date[_ + "Hours"](),
M = date[_ + "Minutes"](),
s = date[_ + "Seconds"](),
L = date[_ + "Milliseconds"](),
o = utc ? 0 : date.getTimezoneOffset(),
flags = {
d: d,
dd: pad(d),
ddd: dF.i18n.dayNames[D],
dddd: dF.i18n.dayNames[D + 7],
m: m + 1,
mm: pad(m + 1),
mmm: dF.i18n.monthNames[m],
mmmm: dF.i18n.monthNames[m + 12],
yy: String(y).slice(2),
yyyy: y,
h: H % 12 || 12,
hh: pad(H % 12 || 12),
H: H,
HH: pad(H),
M: M,
MM: pad(M),
s: s,
ss: pad(s),
l: pad(L, 3),
L: pad(L > 99 ? Math.round(L / 10) : L),
t: H < 12 ? "a" : "p",
tt: H < 12 ? "am" : "pm",
T: H < 12 ? "A" : "P",
TT: H < 12 ? "AM" : "PM",
Z: utc ? "UTC" : (String(date).match(timezone) || [""]).pop().replace(timezoneClip, ""),
o: (o > 0 ? "-" : "+") + pad(Math.floor(Math.abs(o) / 60) * 100 + Math.abs(o) % 60, 4),
S: ["th", "st", "nd", "rd"][d % 10 > 3 ? 0 : (d % 100 - d % 10 != 10) * d % 10]
};
return mask.replace(token, function ($0) {
return $0 in flags ? flags[$0] : $0.slice(1, $0.length - 1);
});
};
}();
// Some common format strings
DateFormat.masks = {
"default": "ddd mmm dd yyyy HH:MM:ss",
shortDate: "m/d/yy",
mediumDate: "mmm d, yyyy",
longDate: "mmmm d, yyyy",
fullDate: "dddd, mmmm d, yyyy",
shortTime: "h:MM TT",
mediumTime: "h:MM:ss TT",
longTime: "h:MM:ss TT Z",
isoDate: "yyyy-mm-dd",
isoTime: "HH:MM:ss",
isoDateTime: "yyyy-mm-dd'T'HH:MM:ss",
isoUtcDateTime: "UTC:yyyy-mm-dd'T'HH:MM:ss'Z'"
};
// Internationalization strings
DateFormat.i18n = {
dayNames: [
"Sun", "Mon", "Tue", "Wed", "Thu", "Fri", "Sat",
"Sunday", "Monday", "Tuesday", "Wednesday", "Thursday", "Friday", "Saturday"
],
monthNames: [
"Jan", "Feb", "Mar", "Apr", "May", "Jun", "Jul", "Aug", "Sep", "Oct", "Nov", "Dec",
"January", "February", "March", "April", "May", "June", "July", "August", "September", "October", "November", "December"
]
};
// For convenience...
Date.prototype.format = function (mask, utc) {
return dateFormat(this, mask, utc);
};
/*
* @author: ucla-cs
* See COPYING for copyright and distribution information.
* This class represents Interest Objects
*/
var Interest = function Interest(_name,_faceInstance,_minSuffixComponents,_maxSuffixComponents,_publisherPublicKeyDigest, _exclude, _childSelector,_answerOriginKind,_scope,_interestLifetime,_nonce){
this.name = _name;
this.faceInstance = _faceInstance;
this.maxSuffixComponents = _maxSuffixComponents;
this.minSuffixComponents = _minSuffixComponents;
this.publisherPublicKeyDigest = _publisherPublicKeyDigest;
this.exclude = _exclude;
this.childSelector = _childSelector;
this.answerOriginKind = _answerOriginKind;
this.scope = _scope;
this.interestLifetime = null; // For now we don't have the ability to set an interest lifetime
this.nonce = _nonce;
this.RECURSIVE_POSTFIX = "*";
this.CHILD_SELECTOR_LEFT = 0;
this.CHILD_SELECTOR_RIGHT = 1;
this.ANSWER_CONTENT_STORE = 1;
this.ANSWER_GENERATED = 2;
this.ANSWER_STALE = 4; // Stale answer OK
this.MARK_STALE = 16; // Must have scope 0. Michael calls this a "hack"
this.DEFAULT_ANSWER_ORIGIN_KIND = this.ANSWER_CONTENT_STORE | this.ANSWER_GENERATED;
};
Interest.prototype.from_ccnb = function(/*XMLDecoder*/ decoder) {
decoder.readStartElement(CCNProtocolDTags.Interest);
this.name = new Name();
this.name.from_ccnb(decoder);
if (decoder.peekStartElement(CCNProtocolDTags.MinSuffixComponents)) {
this.minSuffixComponents = decoder.readIntegerElement(CCNProtocolDTags.MinSuffixComponents);
}
if (decoder.peekStartElement(CCNProtocolDTags.MaxSuffixComponents)) {
this.maxSuffixComponents = decoder.readIntegerElement(CCNProtocolDTags.MaxSuffixComponents);
}
if (decoder.peekStartElement(CCNProtocolDTags.PublisherPublicKeyDigest)) {
this.publisherPublicKeyDigest = new publisherPublicKeyDigest();
this.publisherPublicKeyDigest.from_ccnb(decoder);
}
if (decoder.peekStartElement(CCNProtocolDTags.Exclude)) {
this.exclude = new Exclude();
this.exclude.from_ccnb(decoder);
}
if (decoder.peekStartElement(CCNProtocolDTags.ChildSelector)) {
this.childSelector = decoder.readIntegerElement(CCNProtocolDTags.ChildSelector);
}
if (decoder.peekStartElement(CCNProtocolDTags.AnswerOriginKind)) {
// call setter to handle defaulting
this.answerOriginKind = decoder.readIntegerElement(CCNProtocolDTags.AnswerOriginKind);
}
if (decoder.peekStartElement(CCNProtocolDTags.Scope)) {
this.scope = decoder.readIntegerElement(CCNProtocolDTags.Scope);
}
if (decoder.peekStartElement(CCNProtocolDTags.InterestLifetime)) {
this.interestLifetime = decoder.readBinaryElement(CCNProtocolDTags.InterestLifetime);
}
if (decoder.peekStartElement(CCNProtocolDTags.Nonce)) {
this.nonce = decoder.readBinaryElement(CCNProtocolDTags.Nonce);
}
decoder.readEndElement();
};
Interest.prototype.to_ccnb = function(/*XMLEncoder*/ encoder){
//Could check if name is present
encoder.writeStartElement(CCNProtocolDTags.Interest);
this.name.to_ccnb(encoder);
if (null != this.minSuffixComponents)
encoder.writeElement(CCNProtocolDTags.MinSuffixComponents, this.minSuffixComponents);
if (null != this.maxSuffixComponents)
encoder.writeElement(CCNProtocolDTags.MaxSuffixComponents, this.maxSuffixComponents);
if (null != this.publisherPublicKeyDigest)
this.publisherPublicKeyDigest.to_ccnb(encoder);
if (null != this.exclude)
this.exclude.to_ccnb(encoder);
if (null != this.childSelector)
encoder.writeElement(CCNProtocolDTags.ChildSelector, this.childSelector);
//TODO Encode OriginKind
if (this.DEFAULT_ANSWER_ORIGIN_KIND != this.answerOriginKind && this.answerOriginKind!=null)
encoder.writeElement(CCNProtocolDTags.AnswerOriginKind, this.answerOriginKind);
if (null != this.scope)
encoder.writeElement(CCNProtocolDTags.Scope, this.scope);
if (null != this.nonce)
encoder.writeElement(CCNProtocolDTags.Nonce, this.nonce);
encoder.writeEndElement();
};
Interest.prototype.matches_name = function(/*Name*/ name){
var i_name = this.name.components;
var o_name = name.components;
// The intrest name is longer than the name we are checking it against.
if (i_name.length > o_name.length)
return false;
// Check if at least one of given components doesn't match.
for (var i = 0; i < i_name.length; ++i) {
if (!DataUtils.arraysEqual(i_name[i], o_name[i]))
return false;
}
return true;
}
/**
* Exclude
*/
var Exclude = function Exclude(_values){
this.OPTIMUM_FILTER_SIZE = 100;
this.values = _values; //array of elements
}
Exclude.prototype.from_ccnb = function(/*XMLDecoder*/ decoder) {
decoder.readStartElement(this.getElementLabel());
//TODO APPLY FILTERS/EXCLUDE
//TODO
/*var component;
var any = false;
while ((component = decoder.peekStartElement(CCNProtocolDTags.Component)) ||
(any = decoder.peekStartElement(CCNProtocolDTags.Any)) ||
decoder.peekStartElement(CCNProtocolDTags.Bloom)) {
var ee = component?new ExcludeComponent(): any ? new ExcludeAny() : new BloomFilter();
ee.decode(decoder);
_values.add(ee);
}*/
decoder.readEndElement();
};
Exclude.prototype.to_ccnb=function(/*XMLEncoder*/ encoder) {
if (!validate()) {
throw new ContentEncodingException("Cannot encode " + this.getClass().getName() + ": field values missing.");
}
if (empty())
return;
encoder.writeStartElement(getElementLabel());
encoder.writeEndElement();
};
Exclude.prototype.getElementLabel = function() { return CCNProtocolDTags.Exclude; };
/**
* ExcludeAny
*/
var ExcludeAny = function ExcludeAny() {
};
ExcludeAny.prototype.from_ccnb = function(decoder) {
decoder.readStartElement(this.getElementLabel());
decoder.readEndElement();
};
ExcludeAny.prototype.to_ccnb = function( encoder) {
encoder.writeStartElement(this.getElementLabel());
encoder.writeEndElement();
};
ExcludeAny.prototype.getElementLabel=function() { return CCNProtocolDTags.Any; };
/**
* ExcludeComponent
*/
var ExcludeComponent = function ExcludeComponent(_body) {
//TODO Check BODY is an Array of componenets.
this.body = _body
};
ExcludeComponent.prototype.from_ccnb = function( decoder) {
this.body = decoder.readBinaryElement(this.getElementLabel());
};
ExcludeComponent.prototype.to_ccnb = function(encoder) {
encoder.writeElement(this.getElementLabel(), this.body);
};
ExcludeComponent.prototype.getElementLabel = function() { return CCNProtocolDTags.Component; };
/*
* @author: ucla-cs
* See COPYING for copyright and distribution information.
* This class represents Key Objects
*/
var Key = function Key(){
/* TODO: Port from PyCCN:
generateRSA()
privateToDER()
publicToDER()
privateToPEM()
publicToPEM()
fromDER()
fromPEM()
*/
}
/**
* KeyLocator
*/
var KeyLocatorType = {
NAME:1,
KEY:2,
CERTIFICATE:3
};
var KeyLocator = function KeyLocator(_input,_type){
this.type=_type;
if (_type==KeyLocatorType.NAME){
this.keyName = _input;
}
else if(_type==KeyLocatorType.KEY){
console.log('SET KEY');
this.publicKey = _input;
}
else if(_type==KeyLocatorType.CERTIFICATE){
this.certificate = _input;
}
};
KeyLocator.prototype.from_ccnb = function(decoder) {
decoder.readStartElement(this.getElementLabel());
if (decoder.peekStartElement(CCNProtocolDTags.Key)) {
try {
encodedKey = decoder.readBinaryElement(CCNProtocolDTags.Key);
// This is a DER-encoded SubjectPublicKeyInfo.
//TODO FIX THIS, This should create a Key Object instead of keeping bytes
this.publicKey = encodedKey;//CryptoUtil.getPublicKey(encodedKey);
this.type = 2;
if(LOG>4) console.log('PUBLIC KEY FOUND: '+ this.publicKey);
//this.publicKey = encodedKey;
} catch (e) {
throw new Error("Cannot parse key: ", e);
}
if (null == this.publicKey) {
throw new Error("Cannot parse key: ");
}
} else if ( decoder.peekStartElement(CCNProtocolDTags.Certificate)) {
try {
encodedCert = decoder.readBinaryElement(CCNProtocolDTags.Certificate);
/*
* Certificates not yet working
*/
//CertificateFactory factory = CertificateFactory.getInstance("X.509");
//this.certificate = (X509Certificate) factory.generateCertificate(new ByteArrayInputStream(encodedCert));
this.certificate = encodedCert;
this.type = 3;
if(LOG>4) console.log('CERTIFICATE FOUND: '+ this.certificate);
} catch ( e) {
throw new Error("Cannot decode certificate: " + e);
}
if (null == this.certificate) {
throw new Error("Cannot parse certificate! ");
}
} else {
this.type = 1;
this.keyName = new KeyName();
this.keyName.from_ccnb(decoder);
}
decoder.readEndElement();
}
KeyLocator.prototype.to_ccnb = function( encoder) {
if(LOG>2) console.log('type is is ' + this.type);
//TODO Check if Name is missing
if (!this.validate()) {
throw new ContentEncodingException("Cannot encode " + this.getClass().getName() + ": field values missing.");
}
//TODO FIX THIS TOO
encoder.writeStartElement(this.getElementLabel());
if (this.type == KeyLocatorType.KEY) {
if(LOG>5)console.log('About to encode a public key' +this.publicKey);
encoder.writeElement(CCNProtocolDTags.Key, this.publicKey);
} else if (this.type == KeyLocatorType.CERTIFICATE) {
try {
encoder.writeElement(CCNProtocolDTags.Certificate, this.certificate);
} catch ( e) {
throw new Error("CertificateEncodingException attempting to write key locator: " + e);
}
} else if (this.type == KeyLocatorType.NAME) {
this.keyName.to_ccnb(encoder);
}
encoder.writeEndElement();
};
KeyLocator.prototype.getElementLabel = function() {
return CCNProtocolDTags.KeyLocator;
};
KeyLocator.prototype.validate = function() {
return ( (null != this.keyName) || (null != this.publicKey) || (null != this.certificate) );
};
/**
* KeyName is only used by KeyLocator.
*/
var KeyName = function KeyName() {
this.contentName = this.contentName;//contentName
this.publisherID =this.publisherID;//publisherID
};
KeyName.prototype.from_ccnb=function( decoder){
decoder.readStartElement(this.getElementLabel());
this.contentName = new Name();
this.contentName.from_ccnb(decoder);
if(LOG>4) console.log('KEY NAME FOUND: ');
if ( PublisherID.peek(decoder) ) {
this.publisherID = new PublisherID();
this.publisherID.from_ccnb(decoder);
}
decoder.readEndElement();
};
KeyName.prototype.to_ccnb = function( encoder) {
if (!this.validate()) {
throw new Error("Cannot encode : field values missing.");
}
encoder.writeStartElement(this.getElementLabel());
this.contentName.to_ccnb(encoder);
if (null != this.publisherID)
this.publisherID.to_ccnb(encoder);
encoder.writeEndElement();
};
KeyName.prototype.getElementLabel = function() { return CCNProtocolDTags.KeyName; };
KeyName.prototype.validate = function() {
// DKS -- do we do recursive validation?
// null signedInfo ok
return (null != this.contentName);
};
/*
* @author: ucla-cs
* See COPYING for copyright and distribution information.
* This class represents Publisher and PublisherType Objects
*/
var PublisherType = function PublisherType(_tag){
this.KEY =(CCNProtocolDTags.PublisherPublicKeyDigest);
this.CERTIFICATE= (CCNProtocolDTags.PublisherCertificateDigest);
this.ISSUER_KEY= (CCNProtocolDTags.PublisherIssuerKeyDigest);
this.ISSUER_CERTIFICATE =(CCNProtocolDTags.PublisherIssuerCertificateDigest);
this.Tag = _tag;
};
var isTypeTagVal = function(tagVal) {
if ((tagVal == CCNProtocolDTags.PublisherPublicKeyDigest) ||
(tagVal == CCNProtocolDTags.PublisherCertificateDigest) ||
(tagVal == CCNProtocolDTags.PublisherIssuerKeyDigest) ||
(tagVal == CCNProtocolDTags.PublisherIssuerCertificateDigest)) {
return true;
}
return false;
};
var PublisherID = function PublisherID() {
this.PUBLISHER_ID_DIGEST_ALGORITHM = "SHA-256";
this.PUBLISHER_ID_LEN = 256/8;
//TODO, implement publisherID creation and key creation
//TODO implement generatePublicKeyDigest
this.publisherID =null;//= generatePublicKeyDigest(key);//ByteArray
//TODO implement generate key
//CryptoUtil.generateKeyID(PUBLISHER_ID_DIGEST_ALGORITHM, key);
this.publisherType = null;//isIssuer ? PublisherType.ISSUER_KEY : PublisherType.KEY;//publisher Type
};
PublisherID.prototype.from_ccnb = function(decoder) {
// We have a choice here of one of 4 binary element types.
var nextTag = decoder.peekStartElementAsLong();
if (null == nextTag) {
throw new Error("Cannot parse publisher ID.");
}
this.publisherType = new PublisherType(nextTag);
if (!isTypeTagVal(nextTag)) {
throw new Error("Invalid publisher ID, got unexpected type: " + nextTag);
}
this.publisherID = decoder.readBinaryElement(nextTag);
if (null == this.publisherID) {
throw new ContentDecodingException("Cannot parse publisher ID of type : " + nextTag + ".");
}
};
PublisherID.prototype.to_ccnb = function(encoder) {
if (!this.validate()) {
throw new Error("Cannot encode " + this.getClass().getName() + ": field values missing.");
}
encoder.writeElement(this.getElementLabel(), this.publisherID);
};
PublisherID.peek = function(/* XMLDecoder */ decoder) {
//Long
nextTag = decoder.peekStartElementAsLong();
if (null == nextTag) {
// on end element
return false;
}
return (isTypeTagVal(nextTag));
};
PublisherID.prototype.getElementLabel = function() {
return this.publisherType.Tag;
};
PublisherID.prototype.validate = function(){
return ((null != id() && (null != type())));
};
/*
* @author: ucla-cs
* See COPYING for copyright and distribution information.
* This class represents PublisherPublicKeyDigest Objects
*/
var PublisherPublicKeyDigest = function PublisherPublicKeyDigest(_pkd){
//this.PUBLISHER_ID_LEN = 256/8;
this.PUBLISHER_ID_LEN = 512/8;
this.publisherPublicKeyDigest = _pkd;
//if( typeof _pkd == "object") this.publisherPublicKeyDigest = _pkd; // Byte Array
//else if( typeof _pkd == "PublicKey") ;//TODO...
};
PublisherPublicKeyDigest.prototype.from_ccnb = function( decoder) {
this.publisherPublicKeyDigest = decoder.readBinaryElement(this.getElementLabel());
if(LOG>4)console.log('Publisher public key digest is ' + this.publisherPublicKeyDigest);
if (null == this.publisherPublicKeyDigest) {
throw new Error("Cannot parse publisher key digest.");
}
//TODO check if the length of the PublisherPublicKeyDigest is correct ( Security reason)
if (this.publisherPublicKeyDigest.length != this.PUBLISHER_ID_LEN) {
console.log('LENGTH OF PUBLISHER ID IS WRONG! Expected ' + this.PUBLISHER_ID_LEN + ", got " + this.publisherPublicKeyDigest.length);
//this.publisherPublicKeyDigest = new PublisherPublicKeyDigest(this.PublisherPublicKeyDigest).PublisherKeyDigest;
}
};
PublisherPublicKeyDigest.prototype.to_ccnb= function( encoder) {
//TODO Check that the ByteArray for the key is present
if (!this.validate()) {
throw new Error("Cannot encode : field values missing.");
}
if(LOG>3) console.log('PUBLISHER KEY DIGEST IS'+this.publisherPublicKeyDigest);
encoder.writeElement(this.getElementLabel(), this.publisherPublicKeyDigest);
};
PublisherPublicKeyDigest.prototype.getElementLabel = function() { return CCNProtocolDTags.PublisherPublicKeyDigest; };
PublisherPublicKeyDigest.prototype.validate =function() {
return (null != this.publisherPublicKeyDigest);
};
/*
* @author: ucla-cs
* See COPYING for copyright and distribution information.
* This class represents Face Instances
*/
var NetworkProtocol = { TCP:6, UDP:17};
var FaceInstance = function FaceInstance(
_action,
_publisherPublicKeyDigest,
_faceID,
_ipProto,
_host,
_port,
_multicastInterface,
_multicastTTL,
_freshnessSeconds){
this.action = _action;
this.publisherPublicKeyDigest = _publisherPublicKeyDigest;
this.faceID = _faceID;
this.ipProto = _ipProto;
this.host = _host;
this.Port = _port;
this.multicastInterface =_multicastInterface;
this.multicastTTL =_multicastTTL;
this.freshnessSeconds = _freshnessSeconds;
//action ::= ("newface" | "destroyface" | "queryface")
//publisherPublicKeyDigest ::= SHA-256 digest
//faceID ::= nonNegativeInteger
//ipProto ::= nonNegativeInteger [IANA protocol number, 6=TCP, 17=UDP]
//Host ::= textual representation of numeric IPv4 or IPv6 address
//Port ::= nonNegativeInteger [1..65535]
//MulticastInterface ::= textual representation of numeric IPv4 or IPv6 address
//MulticastTTL ::= nonNegativeInteger [1..255]
//freshnessSeconds ::= nonNegativeInteger
};
/**
* Used by NetworkObject to decode the object from a network stream.
* @see org.ccnx.ccn.impl.encoding.XMLEncodable
*/
FaceInstance.prototype.from_ccnb = function(//XMLDecoder
decoder) {
decoder.readStartElement(this.getElementLabel());
if (decoder.peekStartElement(CCNProtocolDTags.Action)) {
this.action = decoder.readUTF8Element(CCNProtocolDTags.Action);
}
if (decoder.peekStartElement(CCNProtocolDTags.PublisherPublicKeyDigest)) {
this.publisherPublicKeyDigest = new PublisherPublicKeyDigest();
this.publisherPublicKeyDigest.from_ccnb(decoder);
}
if (decoder.peekStartElement(CCNProtocolDTags.FaceID)) {
this.faceID = decoder.readIntegerElement(CCNProtocolDTags.FaceID);
}
if (decoder.peekStartElement(CCNProtocolDTags.IPProto)) {
//int
var pI = decoder.readIntegerElement(CCNProtocolDTags.IPProto);
this.ipProto = null;
if (NetworkProtocol.TCP == pI) {
this.ipProto = NetworkProtocol.TCP;
} else if (NetworkProtocol.UDP == pI) {
this.ipProto = NetworkProtocol.UDP;
} else {
throw new Error("FaceInstance.decoder. Invalid " +
CCNProtocolDTags.tagToString(CCNProtocolDTags.IPProto) + " field: " + pI);
}
}
if (decoder.peekStartElement(CCNProtocolDTags.Host)) {
this.host = decoder.readUTF8Element(CCNProtocolDTags.Host);
}
if (decoder.peekStartElement(CCNProtocolDTags.Port)) {
this.Port = decoder.readIntegerElement(CCNProtocolDTags.Port);
}
if (decoder.peekStartElement(CCNProtocolDTags.MulticastInterface)) {
this.multicastInterface = decoder.readUTF8Element(CCNProtocolDTags.MulticastInterface);
}
if (decoder.peekStartElement(CCNProtocolDTags.MulticastTTL)) {
this.multicastTTL = decoder.readIntegerElement(CCNProtocolDTags.MulticastTTL);
}
if (decoder.peekStartElement(CCNProtocolDTags.FreshnessSeconds)) {
this.freshnessSeconds = decoder.readIntegerElement(CCNProtocolDTags.FreshnessSeconds);
}
decoder.readEndElement();
}
/**
* Used by NetworkObject to encode the object to a network stream.
* @see org.ccnx.ccn.impl.encoding.XMLEncodable
*/
FaceInstance.prototype.to_ccnb = function(//XMLEncoder
encoder){
//if (!this.validate()) {
//throw new Error("Cannot encode : field values missing.");
//throw new Error("")
//}
encoder.writeStartElement(this.getElementLabel());
if (null != this.action && this.action.length != 0)
encoder.writeElement(CCNProtocolDTags.Action, this.action);
if (null != this.publisherPublicKeyDigest) {
this.publisherPublicKeyDigest.to_ccnb(encoder);
}
if (null != this.faceID) {
encoder.writeElement(CCNProtocolDTags.FaceID, this.faceID);
}
if (null != this.ipProto) {
//encoder.writeElement(CCNProtocolDTags.IPProto, this.IpProto.value());
encoder.writeElement(CCNProtocolDTags.IPProto, this.ipProto);
}
if (null != this.host && this.host.length != 0) {
encoder.writeElement(CCNProtocolDTags.Host, this.host);
}
if (null != this.Port) {
encoder.writeElement(CCNProtocolDTags.Port, this.Port);
}
if (null != this.multicastInterface && this.multicastInterface.length != 0) {
encoder.writeElement(CCNProtocolDTags.MulticastInterface, this.multicastInterface);
}
if (null != this.multicastTTL) {
encoder.writeElement(CCNProtocolDTags.MulticastTTL, this.multicastTTL);
}
if (null != this.freshnessSeconds) {
encoder.writeElement(CCNProtocolDTags.FreshnessSeconds, this.freshnessSeconds);
}
encoder.writeEndElement();
}
FaceInstance.prototype.getElementLabel= function(){return CCNProtocolDTags.FaceInstance;};
/*
* @author: ucla-cs
* See COPYING for copyright and distribution information.
* This class represents Forwarding Entries
*/
var ForwardingEntry = function ForwardingEntry(
//ActionType
_action,
//Name
_prefixName,
//PublisherPublicKeyDigest
_ccndId,
//Integer
_faceID,
//Integer
_flags,
//Integer
_lifetime){
//String
this.action = _action;
//Name\
this.prefixName = _prefixName;
//PublisherPublicKeyDigest
this.ccndID = _ccndId;
//Integer
this.faceID = _faceID;
//Integer
this.flags = _flags;
//Integer
this.lifetime = _lifetime; // in seconds
};
ForwardingEntry.prototype.from_ccnb =function(
//XMLDecoder
decoder)
//throws ContentDecodingException
{
decoder.readStartElement(this.getElementLabel());
if (decoder.peekStartElement(CCNProtocolDTags.Action)) {
this.action = decoder.readUTF8Element(CCNProtocolDTags.Action);
}
if (decoder.peekStartElement(CCNProtocolDTags.Name)) {
this.prefixName = new Name();
this.prefixName.from_ccnb(decoder) ;
}
if (decoder.peekStartElement(CCNProtocolDTags.PublisherPublicKeyDigest)) {
this.CcndId = new PublisherPublicKeyDigest();
this.CcndId.from_ccnb(decoder);
}
if (decoder.peekStartElement(CCNProtocolDTags.FaceID)) {
this.faceID = decoder.readIntegerElement(CCNProtocolDTags.FaceID);
}
if (decoder.peekStartElement(CCNProtocolDTags.ForwardingFlags)) {
this.flags = decoder.readIntegerElement(CCNProtocolDTags.ForwardingFlags);
}
if (decoder.peekStartElement(CCNProtocolDTags.FreshnessSeconds)) {
this.lifetime = decoder.readIntegerElement(CCNProtocolDTags.FreshnessSeconds);
}
decoder.readEndElement();
};
/**
* Used by NetworkObject to encode the object to a network stream.
* @see org.ccnx.ccn.impl.encoding.XMLEncodable
*/
ForwardingEntry.prototype.to_ccnb =function(
//XMLEncoder
encoder)
{
//if (!validate()) {
//throw new ContentEncodingException("Cannot encode " + this.getClass().getName() + ": field values missing.");
//}
encoder.writeStartElement(this.getElementLabel());
if (null != this.action && this.action.length != 0)
encoder.writeElement(CCNProtocolDTags.Action, this.action);
if (null != this.prefixName) {
this.prefixName.to_ccnb(encoder);
}
if (null != this.CcndId) {
this.CcndId.to_ccnb(encoder);
}
if (null != this.faceID) {
encoder.writeElement(CCNProtocolDTags.FaceID, this.faceID);
}
if (null != this.flags) {
encoder.writeElement(CCNProtocolDTags.ForwardingFlags, this.flags);
}
if (null != this.lifetime) {
encoder.writeElement(CCNProtocolDTags.FreshnessSeconds, this.lifetime);
}
encoder.writeEndElement();
};
ForwardingEntry.prototype.getElementLabel = function() { return CCNProtocolDTags.ForwardingEntry; }
/*
* This class is used to encode ccnb binary elements (blob, type/value pairs).
*
* @author: ucla-cs
* See COPYING for copyright and distribution information.
*/
var XML_EXT = 0x00;
var XML_TAG = 0x01;
var XML_DTAG = 0x02;
var XML_ATTR = 0x03;
var XML_DATTR = 0x04;
var XML_BLOB = 0x05;
var XML_UDATA = 0x06;
var XML_CLOSE = 0x0;
var XML_SUBTYPE_PROCESSING_INSTRUCTIONS = 16;
var XML_TT_BITS = 3;
var XML_TT_MASK = ((1 << XML_TT_BITS) - 1);
var XML_TT_VAL_BITS = XML_TT_BITS + 1;
var XML_TT_VAL_MASK = ((1 << (XML_TT_VAL_BITS)) - 1);
var XML_REG_VAL_BITS = 7;
var XML_REG_VAL_MASK = ((1 << XML_REG_VAL_BITS) - 1);
var XML_TT_NO_MORE = (1 << XML_REG_VAL_BITS); // 0x80
var BYTE_MASK = 0xFF;
var LONG_BYTES = 8;
var LONG_BITS = 64;
var bits_11 = 0x0000007FF;
var bits_18 = 0x00003FFFF;
var bits_32 = 0x0FFFFFFFF;
var BinaryXMLEncoder = function BinaryXMLEncoder(){
this.ostream = new Array(10000);
this.offset =0;
this.CODEC_NAME = "Binary";
};
BinaryXMLEncoder.prototype.writeUString = function(/*String*/ utf8Content){
this.encodeUString(this.ostream, utf8Content, XML_UDATA);
};
BinaryXMLEncoder.prototype.writeBlob = function(/*byte []*/ binaryContent
//, /*int*/ offset, /*int*/ length
) {
if(LOG >3) console.log(binaryContent);
this.encodeBlob(this.ostream, binaryContent, this.offset, binaryContent.length);
};
BinaryXMLEncoder.prototype.writeStartElement = function(/*String*/ tag, /*TreeMap<String,String>*/ attributes){
/*Long*/ dictionaryVal = tag;//stringToTag(tag);
if (null == dictionaryVal) {
this.encodeUString(this.ostream, tag, XML_TAG);
} else {
this.encodeTypeAndVal(XML_DTAG, dictionaryVal, this.ostream);
}
if (null != attributes) {
this.writeAttributes(attributes);
}
};
BinaryXMLEncoder.prototype.writeEndElement = function(){
this.ostream[this.offset] = XML_CLOSE;
this.offset+= 1;
}
BinaryXMLEncoder.prototype.writeAttributes = function(/*TreeMap<String,String>*/ attributes) {
if (null == attributes) {
return;
}
// the keySet of a TreeMap is sorted.
for(var i=0; i<attributes.length;i++){
var strAttr = attributes[i].k;
var strValue = attributes[i].v;
var dictionaryAttr = stringToTag(strAttr);
if (null == dictionaryAttr) {
// not in dictionary, encode as attr
// compressed format wants length of tag represented as length-1
// to save that extra bit, as tag cannot be 0 length.
// encodeUString knows to do that.
this.encodeUString(this.ostream, strAttr, XML_ATTR);
} else {
this.encodeTypeAndVal(XML_DATTR, dictionaryAttr, this.ostream);
}
// Write value
this.encodeUString(this.ostream, strValue);
}
}
//returns a string
stringToTag = function(/*long*/ tagVal) {
if ((tagVal >= 0) && (tagVal < CCNProtocolDTagsStrings.length)) {
return CCNProtocolDTagsStrings[tagVal];
} else if (tagVal == CCNProtocolDTags.CCNProtocolDataUnit) {
return CCNProtocolDTags.CCNPROTOCOL_DATA_UNIT;
}
return null;
};
//returns a Long
tagToString = function(/*String*/ tagName) {
// the slow way, but right now we don't care.... want a static lookup for the forward direction
for (var i=0; i < CCNProtocolDTagsStrings.length; ++i) {
if ((null != CCNProtocolDTagsStrings[i]) && (CCNProtocolDTagsStrings[i] == tagName)) {
return i;
}
}
if (CCNProtocolDTags.CCNPROTOCOL_DATA_UNIT == tagName) {
return CCNProtocolDTags.CCNProtocolDataUnit;
}
return null;
};
BinaryXMLEncoder.prototype.writeElement = function(
//long
tag,
//byte[]
Content,
//TreeMap<String, String>
attributes) {
this.writeStartElement(tag, attributes);
// Will omit if 0-length
if(typeof Content === 'number') {
if(LOG>4) console.log('GOING TO WRITE THE NUMBER .charCodeAt(0) ' +Content.toString().charCodeAt(0) );
if(LOG>4) console.log('GOING TO WRITE THE NUMBER ' +Content.toString() );
if(LOG>4) console.log('type of number is ' +typeof Content.toString() );
this.writeUString(Content.toString());
//whatever
}
else if(typeof Content === 'string'){
if(LOG>4) console.log('GOING TO WRITE THE STRING ' +Content );
if(LOG>4) console.log('type of STRING is ' +typeof Content );
this.writeUString(Content);
}
else{
//else if(typeof Content === 'string'){
//console.log('went here');
//this.writeBlob(Content);
//}
if(LOG>4) console.log('GOING TO WRITE A BLOB ' +Content );
//else if(typeof Content === 'object'){
this.writeBlob(Content);
//}
}
this.writeEndElement();
}
//TODO
var TypeAndVal = function TypeAndVal(_type,_val) {
this.type = _type;
this.val = _val;
};
BinaryXMLEncoder.prototype.encodeTypeAndVal = function(
//int
type,
//long
val,
//byte []
buf) {
if(LOG>4)console.log('Encoding type '+ type+ ' and value '+ val);
if(LOG>4) console.log('OFFSET IS ' + this.offset );
if ((type > XML_UDATA) || (type < 0) || (val < 0)) {
throw new Error("Tag and value must be positive, and tag valid.");
}
// Encode backwards. Calculate how many bytes we need:
var numEncodingBytes = this.numEncodingBytes(val);
if ((this.offset + numEncodingBytes) > buf.length) {
throw new Error("Buffer space of " + (buf.length-this.offset) +
" bytes insufficient to hold " +
numEncodingBytes + " of encoded type and value.");
}
// Bottom 4 bits of val go in last byte with tag.
buf[this.offset + numEncodingBytes - 1] =
//(byte)
(BYTE_MASK &
(((XML_TT_MASK & type) |
((XML_TT_VAL_MASK & val) << XML_TT_BITS))) |
XML_TT_NO_MORE); // set top bit for last byte
val = val >>> XML_TT_VAL_BITS;;
// Rest of val goes into preceding bytes, 7 bits per byte, top bit
// is "more" flag.
var i = this.offset + numEncodingBytes - 2;
while ((0 != val) && (i >= this.offset)) {
buf[i] = //(byte)
(BYTE_MASK &
(val & XML_REG_VAL_MASK)); // leave top bit unset
val = val >>> XML_REG_VAL_BITS;
--i;
}
if (val != 0) {
throw new Error( "This should not happen: miscalculated encoding");
//Log.warning(Log.FAC_ENCODING, "This should not happen: miscalculated encoding length, have " + val + " left.");
}
this.offset+= numEncodingBytes;
return numEncodingBytes;
};
BinaryXMLEncoder.prototype.encodeUString = function(
//OutputStream
ostream,
//String
ustring,
//byte
type) {
if ((null == ustring) || (ustring.length == 0)) {
return;
}
//byte [] data utils
/*custom*/
//byte[]
if(LOG>3) console.log("The string to write is ");
if(LOG>3) console.log(ustring);
//COPY THE STRING TO AVOID PROBLEMS
strBytes = new Array(ustring.length);
var i = 0;
for( ; i<ustring.length; i++) //in InStr.ToCharArray())
{
if(LOG>3)console.log("ustring[" + i + '] = ' + ustring[i]);
strBytes[i] = ustring.charCodeAt(i);
}
//strBytes = DataUtils.getBytesFromUTF8String(ustring);
this.encodeTypeAndVal(type,
(((type == XML_TAG) || (type == XML_ATTR)) ?
(strBytes.length-1) :
strBytes.length), ostream);
if(LOG>3) console.log("THE string to write is ");
if(LOG>3) console.log(strBytes);
this.writeString(strBytes,this.offset);
this.offset+= strBytes.length;
};
BinaryXMLEncoder.prototype.encodeBlob = function(
//OutputStream
ostream,
//byte []
blob,
//int
offset,
//int
length) {
if ((null == blob) || (length == 0)) {
return;
}
if(LOG>4) console.log('LENGTH OF XML_BLOB IS '+length);
blobCopy = new Array(blob.Length);
var i = 0;
for( ;i<blob.length;i++) //in InStr.ToCharArray())
{
blobCopy[i] = blob[i];
}
this.encodeTypeAndVal(XML_BLOB, length, ostream,offset);
if (null != blob) {
this.writeBlobArray(blobCopy,this.offset);
this.offset += length;
}
};
var ENCODING_LIMIT_1_BYTE = ((1 << (XML_TT_VAL_BITS)) - 1);
var ENCODING_LIMIT_2_BYTES = ((1 << (XML_TT_VAL_BITS + XML_REG_VAL_BITS)) - 1);
var ENCODING_LIMIT_3_BYTES = ((1 << (XML_TT_VAL_BITS + 2 * XML_REG_VAL_BITS)) - 1);
BinaryXMLEncoder.prototype.numEncodingBytes = function(
//long
x) {
if (x <= ENCODING_LIMIT_1_BYTE) return (1);
if (x <= ENCODING_LIMIT_2_BYTES) return (2);
if (x <= ENCODING_LIMIT_3_BYTES) return (3);
var numbytes = 1;
// Last byte gives you XML_TT_VAL_BITS
// Remainder each give you XML_REG_VAL_BITS
x = x >>> XML_TT_VAL_BITS;
while (x != 0) {
numbytes++;
x = x >>> XML_REG_VAL_BITS;
}
return (numbytes);
};
BinaryXMLEncoder.prototype.writeDateTime = function(
//String
tag,
//CCNTime
dateTime) {
if(LOG>4)console.log('ENCODING DATE with LONG VALUE');
if(LOG>4)console.log(dateTime.msec);
//var binarydate = DataUtils.unsignedLongToByteArray( Math.round((dateTime.msec/1000) * 4096) );
//parse to hex
var binarydate = Math.round((dateTime.msec/1000) * 4096).toString(16) ;
//HACK
var binarydate = DataUtils.toNumbers( '0'.concat(binarydate,'0')) ;
if(LOG>4)console.log('ENCODING DATE with BINARY VALUE');
if(LOG>4)console.log(binarydate);
if(LOG>4)console.log('ENCODING DATE with BINARY VALUE(HEX)');
if(LOG>4)console.log(DataUtils.toHex(binarydate));
this.writeElement(tag, binarydate);
};
BinaryXMLEncoder.prototype.writeString = function(
//String
input,
//CCNTime
offset) {
if(typeof input === 'string'){
//console.log('went here');
if(LOG>4) console.log('GOING TO WRITE A STRING');
if(LOG>4) console.log(input);
for (var i = 0; i < input.length; i++) {
if(LOG>4) console.log('input.charCodeAt(i)=' + input.charCodeAt(i));
this.ostream[this.offset+i] = (input.charCodeAt(i));
}
}
else{
if(LOG>4) console.log('GOING TO WRITE A STRING IN BINARY FORM');
if(LOG>4) console.log(input);
this.writeBlobArray(input);
}
/*
else if(typeof input === 'object'){
}
*/
};
BinaryXMLEncoder.prototype.writeBlobArray = function(
//String
Blob,
//CCNTime
offset) {
if(LOG>4) console.log('GOING TO WRITE A BLOB');
for (var i = 0; i < Blob.length; i++) {
this.ostream[this.offset+i] = Blob[i];
}
};
BinaryXMLEncoder.prototype.getReducedOstream = function() {
return this.ostream.slice(0,this.offset);
};
/*
* This class is used to decode ccnb binary elements (blob, type/value pairs).
*
* @author: ucla-cs
* See COPYING for copyright and distribution information.
*/
var XML_EXT = 0x00;
var XML_TAG = 0x01;
var XML_DTAG = 0x02;
var XML_ATTR = 0x03;
var XML_DATTR = 0x04;
var XML_BLOB = 0x05;
var XML_UDATA = 0x06;
var XML_CLOSE = 0x0;
var XML_SUBTYPE_PROCESSING_INSTRUCTIONS = 16;
var XML_TT_BITS = 3;
var XML_TT_MASK = ((1 << XML_TT_BITS) - 1);
var XML_TT_VAL_BITS = XML_TT_BITS + 1;
var XML_TT_VAL_MASK = ((1 << (XML_TT_VAL_BITS)) - 1);
var XML_REG_VAL_BITS = 7;
var XML_REG_VAL_MASK = ((1 << XML_REG_VAL_BITS) - 1);
var XML_TT_NO_MORE = (1 << XML_REG_VAL_BITS); // 0x80
var BYTE_MASK = 0xFF;
var LONG_BYTES = 8;
var LONG_BITS = 64;
var bits_11 = 0x0000007FF;
var bits_18 = 0x00003FFFF;
var bits_32 = 0x0FFFFFFFF;
//returns a string
tagToString = function(/*long*/ tagVal) {
if ((tagVal >= 0) && (tagVal < CCNProtocolDTagsStrings.length)) {
return CCNProtocolDTagsStrings[tagVal];
} else if (tagVal == CCNProtocolDTags.CCNProtocolDataUnit) {
return CCNProtocolDTags.CCNPROTOCOL_DATA_UNIT;
}
return null;
};
//returns a Long
stringToTag = function(/*String*/ tagName) {
// the slow way, but right now we don't care.... want a static lookup for the forward direction
for (var i=0; i < CCNProtocolDTagsStrings.length; ++i) {
if ((null != CCNProtocolDTagsStrings[i]) && (CCNProtocolDTagsStrings[i] == tagName)) {
return i;
}
}
if (CCNProtocolDTags.CCNPROTOCOL_DATA_UNIT == tagName) {
return CCNProtocolDTags.CCNProtocolDataUnit;
}
return null;
};
//console.log(stringToTag(64));
var BinaryXMLDecoder = function BinaryXMLDecoder(istream){
var MARK_LEN=512;
var DEBUG_MAX_LEN = 32768;
this.istream = istream;
this.offset = 0;
};
BinaryXMLDecoder.prototype.readAttributes = function(
//TreeMap<String,String>
attributes){
if (null == attributes) {
return;
}
try {
//this.TypeAndVal
nextTV = this.peekTypeAndVal();
while ((null != nextTV) && ((XML_ATTR == nextTV.type()) ||
(XML_DATTR == nextTV.type()))) {
//this.TypeAndVal
thisTV = this.decodeTypeAndVal();
var attributeName = null;
if (XML_ATTR == thisTV.type()) {
attributeName = this.decodeUString(thisTV.val()+1);
} else if (XML_DATTR == thisTV.type()) {
// DKS TODO are attributes same or different dictionary?
attributeName = tagToString(thisTV.val());
if (null == attributeName) {
throw new ContentDecodingException("Unknown DATTR value" + thisTV.val());
}
}
var attributeValue = this.decodeUString();
attributes.put(attributeName, attributeValue);
nextTV = this.peekTypeAndVal();
}
} catch ( e) {
throw new ContentDecodingException("readStartElement", e);
}
};
BinaryXMLDecoder.prototype.initializeDecoding = function() {
//if (!this.istream.markSupported()) {
//throw new IllegalArgumentException(this.getClass().getName() + ": input stream must support marking!");
//}
}
BinaryXMLDecoder.prototype.readStartDocument = function(){
// Currently no start document in binary encoding.
}
BinaryXMLDecoder.prototype.readEndDocument = function() {
// Currently no end document in binary encoding.
};
BinaryXMLDecoder.prototype.readStartElement = function(
//String
startTag,
//TreeMap<String, String>
attributes) {
//NOT SURE
//if(typeof startTag == 'number')
//startTag = tagToString(startTag);
//try {
//TypeAndVal
tv = this.decodeTypeAndVal();
if (null == tv) {
throw new Error("Expected start element: " + startTag + " got something not a tag.");
}
//String
decodedTag = null;
//console.log(tv);
//console.log(typeof tv);
//console.log(XML_TAG);
if (tv.type() == XML_TAG) {
//console.log('got here');
//Log.info(Log.FAC_ENCODING, "Unexpected: got tag in readStartElement; looking for tag " + startTag + " got length: " + (int)tv.val()+1);
// Tag value represents length-1 as tags can never be empty.
var valval ;
if(typeof tv.val() == 'string'){
valval = (parseInt(tv.val())) + 1;
}
else
valval = (tv.val())+ 1;
//console.log('valval is ' +valval);
decodedTag = this.decodeUString(valval);
} else if (tv.type() == XML_DTAG) {
//console.log('gothere');
//console.log(tv.val());
//decodedTag = tagToString(tv.val());
//console.log()
decodedTag = tv.val();
}
//console.log(decodedTag);
//console.log('startTag is '+startTag);
if ((null == decodedTag) || decodedTag != startTag ) {
console.log('expecting '+ startag + ' but got '+ decodedTag);
throw new Error("Expected start element: " + startTag + " got: " + decodedTag + "(" + tv.val() + ")");
}
// DKS: does not read attributes out of stream if caller doesn't
// ask for them. Should possibly peek and skip over them regardless.
// TODO: fix this
if (null != attributes) {
readAttributes(attributes);
}
//} catch ( e) {
//console.log(e);
//throw new Error("readStartElement", e);
//}
}
BinaryXMLDecoder.prototype.readAttributes = function(
//TreeMap<String,String>
attributes) {
if (null == attributes) {
return;
}
try {
// Now need to get attributes.
//TypeAndVal
nextTV = this.peekTypeAndVal();
while ((null != nextTV) && ((XML_ATTR == nextTV.type()) ||
(XML_DATTR == nextTV.type()))) {
// Decode this attribute. First, really read the type and value.
//this.TypeAndVal
thisTV = this.decodeTypeAndVal();
//String
attributeName = null;
if (XML_ATTR == thisTV.type()) {
// Tag value represents length-1 as attribute names cannot be empty.
var valval ;
if(typeof tv.val() == 'string'){
valval = (parseInt(tv.val())) + 1;
}
else
valval = (tv.val())+ 1;
attributeName = this.decodeUString(valval);
} else if (XML_DATTR == thisTV.type()) {
// DKS TODO are attributes same or different dictionary?
attributeName = tagToString(thisTV.val());
if (null == attributeName) {
throw new Error("Unknown DATTR value" + thisTV.val());
}
}
// Attribute values are always UDATA
//String
attributeValue = this.decodeUString();
//
attributes.push([attributeName, attributeValue]);
nextTV = this.peekTypeAndVal();
}
} catch ( e) {
Log.logStackTrace(Log.FAC_ENCODING, Level.WARNING, e);
throw new Error("readStartElement", e);
}
};
//returns a string
BinaryXMLDecoder.prototype.peekStartElementAsString = function() {
//this.istream.mark(MARK_LEN);
//String
decodedTag = null;
var previousOffset = this.offset;
try {
// Have to distinguish genuine errors from wrong tags. Could either use
// a special exception subtype, or redo the work here.
//this.TypeAndVal
tv = this.decodeTypeAndVal();
if (null != tv) {
if (tv.type() == XML_TAG) {
/*if (tv.val()+1 > DEBUG_MAX_LEN) {
throw new ContentDecodingException("Decoding error: length " + tv.val()+1 + " longer than expected maximum length!");
}*/
// Tag value represents length-1 as tags can never be empty.
var valval ;
if(typeof tv.val() == 'string'){
valval = (parseInt(tv.val())) + 1;
}
else
valval = (tv.val())+ 1;
decodedTag = this.decodeUString(valval);
//Log.info(Log.FAC_ENCODING, "Unexpected: got text tag in peekStartElement; length: " + valval + " decoded tag = " + decodedTag);
} else if (tv.type() == XML_DTAG) {
decodedTag = tagToString(tv.val());
}
} // else, not a type and val, probably an end element. rewind and return false.
} catch ( e) {
} finally {
try {
this.offset = previousOffset;
} catch ( e) {
Log.logStackTrace(Log.FAC_ENCODING, Level.WARNING, e);
throw new ContentDecodingException("Cannot reset stream! " + e.getMessage(), e);
}
}
return decodedTag;
};
BinaryXMLDecoder.prototype.peekStartElement = function(
//String
startTag) {
//String
if(typeof startTag == 'string'){
decodedTag = this.peekStartElementAsString();
if ((null != decodedTag) && decodedTag == startTag) {
return true;
}
return false;
}
else if(typeof startTag == 'number'){
decodedTag = this.peekStartElementAsLong();
if ((null != decodedTag) && decodedTag == startTag) {
return true;
}
return false;
}
else{
throw new Error("SHOULD BE STRING OR NUMBER");
}
}
//returns Long
BinaryXMLDecoder.prototype.peekStartElementAsLong = function() {
//this.istream.mark(MARK_LEN);
//Long
decodedTag = null;
var previousOffset = this.offset;
try {
// Have to distinguish genuine errors from wrong tags. Could either use
// a special exception subtype, or redo the work here.
//this.TypeAndVal
tv = this.decodeTypeAndVal();
if (null != tv) {
if (tv.type() == XML_TAG) {
if (tv.val()+1 > DEBUG_MAX_LEN) {
throw new ContentDecodingException("Decoding error: length " + tv.val()+1 + " longer than expected maximum length!");
}
var valval ;
if(typeof tv.val() == 'string'){
valval = (parseInt(tv.val())) + 1;
}
else
valval = (tv.val())+ 1;
// Tag value represents length-1 as tags can never be empty.
//String
strTag = this.decodeUString(valval);
decodedTag = stringToTag(strTag);
//Log.info(Log.FAC_ENCODING, "Unexpected: got text tag in peekStartElement; length: " + valval + " decoded tag = " + decodedTag);
} else if (tv.type() == XML_DTAG) {
decodedTag = tv.val();
}
} // else, not a type and val, probably an end element. rewind and return false.
} catch ( e) {
} finally {
try {
//this.istream.reset();
this.offset = previousOffset;
} catch ( e) {
Log.logStackTrace(Log.FAC_ENCODING, Level.WARNING, e);
throw new Error("Cannot reset stream! " + e.getMessage(), e);
}
}
return decodedTag;
};
// returns a byte[]
BinaryXMLDecoder.prototype.readBinaryElement = function(
//long
startTag,
//TreeMap<String, String>
attributes){
//byte []
blob = null;
this.readStartElement(startTag, attributes);
blob = this.readBlob();
return blob;
};
BinaryXMLDecoder.prototype.readEndElement = function(){
//try {
if(LOG>4)console.log('this.offset is '+this.offset);
var next = this.istream[this.offset];
this.offset++;
//read();
if(LOG>4)console.log('XML_CLOSE IS '+XML_CLOSE);
if(LOG>4)console.log('next is '+next);
if (next != XML_CLOSE) {
console.log("Expected end element, got: " + next);
throw new ContentDecodingException("Expected end element, got: " + next);
}
//} catch ( e) {
//throw new ContentDecodingException(e);
//}
};
//String
BinaryXMLDecoder.prototype.readUString = function(){
//String
ustring = this.decodeUString();
this.readEndElement();
return ustring;
};
//returns a byte[]
BinaryXMLDecoder.prototype.readBlob = function() {
//byte []
blob = this.decodeBlob();
this.readEndElement();
return blob;
};
//CCNTime
BinaryXMLDecoder.prototype.readDateTime = function(
//long
startTag) {
//byte []
var byteTimestamp = this.readBinaryElement(startTag);
//var lontimestamp = DataUtils.byteArrayToUnsignedLong(byteTimestamp);
var byteTimestamp = DataUtils.toHex(byteTimestamp);
var byteTimestamp = parseInt(byteTimestamp, 16);
lontimestamp = (byteTimestamp/ 4096) * 1000;
//if(lontimestamp<0) lontimestamp = - lontimestamp;
if(LOG>3) console.log('DECODED DATE WITH VALUE');
if(LOG>3) console.log(lontimestamp);
//CCNTime
timestamp = new CCNTime(lontimestamp);
//timestamp.setDateBinary(byteTimestamp);
if (null == timestamp) {
throw new ContentDecodingException("Cannot parse timestamp: " + DataUtils.printHexBytes(byteTimestamp));
}
return timestamp;
};
BinaryXMLDecoder.prototype.decodeTypeAndVal = function() {
/*int*/next;
/*int*/type = -1;
/*long*/val = 0;
/*boolean*/more = true;
//var savedOffset = this.offset;
var count = 0;
do {
var next = this.istream[this.offset ];
if (next < 0) {
return null;
}
if ((0 == next) && (0 == val)) {
return null;
}
more = (0 == (next & XML_TT_NO_MORE));
if (more) {
val = val << XML_REG_VAL_BITS;
val |= (next & XML_REG_VAL_MASK);
} else {
type = next & XML_TT_MASK;
val = val << XML_TT_VAL_BITS;
val |= ((next >>> XML_TT_BITS) & XML_TT_VAL_MASK);
}
this.offset++;
} while (more);
if(LOG>3)console.log('TYPE is '+ type + ' VAL is '+ val);
return new TypeAndVal(type, val);
};
//TypeAndVal
BinaryXMLDecoder.peekTypeAndVal = function() {
//TypeAndVal
tv = null;
//this.istream.mark(LONG_BYTES*2);
var previousOffset = this.offset;
try {
tv = this.decodeTypeAndVal();
} finally {
//this.istream.reset();
this.offset = previousOffset;
}
return tv;
};
//byte[]
BinaryXMLDecoder.prototype.decodeBlob = function(
//int
blobLength) {
if(null == blobLength){
//TypeAndVal
tv = this.decodeTypeAndVal();
var valval ;
if(typeof tv.val() == 'string'){
valval = (parseInt(tv.val()));
}
else
valval = (tv.val());
//console.log('valval here is ' + valval);
return this.decodeBlob(valval);
}
//
//byte []
bytes = this.istream.slice(this.offset, this.offset+ blobLength);
this.offset += blobLength;
//int
return bytes;
count = 0;
};
var count =0;
//String
BinaryXMLDecoder.prototype.decodeUString = function(
//int
byteLength) {
/*
console.log('COUNT IS '+count);
console.log('INPUT BYTELENGTH IS '+byteLength);
count++;
if(null == byteLength|| undefined == byteLength){
console.log("!!!!");
tv = this.decodeTypeAndVal();
var valval ;
if(typeof tv.val() == 'string'){
valval = (parseInt(tv.val()));
}
else
valval = (tv.val());
if(LOG>4) console.log('valval is ' + valval);
byteLength= this.decodeUString(valval);
//if(LOG>4) console.log('byte Length found in type val is '+ byteLength.charCodeAt(0));
byteLength = parseInt(byteLength);
//byteLength = byteLength.charCodeAt(0);
//if(LOG>4) console.log('byte Length found in type val is '+ byteLength);
}
if(LOG>4)console.log('byteLength is '+byteLength);
if(LOG>4)console.log('type of byteLength is '+typeof byteLength);
stringBytes = this.decodeBlob(byteLength);
//console.log('String bytes are '+ stringBytes);
//console.log('stringBytes);
if(LOG>4)console.log('byteLength is '+byteLength);
if(LOG>4)console.log('this.offset is '+this.offset);
tempBuffer = this.istream.slice(this.offset, this.offset+byteLength);
if(LOG>4)console.log('TEMPBUFFER IS' + tempBuffer);
if(LOG>4)console.log( tempBuffer);
if(LOG>4)console.log('ADDING to offset value' + byteLength);
this.offset+= byteLength;
//if(LOG>3)console.log('read the String' + tempBuffer.toString('ascii'));
//return tempBuffer.toString('ascii');//
//if(LOG>3)console.log( 'STRING READ IS '+ DataUtils.getUTF8StringFromBytes(stringBytes) ) ;
//if(LOG>3)console.log( 'STRING READ IS '+ DataUtils.getUTF8StringFromBytes(tempBuffer) ) ;
//if(LOG>3)console.log(DataUtils.getUTF8StringFromBytes(tempBuffer) ) ;
//return DataUtils.getUTF8StringFromBytes(tempBuffer);
if(LOG>3)console.log( 'STRING READ IS '+ DataUtils.toString(stringBytes) ) ;
if(LOG>3)console.log( 'TYPE OF STRING READ IS '+ typeof DataUtils.toString(stringBytes) ) ;
return DataUtils.toString(stringBytes);*/
if(null == byteLength ){
var tempStreamPosition = this.offset;
//TypeAndVal
tv = this.decodeTypeAndVal();
if(LOG>3)console.log('TV is '+tv);
if(LOG>3)console.log(tv);
if(LOG>3)console.log('Type of TV is '+typeof tv);
if ((null == tv) || (XML_UDATA != tv.type())) { // if we just have closers left, will get back null
//if (Log.isLoggable(Log.FAC_ENCODING, Level.FINEST))
//Log.finest(Log.FAC_ENCODING, "Expected UDATA, got " + ((null == tv) ? " not a tag " : tv.type()) + ", assuming elided 0-length blob.");
this.offset = tempStreamPosition;
return "";
}
return this.decodeUString(tv.val());
}
else{
//byte []
stringBytes = this.decodeBlob(byteLength);
//return DataUtils.getUTF8StringFromBytes(stringBytes);
return DataUtils.toString(stringBytes);
}
};
//OBject containg a pair of type and value
var TypeAndVal = function TypeAndVal(_type,_val) {
this.t = _type;
this.v = _val;
};
TypeAndVal.prototype.type = function(){
return this.t;
};
TypeAndVal.prototype.val = function(){
return this.v;
};
//TODO
BinaryXMLDecoder.prototype.readIntegerElement =function(
//String
startTag) {
//String
if(LOG>4) console.log('READING INTEGER '+ startTag);
if(LOG>4) console.log('TYPE OF '+ typeof startTag);
//try {
strVal = this.readUTF8Element(startTag);
//}
//catch (e) {
//throw new Error("Cannot parse " + startTag + ": " + strVal);
//}
return parseInt(strVal);
};
BinaryXMLDecoder.prototype.readUTF8Element =function(
//String
startTag,
//TreeMap<String, String>
attributes) {
//throws ContentDecodingException
this.readStartElement(startTag, attributes); // can't use getElementText, can't get attributes
//String
strElementText = this.readUString();
return strElementText;
};
/*
* Set the offset into the input, used for the next read.
*/
BinaryXMLDecoder.prototype.seek = function(
//int
offset) {
this.offset = offset;
}
/*
* This class uses BinaryXMLDecoder to follow the structure of a ccnb binary element to
* determine its end.
*
* @author: ucla-cs
* See COPYING for copyright and distribution information.
*/
var BinaryXMLStructureDecoder = function BinaryXMLDecoder() {
this.gotElementEnd = false;
this.offset = 0;
this.level = 0;
this.state = BinaryXMLStructureDecoder.READ_HEADER_OR_CLOSE;
this.headerStartOffset = 0;
this.readBytesEndOffset = 0;
};
BinaryXMLStructureDecoder.READ_HEADER_OR_CLOSE = 0;
BinaryXMLStructureDecoder.READ_BYTES = 1;
/*
* Continue scanning input starting from this.offset. If found the end of the element
* which started at offset 0 then return true, else false.
* If this returns false, you should read more into input and call again.
* You have to pass in input each time because the array could be reallocated.
* This throws an exception for badly formed ccnb.
*/
BinaryXMLStructureDecoder.prototype.findElementEnd = function(
// byte array
input)
{
if (this.gotElementEnd)
// Someone is calling when we already got the end.
return true;
var decoder = new BinaryXMLDecoder(input);
while (true) {
if (this.offset >= input.length)
// All the cases assume we have some input.
return false;
switch (this.state) {
case BinaryXMLStructureDecoder.READ_HEADER_OR_CLOSE:
// First check for XML_CLOSE.
if (this.offset == this.headerStartOffset && input[this.offset] == XML_CLOSE) {
++this.offset;
// Close the level.
--this.level;
if (this.level == 0)
// Finished.
return true;
if (this.level < 0)
throw new Error("BinaryXMLStructureDecoder: Unexepected close tag at offset " +
(this.offset - 1));
// Get ready for the next header.
this.headerStartOffset = this.offset;
break;
}
while (true) {
if (this.offset >= input.length)
return false;
if (input[this.offset++] & XML_TT_NO_MORE)
// Break and read the header.
break;
}
decoder.seek(this.headerStartOffset);
var typeAndVal = decoder.decodeTypeAndVal();
if (typeAndVal == null)
throw new Error("BinaryXMLStructureDecoder: Can't read header starting at offset " +
this.headerStartOffset);
// Set the next state based on the type.
var type = typeAndVal.t;
if (type == XML_DATTR)
// We already consumed the item. READ_HEADER_OR_CLOSE again.
// ccnb has rules about what must follow an attribute, but we are just scanning.
this.headerStartOffset = this.offset;
else if (type == XML_DTAG || type == XML_EXT) {
// Start a new level and READ_HEADER_OR_CLOSE again.
++this.level;
this.headerStartOffset = this.offset;
}
else if (type == XML_TAG || type == XML_ATTR) {
if (type == XML_TAG)
// Start a new level and read the tag.
++this.level;
// Minimum tag or attribute length is 1.
this.readBytesEndOffset = this.offset + typeAndVal.v + 1;
this.state = BinaryXMLStructureDecoder.READ_BYTES;
// ccnb has rules about what must follow an attribute, but we are just scanning.
}
else if (type == XML_BLOB || type == XML_UDATA) {
this.readBytesEndOffset = this.offset + typeAndVal.v;
this.state = BinaryXMLStructureDecoder.READ_BYTES;
}
else
throw new Error("BinaryXMLStructureDecoder: Unrecognized header type " + type);
break;
case BinaryXMLStructureDecoder.READ_BYTES:
if (input.length < this.readBytesEndOffset) {
// Need more.
this.offset = input.length;
return false;
}
// Got the bytes. Read a new header or close.
this.offset = this.readBytesEndOffset;
this.headerStartOffset = this.offset;
this.state = BinaryXMLStructureDecoder.READ_HEADER_OR_CLOSE;
break;
default:
// We don't expect this to happen.
throw new Error("BinaryXMLStructureDecoder: Unrecognized state " + this.state);
}
}
};
/*
* This class contains utilities to help parse the data
* author: ucla-cs
* See COPYING for copyright and distribution information.
*/
var DataUtils = function DataUtils(){
};
/*
* NOTE THIS IS CURRENTLY NOT BEHING USED
*
*/
DataUtils.keyStr = "ABCDEFGHIJKLMNOP" +
"QRSTUVWXYZabcdef" +
"ghijklmnopqrstuv" +
"wxyz0123456789+/" +
"=";
/**
* Raw String to Base 64
*/
DataUtils.stringtoBase64=function stringtoBase64(input) {
input = escape(input);
var output = "";
var chr1, chr2, chr3 = "";
var enc1, enc2, enc3, enc4 = "";
var i = 0;
do {
chr1 = input.charCodeAt(i++);
chr2 = input.charCodeAt(i++);
chr3 = input.charCodeAt(i++);
enc1 = chr1 >> 2;
enc2 = ((chr1 & 3) << 4) | (chr2 >> 4);
enc3 = ((chr2 & 15) << 2) | (chr3 >> 6);
enc4 = chr3 & 63;
if (isNaN(chr2)) {
enc3 = enc4 = 64;
} else if (isNaN(chr3)) {
enc4 = 64;
}
output = output +
DataUtils.keyStr.charAt(enc1) +
DataUtils.keyStr.charAt(enc2) +
DataUtils.keyStr.charAt(enc3) +
DataUtils.keyStr.charAt(enc4);
chr1 = chr2 = chr3 = "";
enc1 = enc2 = enc3 = enc4 = "";
} while (i < input.length);
return output;
}
/**
* Base 64 to Raw String
*/
DataUtils.base64toString = function base64toString(input) {
var output = "";
var chr1, chr2, chr3 = "";
var enc1, enc2, enc3, enc4 = "";
var i = 0;
// remove all characters that are not A-Z, a-z, 0-9, +, /, or =
var base64test = /[^A-Za-z0-9\+\/\=]/g;
/* Test for invalid characters. */
if (base64test.exec(input)) {
alert("There were invalid base64 characters in the input text.\n" +
"Valid base64 characters are A-Z, a-z, 0-9, '+', '/',and '='\n" +
"Expect errors in decoding.");
}
input = input.replace(/[^A-Za-z0-9\+\/\=]/g, "");
do {
enc1 = DataUtils.keyStr.indexOf(input.charAt(i++));
enc2 = DataUtils.keyStr.indexOf(input.charAt(i++));
enc3 = DataUtils.keyStr.indexOf(input.charAt(i++));
enc4 = DataUtils.keyStr.indexOf(input.charAt(i++));
chr1 = (enc1 << 2) | (enc2 >> 4);
chr2 = ((enc2 & 15) << 4) | (enc3 >> 2);
chr3 = ((enc3 & 3) << 6) | enc4;
output = output + String.fromCharCode(chr1);
if (enc3 != 64) {
output = output + String.fromCharCode(chr2);
}
if (enc4 != 64) {
output = output + String.fromCharCode(chr3);
}
chr1 = chr2 = chr3 = "";
enc1 = enc2 = enc3 = enc4 = "";
} while (i < input.length);
return unescape(output);
};
//byte []
/**
* NOT WORKING!!!!!
*
* Unsiged Long Number to Byte Array
*/
/*
DataUtils.unsignedLongToByteArray= function( value) {
if(LOG>4)console.log('INPUT IS '+value);
if( 0 == value )
return [0];
if( 0 <= value && value <= 0x00FF ) {
//byte []
var bb = new Array(1);
bb[0] = (value & 0x00FF);
return bb;
}
if(LOG>4) console.log('type of value is '+typeof value);
if(LOG>4) console.log('value is '+value);
//byte []
var out = null;
//int
var offset = -1;
for(var i = 7; i >=0; --i) {
//byte
console.log(i);
console.log('value is '+value);
console.log('(value >> (i * 8)) '+ (value >> (i * 8)) );
console.log(' ((value >> (i * 8)) & 0xFF) '+ ((value >> (i * 8)) & 0xFF) );
var b = ((value >> (i * 8)) & 0xFF) ;
if(LOG>4) console.log('b is '+b);
if( out == null && b != 0 ) {
//out = new byte[i+1];
out = new Array(i+1);
offset = i;
}
if( out != null )
out[ offset - i ] = b;
}
if(LOG>4)console.log('OUTPUT IS ');
if(LOG>4)console.log(out);
return out;
}
*/
/**
* NOT WORKING!!!!!
*
* Unsiged Long Number to Byte Array
*//*
DataUtils.byteArrayToUnsignedLong = function(//final byte []
src) {
if(LOG>4) console.log('INPUT IS ');
if(LOG>4) console.log(src);
var value = 0;
for(var i = 0; i < src.length; i++) {
value = value << 8;
// Java will assume the byte is signed, so extend it and trim it.
var b = ((src[i]) & 0xFF );
value |= b;
}
if(LOG>4) console.log('OUTPUT IS ');
if(LOG>4) console.log(value);
return value;
}*/
/**
* Hex String to Byte Array
*/
//THIS IS NOT WORKING
/*
DataUtils.HexStringtoByteArray = function(str) {
var byteArray = [];
for (var i = 0; i < str.length; i++)
if (str.charCodeAt(i) <= 0x7F)
byteArray.push(str.charCodeAt(i));
else {
var h = encodeURIComponent(str.charAt(i)).substr(1).split('%');
for (var j = 0; j < h.length; j++)
byteArray.push(parseInt(h[j], 16));
}
return byteArray;
};
*/
/**
* Byte Array to Hex String
*/
DataUtils.byteArrayToHexString = function(byteArray) {
var str = '';
for (var i = 0; i < byteArray.length; i++)
str += byteArray[i] <= 0x7F?
byteArray[i] === 0x25 ? "%25" : // %
String.fromCharCode(byteArray[i]) :
"%" + byteArray[i].toString(16).toUpperCase();
return decodeURIComponent(str);
};
/**
* Byte array to Hex String
*/
//http://ejohn.org/blog/numbers-hex-and-colors/
DataUtils.toHex = function(arguments){
if(LOG>4) console.log('ABOUT TO CONVERT '+ arguments);
//console.log(arguments);
var ret = "";
for ( var i = 0; i < arguments.length; i++ )
ret += (arguments[i] < 16 ? "0" : "") + arguments[i].toString(16);
return ret; //.toUpperCase();
}
/**
* Raw string to hex string.
*/
DataUtils.stringToHex = function(arguments){
var ret = "";
for (var i = 0; i < arguments.length; ++i) {
var value = arguments.charCodeAt(i);
ret += (value < 16 ? "0" : "") + value.toString(16);
}
return ret;
}
/**
* Byte array to raw string
*/
//DOES NOT SEEM TO WORK
DataUtils.toString = function(arguments){
//console.log(arguments);
var ret = "";
for ( var i = 0; i < arguments.length; i++ )
ret += String.fromCharCode(arguments[i]);
return ret;
}
/**
* Hex String to byte array
*/
DataUtils.toNumbers=function( str ){
if(typeof str =='string'){
var ret = [];
str.replace(/(..)/g, function(str){
ret.push( parseInt( str, 16 ) );
});
return ret;
}
}
/**
* Hex String to raw string.
*/
DataUtils.hexToRawString = function(str) {
if(typeof str =='string') {
var ret = "";
str.replace(/(..)/g, function(s) {
ret += String.fromCharCode(parseInt(s, 16));
});
return ret;
}
}
/**
* Raw String to Byte Array
*/
DataUtils.toNumbersFromString = function( str ){
var bytes = new Array(str.length);
for(var i=0;i<str.length;i++)
bytes[i] = str.charCodeAt(i);
return bytes;
}
DataUtils.encodeUtf8 = function (string) {
string = string.replace(/\r\n/g,"\n");
var utftext = "";
for (var n = 0; n < string.length; n++) {
var c = string.charCodeAt(n);
if (c < 128) {
utftext += String.fromCharCode(c);
}
else if((c > 127) && (c < 2048)) {
utftext += String.fromCharCode((c >> 6) | 192);
utftext += String.fromCharCode((c & 63) | 128);
}
else {
utftext += String.fromCharCode((c >> 12) | 224);
utftext += String.fromCharCode(((c >> 6) & 63) | 128);
utftext += String.fromCharCode((c & 63) | 128);
}
}
return utftext;
};
// public method for url decoding
DataUtils.decodeUtf8 = function (utftext) {
var string = "";
var i = 0;
var c = c1 = c2 = 0;
while ( i < utftext.length ) {
c = utftext.charCodeAt(i);
if (c < 128) {
string += String.fromCharCode(c);
i++;
}
else if((c > 191) && (c < 224)) {
c2 = utftext.charCodeAt(i+1);
string += String.fromCharCode(((c & 31) << 6) | (c2 & 63));
i += 2;
}
else {
c2 = utftext.charCodeAt(i+1);
c3 = utftext.charCodeAt(i+2);
string += String.fromCharCode(((c & 15) << 12) | ((c2 & 63) << 6) | (c3 & 63));
i += 3;
}
}
return string;
};
test = function(){
console.log(DataUtils.decodeUtf8("HELLO.~"));
return DataUtils.decodeUtf8("HELLO.~");
}
//NOT WORKING
/*
DataUtils.getUTF8StringFromBytes = function(bytes) {
bytes = toString(bytes);
var ix = 0;
if( bytes.slice(0,3) == "\xEF\xBB\xBF") {
ix = 3;
}
var string = "";
for( ; ix < bytes.length; ix++ ) {
var byte1 = bytes[ix].charCodeAt(0);
if( byte1 < 0x80 ) {
string += String.fromCharCode(byte1);
} else if( byte1 >= 0xC2 && byte1 < 0xE0 ) {
var byte2 = bytes[++ix].charCodeAt(0);
string += String.fromCharCode(((byte1&0x1F)<<6) + (byte2&0x3F));
} else if( byte1 >= 0xE0 && byte1 < 0xF0 ) {
var byte2 = bytes[++ix].charCodeAt(0);
var byte3 = bytes[++ix].charCodeAt(0);
string += String.fromCharCode(((byte1&0xFF)<<12) + ((byte2&0x3F)<<6) + (byte3&0x3F));
} else if( byte1 >= 0xF0 && byte1 < 0xF5) {
var byte2 = bytes[++ix].charCodeAt(0);
var byte3 = bytes[++ix].charCodeAt(0);
var byte4 = bytes[++ix].charCodeAt(0);
var codepoint = ((byte1&0x07)<<18) + ((byte2&0x3F)<<12)+ ((byte3&0x3F)<<6) + (byte4&0x3F);
codepoint -= 0x10000;
string += String.fromCharCode(
(codepoint>>10) + 0xD800,
(codepoint&0x3FF) + 0xDC00
);
}
}
return string;
}*/
/**
* Return true if a1 and a2 are the same length with equal elements.
*/
DataUtils.arraysEqual = function(a1, a2){
if (a1.length != a2.length)
return false;
for (var i = 0; i < a1.length; ++i) {
if (a1[i] != a2[i])
return false;
}
return true;
}
/*
* This file contains utilities to help encode and decode NDN objects.
* author: ucla-cs
* See COPYING for copyright and distribution information.
*/
function encodeToHexInterest(interest){
var enc = new BinaryXMLEncoder();
interest.to_ccnb(enc);
var hex = DataUtils.toHex(enc.getReducedOstream());
return hex;
}
function encodeToHexContentObject(co){
var enc = new BinaryXMLEncoder();
co.to_ccnb(enc);
var hex = DataUtils.toHex(enc.getReducedOstream());
return hex;
}
function encodeToBinaryContentObject(co){
var enc = new BinaryXMLEncoder();
co.to_ccnb(enc);
var hex = enc.getReducedOstream();
return hex;
}
function encodeForwardingEntry(co){
var enc = new BinaryXMLEncoder();
co.to_ccnb(enc);
var bytes = enc.getReducedOstream();
return bytes;
}
function decodeHexFaceInstance(result){
var numbers = DataUtils.toNumbers(result);
decoder = new BinaryXMLDecoder(numbers);
if(LOG>3)console.log('DECODING HEX FACE INSTANCE \n'+numbers);
var faceInstance = new FaceInstance();
faceInstance.from_ccnb(decoder);
return faceInstance;
}
function decodeHexInterest(result){
var numbers = DataUtils.toNumbers(result);
decoder = new BinaryXMLDecoder(numbers);
if(LOG>3)console.log('DECODING HEX INTERST \n'+numbers);
var interest = new Interest();
interest.from_ccnb(decoder);
return interest;
}
function decodeHexContentObject(result){
var numbers = DataUtils.toNumbers(result);
decoder = new BinaryXMLDecoder(numbers);
if(LOG>3)console.log('DECODED HEX CONTENT OBJECT \n'+numbers);
co = new ContentObject();
co.from_ccnb(decoder);
return co;
}
function decodeHexForwardingEntry(result){
var numbers = DataUtils.toNumbers(result);
decoder = new BinaryXMLDecoder(numbers);
if(LOG>3)console.log('DECODED HEX FORWARDING ENTRY \n'+numbers);
forwardingEntry = new ForwardingEntry();
forwardingEntry.from_ccnb(decoder);
return forwardingEntry;
}
/* Return a user friendly HTML string with the contents of co.
This also outputs to console.log.
*/
function contentObjectToHtml(/* ContentObject */ co) {
var output ="";
if(co==-1)
output+= "NO CONTENT FOUND"
else if (co==-2)
output+= "CONTENT NAME IS EMPTY"
else{
if(co.name!=null && co.name.components!=null){
output+= "NAME: ";
for(var i=0;i<co.name.components.length;i++){
output+= "/"+ DataUtils.toString(co.name.components[i]);
}
output+= "<br />";
output+= "<br />";
}
if(co.content !=null){
output += "CONTENT(ASCII): "+ DataUtils.toString(co.content);
output+= "<br />";
output+= "<br />";
}
if(co.content !=null){
output += "CONTENT(hex): "+ DataUtils.toHex(co.content);
output+= "<br />";
output+= "<br />";
}
if(co.signature !=null && co.signature.signature!=null){
output += "SIGNATURE(hex): "+ DataUtils.toHex(co.signature.signature);
output+= "<br />";
output+= "<br />";
}
if(co.signedInfo !=null && co.signedInfo.publisher!=null && co.signedInfo.publisher.publisherPublicKeyDigest!=null){
output += "Publisher Public Key Digest(hex): "+ DataUtils.toHex(co.signedInfo.publisher.publisherPublicKeyDigest);
output+= "<br />";
output+= "<br />";
}
if(co.signedInfo !=null && co.signedInfo.timestamp!=null){
var d = new Date();
d.setTime( co.signedInfo.timestamp.msec );
var bytes = [217, 185, 12, 225, 217, 185, 12, 225];
output += "TimeStamp: "+d;
output+= "<br />";
output += "TimeStamp(number): "+ co.signedInfo.timestamp.msec;
output+= "<br />";
}
if(co.signedInfo!=null && co.signedInfo.locator!=null && co.signedInfo.locator.certificate!=null){
var tmp = DataUtils.toString(co.signedInfo.locator.certificate);
var publickey = rstr2b64(tmp);
var publickeyHex = DataUtils.toHex(co.signedInfo.locator.certificate).toLowerCase();
var publickeyString = DataUtils.toString(co.signedInfo.locator.certificate);
var signature = DataUtils.toHex(co.signature.signature).toLowerCase();
var input = DataUtils.toString(co.rawSignatureData);
output += "DER Certificate: "+publickey ;
output+= "<br />";
output+= "<br />";
if(LOG>2) console.log(" ContentName + SignedInfo + Content = "+input);
if(LOG>2) console.log("HEX OF ContentName + SignedInfo + Content = ");
if(LOG>2) console.log(DataUtils.stringtoBase64(input));
if(LOG>2) console.log(" PublicKey = "+publickey );
if(LOG>2) console.log(" PublicKeyHex = "+publickeyHex );
if(LOG>2) console.log(" PublicKeyString = "+publickeyString );
if(LOG>2) console.log(" Signature is");
if(LOG>2) console.log( signature );
//if(LOG>2) console.log(" Signature NOW IS" );
//if(LOG>2) console.log(co.signature.signature);
var x509 = new X509();
x509.readCertPEM(publickey);
//x509.readCertPEMWithoutRSAInit(publickey);
var result = x509.subjectPublicKeyRSA.verifyByteArray(co.rawSignatureData, signature);
if(LOG>2) console.log('result is '+result);
var n = x509.subjectPublicKeyRSA.n;
var e = x509.subjectPublicKeyRSA.e;
if(LOG>2) console.log('PUBLIC KEY n after is ');
if(LOG>2) console.log(n);
if(LOG>2) console.log('EXPONENT e after is ');
if(LOG>2) console.log(e);
/*var rsakey = new RSAKey();
var kp = publickeyHex.slice(56,314);
output += "PUBLISHER KEY(hex): "+kp ;
output+= "<br />";
output+= "<br />";
console.log('kp is '+kp);
var exp = publickeyHex.slice(318,324);
console.log('kp size is '+kp.length );
output += "exponent: "+exp ;
output+= "<br />";
output+= "<br />";
console.log('exp is '+exp);
rsakey.setPublic(kp,exp);
var result = rsakey.verifyString(input, signature);*/
if(result)
output += 'SIGNATURE VALID';
else
output += 'SIGNATURE INVALID';
//output += "VALID: "+ toHex(co.signedInfo.locator.publicKey);
output+= "<br />";
output+= "<br />";
//if(LOG>4) console.log('str'[1]);
}
if(co.signedInfo!=null && co.signedInfo.locator!=null && co.signedInfo.locator.publicKey!=null){
var publickey = rstr2b64(DataUtils.toString(co.signedInfo.locator.publicKey));
var publickeyHex = DataUtils.toHex(co.signedInfo.locator.publicKey).toLowerCase();
var publickeyString = DataUtils.toString(co.signedInfo.locator.publicKey);
var signature = DataUtils.toHex(co.signature.signature).toLowerCase();
var input = DataUtils.toString(co.rawSignatureData);
output += "DER Certificate: "+publickey ;
output+= "<br />";
output+= "<br />";
if(LOG>2) console.log(" ContentName + SignedInfo + Content = "+input);
if(LOG>2) console.log(" PublicKey = "+publickey );
if(LOG>2) console.log(" PublicKeyHex = "+publickeyHex );
if(LOG>2) console.log(" PublicKeyString = "+publickeyString );
if(LOG>2) console.log(" Signature "+signature );
if(LOG>2) console.log(" Signature NOW IS" );
if(LOG>2) console.log(co.signature.signature);
/*var x509 = new X509();
x509.readCertPEM(publickey);
//x509.readCertPEMWithoutRSAInit(publickey);
var result = x509.subjectPublicKeyRSA.verifyString(input, signature);*/
//console.log('result is '+result);
var kp = publickeyHex.slice(56,314);
output += "PUBLISHER KEY(hex): "+kp ;
output+= "<br />";
output+= "<br />";
console.log('PUBLIC KEY IN HEX is ');
console.log(kp);
var exp = publickeyHex.slice(318,324);
console.log('kp size is '+kp.length );
output += "exponent: "+exp ;
output+= "<br />";
output+= "<br />";
console.log('EXPONENT is ');
console.log(exp);
/*var c1 = hex_sha256(input);
var c2 = signature;
if(LOG>4)console.log('input is ');
if(LOG>4)console.log(input);
if(LOG>4)console.log('C1 is ');
if(LOG>4)console.log(c1);
if(LOG>4)console.log('C2 is ');
if(LOG>4)console.log(c2);
var result = c1 == c2;*/
var rsakey = new RSAKey();
rsakey.setPublic(kp,exp);
var result = rsakey.verifyByteArray(co.rawSignatureData,signature);
// var result = rsakey.verifyString(input, signature);
console.log('PUBLIC KEY n after is ');
console.log(rsakey.n);
console.log('EXPONENT e after is ');
console.log(rsakey.e);
if(result)
output += 'SIGNATURE VALID';
else
output += 'SIGNATURE INVALID';
//output += "VALID: "+ toHex(co.signedInfo.locator.publicKey);
output+= "<br />";
output+= "<br />";
//if(LOG>4) console.log('str'[1]);
}
}
return output;
}
/*
* @author: ucla-cs
* See COPYING for copyright and distribution information.
*/
var KeyManager = function KeyManager(){
//Certificate from CCNx
this.certificate = 'MIIBmzCCAQQCCQC32FyQa61S7jANBgkqhkiG9w0BAQUFADASMRAwDgYDVQQDEwd'+
'heGVsY2R2MB4XDTEyMDQyODIzNDQzN1oXDTEyMDUyODIzNDQzN1owEjEQMA4GA1'+
'UEAxMHYXhlbGNkdjCBnzANBgkqhkiG9w0BAQEFAAOBjQAwgYkCgYEA4X0wp9goq'+
'xuECxdULcr2IHr9Ih4Iaypg0Wy39URIup8/CLzQmdsh3RYqd55hqonu5VTTpH3i'+
'MLx6xZDVJAZ8OJi7pvXcQ2C4Re2kjL2c8SanI0RfDhlS1zJadfr1VhRPmpivcYa'+
'wJ4aFuOLAi+qHFxtN7lhcGCgpW1OV60oXd58CAwEAATANBgkqhkiG9w0BAQUFAA'+
'OBgQDLOrA1fXzSrpftUB5Ro6DigX1Bjkf7F5Bkd69hSVp+jYeJFBBlsILQAfSxU'+
'ZPQtD+2Yc3iCmSYNyxqu9PcufDRJlnvB7PG29+L3y9lR37tetzUV9eTscJ7rdp8'+
'Wt6AzpW32IJ/54yKNfP7S6ZIoIG+LP6EIxq6s8K1MXRt8uBJKw==';
//this.publicKey = 'MIGfMA0GCSqGSIb3DQEBAQUAA4GNADCBiQKBgQDhfTCn2CirG4QLF1QtyvYgev0iHghrKmDRbLf1REi6nz8IvNCZ2yHdFip3nmGqie7lVNOkfeIwvHrFkNUkBnw4mLum9dxDYLhF7aSMvZzxJqcjRF8OGVLXMlp1+vVWFE+amK9xhrAnhoW44sCL6ocXG03uWFwYKClbU5XrShd3nwIDAQAB';
this.publicKey ='30819F300D06092A864886F70D010101050003818D0030818902818100E17D30A7D828AB1B840B17542DCAF6207AFD221E086B2A60D16CB7F54448BA9F3F08BCD099DB21DD162A779E61AA89EEE554D3A47DE230BC7AC590D524067C3898BBA6F5DC4360B845EDA48CBD9CF126A723445F0E1952D7325A75FAF556144F9A98AF7186B0278685B8E2C08BEA87171B4DEE585C1828295B5395EB4A17779F0203010001';
//Private Key from CCNx
this.privateKey ='MIICXQIBAAKBgQDhfTCn2CirG4QLF1QtyvYgev0iHghrKmDRbLf1REi6nz8IvNCZ2yHdFip3nmGqie7lVNOkfeIwvHrFkNUkBnw4mLum9dxDYLhF7aSMvZzxJqcjRF8OGVLXMlp1+vVWFE+amK9xhrAnhoW44sCL6ocXG03uWFwYKClbU5XrShd3nwIDAQABAoGAGkv6T6jC3WmhFZYL6CdCWvlc6gysmKrhjarrLTxgavtFY6R5g2ft5BXAsCCVbUkWxkIFSKqxpVNl0gKZCNGEzPDN6mHJOQI/h0rlxNIHAuGfoAbCzALnqmyZivhJAPGijAyKuU9tczsst5+Kpn+bn7ehzHQuj7iwJonS5WbojqECQQD851K8TpW2GrRizNgG4dx6orZxAaon/Jnl8lS7soXhllQty7qG+oDfzznmdMsiznCqEABzHUUKOVGE9RWPN3aRAkEA5D/w9N55d0ibnChFJlc8cUAoaqH+w+U3oQP2Lb6AZHJpLptN4y4b/uf5d4wYU5/i/gC7SSBH3wFhh9bjRLUDLwJAVOx8vN0Kqt7myfKNbCo19jxjVSlA8TKCn1Oznl/BU1I+rC4oUaEW25DjmX6IpAR8kq7S59ThVSCQPjxqY/A08QJBAIRaF2zGPITQk3r/VumemCvLWiRK/yG0noc9dtibqHOWbCtcXtOm/xDWjq+lis2i3ssOvYrvrv0/HcDY+Dv1An0CQQCLJtMsfSg4kvG/FRY5UMhtMuwo8ovYcMXt4Xv/LWaMhndD67b2UGawQCRqr5ghRTABWdDD/HuuMBjrkPsX0861';
/*
this.certificate =
'MIIBvTCCASYCCQD55fNzc0WF7TANBgkqhkiG9w0BAQUFADAjMQswCQYDVQQGEwJK'+
'UDEUMBIGA1UEChMLMDAtVEVTVC1SU0EwHhcNMTAwNTI4MDIwODUxWhcNMjAwNTI1'+
'MDIwODUxWjAjMQswCQYDVQQGEwJKUDEUMBIGA1UEChMLMDAtVEVTVC1SU0EwgZ8w'+
'DQYJKoZIhvcNAQEBBQADgY0AMIGJAoGBANGEYXtfgDRlWUSDn3haY4NVVQiKI9Cz'+
'Thoua9+DxJuiseyzmBBe7Roh1RPqdvmtOHmEPbJ+kXZYhbozzPRbFGHCJyBfCLzQ'+
'fVos9/qUQ88u83b0SFA2MGmQWQAlRtLy66EkR4rDRwTj2DzR4EEXgEKpIvo8VBs/'+
'3+sHLF3ESgAhAgMBAAEwDQYJKoZIhvcNAQEFBQADgYEAEZ6mXFFq3AzfaqWHmCy1'+
'ARjlauYAa8ZmUFnLm0emg9dkVBJ63aEqARhtok6bDQDzSJxiLpCEF6G4b/Nv/M/M'+
'LyhP+OoOTmETMegAVQMq71choVJyOFE5BtQa6M/lCHEOya5QUfoRF2HF9EjRF44K'+
'3OK+u3ivTSj3zwjtpudY5Xo=';
this.privateKey =
'MIICWwIBAAKBgQDRhGF7X4A0ZVlEg594WmODVVUIiiPQs04aLmvfg8SborHss5gQ'+
'Xu0aIdUT6nb5rTh5hD2yfpF2WIW6M8z0WxRhwicgXwi80H1aLPf6lEPPLvN29EhQ'+
'NjBpkFkAJUbS8uuhJEeKw0cE49g80eBBF4BCqSL6PFQbP9/rByxdxEoAIQIDAQAB'+
'AoGAA9/q3Zk6ib2GFRpKDLO/O2KMnAfR+b4XJ6zMGeoZ7Lbpi3MW0Nawk9ckVaX0'+
'ZVGqxbSIX5Cvp/yjHHpww+QbUFrw/gCjLiiYjM9E8C3uAF5AKJ0r4GBPl4u8K4bp'+
'bXeSxSB60/wPQFiQAJVcA5xhZVzqNuF3EjuKdHsw+dk+dPECQQDubX/lVGFgD/xY'+
'uchz56Yc7VHX+58BUkNSewSzwJRbcueqknXRWwj97SXqpnYfKqZq78dnEF10SWsr'+
'/NMKi+7XAkEA4PVqDv/OZAbWr4syXZNv/Mpl4r5suzYMMUD9U8B2JIRnrhmGZPzL'+
'x23N9J4hEJ+Xh8tSKVc80jOkrvGlSv+BxwJAaTOtjA3YTV+gU7Hdza53sCnSw/8F'+
'YLrgc6NOJtYhX9xqdevbyn1lkU0zPr8mPYg/F84m6MXixm2iuSz8HZoyzwJARi2p'+
'aYZ5/5B2lwroqnKdZBJMGKFpUDn7Mb5hiSgocxnvMkv6NjT66Xsi3iYakJII9q8C'+
'Ma1qZvT/cigmdbAh7wJAQNXyoizuGEltiSaBXx4H29EdXNYWDJ9SS5f070BRbAIl'+
'dqRh3rcNvpY6BKJqFapda1DjdcncZECMizT/GMrc1w==';
*/
};
KeyManager.prototype.verify = function verify(message,signature){
var input = message;
var _PEM_X509CERT_STRING_ = this.certificate;
var x509 = new X509();
x509.readCertPEM(_PEM_X509CERT_STRING_);
var result = x509.subjectPublicKeyRSA.verifyString(input, signature);
return result;
};
KeyManager.prototype.sign= function sign(message){
var input = message;
var _PEM_PRIVATE_KEY_STRING_ = this.privateKey;
var rsa = new RSAKey();
rsa.readPrivateKeyFromPEMString(_PEM_PRIVATE_KEY_STRING_);
var hSig = rsa.signString(input, "sha256");
return hSig;
};
var globalKeyManager = new KeyManager();
//var KeyPair = { "public" : "PUBLIC KEY" , "private" : "PRIVATE KEY" };
/*
* A JavaScript implementation of the Secure Hash Algorithm, SHA-1, as defined
* in FIPS 180-1
* Version 2.2 Copyright Paul Johnston 2000 - 2009.
* Other contributors: Greg Holt, Andrew Kepert, Ydnar, Lostinet
* Distributed under the BSD License
* See http://pajhome.org.uk/crypt/md5 for details.
*/
/*
* Configurable variables. You may need to tweak these to be compatible with
* the server-side, but the defaults work in most cases.
*/
var hexcase = 0; /* hex output format. 0 - lowercase; 1 - uppercase */
var b64pad = ""; /* base-64 pad character. "=" for strict RFC compliance */
/**
* These are the functions you'll usually want to call
* They take string arguments and return either hex or base-64 encoded strings
*/
function hex_sha1(s) { return rstr2hex(rstr_sha1(str2rstr_utf8(s))); }
function b64_sha1(s) { return rstr2b64(rstr_sha1(str2rstr_utf8(s))); }
function any_sha1(s, e) { return rstr2any(rstr_sha1(str2rstr_utf8(s)), e); }
function hex_hmac_sha1(k, d)
{ return rstr2hex(rstr_hmac_sha1(str2rstr_utf8(k), str2rstr_utf8(d))); }
function b64_hmac_sha1(k, d)
{ return rstr2b64(rstr_hmac_sha1(str2rstr_utf8(k), str2rstr_utf8(d))); }
function any_hmac_sha1(k, d, e)
{ return rstr2any(rstr_hmac_sha1(str2rstr_utf8(k), str2rstr_utf8(d)), e); }
/**
* Perform a simple self-test to see if the VM is working
*/
function sha1_vm_test()
{
return hex_sha1("abc").toLowerCase() == "a9993e364706816aba3e25717850c26c9cd0d89d";
}
/**
* Calculate the SHA1 of a raw string
*/
function rstr_sha1(s)
{
return binb2rstr(binb_sha1(rstr2binb(s), s.length * 8));
}
/**
* Calculate the HMAC-SHA1 of a key and some data (raw strings)
*/
function rstr_hmac_sha1(key, data)
{
var bkey = rstr2binb(key);
if(bkey.length > 16) bkey = binb_sha1(bkey, key.length * 8);
var ipad = Array(16), opad = Array(16);
for(var i = 0; i < 16; i++)
{
ipad[i] = bkey[i] ^ 0x36363636;
opad[i] = bkey[i] ^ 0x5C5C5C5C;
}
var hash = binb_sha1(ipad.concat(rstr2binb(data)), 512 + data.length * 8);
return binb2rstr(binb_sha1(opad.concat(hash), 512 + 160));
}
/**
* Convert a raw string to a hex string
*/
function rstr2hex(input)
{
try { hexcase } catch(e) { hexcase=0; }
var hex_tab = hexcase ? "0123456789ABCDEF" : "0123456789abcdef";
var output = "";
var x;
for(var i = 0; i < input.length; i++)
{
x = input.charCodeAt(i);
output += hex_tab.charAt((x >>> 4) & 0x0F)
+ hex_tab.charAt( x & 0x0F);
}
return output;
}
/**
* Convert a raw string to a base-64 string
*/
function rstr2b64(input)
{
try { b64pad } catch(e) { b64pad=''; }
var tab = "ABCDEFGHIJKLMNOPQRSTUVWXYZabcdefghijklmnopqrstuvwxyz0123456789+/";
var output = "";
var len = input.length;
for(var i = 0; i < len; i += 3)
{
var triplet = (input.charCodeAt(i) << 16)
| (i + 1 < len ? input.charCodeAt(i+1) << 8 : 0)
| (i + 2 < len ? input.charCodeAt(i+2) : 0);
for(var j = 0; j < 4; j++)
{
if(i * 8 + j * 6 > input.length * 8) output += b64pad;
else output += tab.charAt((triplet >>> 6*(3-j)) & 0x3F);
}
}
return output;
}
/**
* Convert a raw string to an arbitrary string encoding
*/
function rstr2any(input, encoding)
{
var divisor = encoding.length;
var remainders = Array();
var i, q, x, quotient;
/* Convert to an array of 16-bit big-endian values, forming the dividend */
var dividend = Array(Math.ceil(input.length / 2));
for(i = 0; i < dividend.length; i++)
{
dividend[i] = (input.charCodeAt(i * 2) << 8) | input.charCodeAt(i * 2 + 1);
}
/*
* Repeatedly perform a long division. The binary array forms the dividend,
* the length of the encoding is the divisor. Once computed, the quotient
* forms the dividend for the next step. We stop when the dividend is zero.
* All remainders are stored for later use.
*/
while(dividend.length > 0)
{
quotient = Array();
x = 0;
for(i = 0; i < dividend.length; i++)
{
x = (x << 16) + dividend[i];
q = Math.floor(x / divisor);
x -= q * divisor;
if(quotient.length > 0 || q > 0)
quotient[quotient.length] = q;
}
remainders[remainders.length] = x;
dividend = quotient;
}
/* Convert the remainders to the output string */
var output = "";
for(i = remainders.length - 1; i >= 0; i--)
output += encoding.charAt(remainders[i]);
/* Append leading zero equivalents */
var full_length = Math.ceil(input.length * 8 /
(Math.log(encoding.length) / Math.log(2)));
for(i = output.length; i < full_length; i++)
output = encoding[0] + output;
return output;
}
/**
* Encode a string as utf-8.
* For efficiency, this assumes the input is valid utf-16.
*/
function str2rstr_utf8(input)
{
var output = "";
var i = -1;
var x, y;
while(++i < input.length)
{
/* Decode utf-16 surrogate pairs */
x = input.charCodeAt(i);
y = i + 1 < input.length ? input.charCodeAt(i + 1) : 0;
if(0xD800 <= x && x <= 0xDBFF && 0xDC00 <= y && y <= 0xDFFF)
{
x = 0x10000 + ((x & 0x03FF) << 10) + (y & 0x03FF);
i++;
}
/* Encode output as utf-8 */
if(x <= 0x7F)
output += String.fromCharCode(x);
else if(x <= 0x7FF)
output += String.fromCharCode(0xC0 | ((x >>> 6 ) & 0x1F),
0x80 | ( x & 0x3F));
else if(x <= 0xFFFF)
output += String.fromCharCode(0xE0 | ((x >>> 12) & 0x0F),
0x80 | ((x >>> 6 ) & 0x3F),
0x80 | ( x & 0x3F));
else if(x <= 0x1FFFFF)
output += String.fromCharCode(0xF0 | ((x >>> 18) & 0x07),
0x80 | ((x >>> 12) & 0x3F),
0x80 | ((x >>> 6 ) & 0x3F),
0x80 | ( x & 0x3F));
}
return output;
}
/**
* Encode a string as utf-16
*/
function str2rstr_utf16le(input)
{
var output = "";
for(var i = 0; i < input.length; i++)
output += String.fromCharCode( input.charCodeAt(i) & 0xFF,
(input.charCodeAt(i) >>> 8) & 0xFF);
return output;
}
function str2rstr_utf16be(input)
{
var output = "";
for(var i = 0; i < input.length; i++)
output += String.fromCharCode((input.charCodeAt(i) >>> 8) & 0xFF,
input.charCodeAt(i) & 0xFF);
return output;
}
/**
* Convert a raw string to an array of big-endian words
* Characters >255 have their high-byte silently ignored.
*/
function rstr2binb(input)
{
var output = Array(input.length >> 2);
for(var i = 0; i < output.length; i++)
output[i] = 0;
for(var i = 0; i < input.length * 8; i += 8)
output[i>>5] |= (input.charCodeAt(i / 8) & 0xFF) << (24 - i % 32);
return output;
}
/**
* Convert an array of big-endian words to a string
*/
function binb2rstr(input)
{
var output = "";
for(var i = 0; i < input.length * 32; i += 8)
output += String.fromCharCode((input[i>>5] >>> (24 - i % 32)) & 0xFF);
return output;
}
/**
* Calculate the SHA-1 of an array of big-endian words, and a bit length
*/
function binb_sha1(x, len)
{
/* append padding */
x[len >> 5] |= 0x80 << (24 - len % 32);
x[((len + 64 >> 9) << 4) + 15] = len;
var w = Array(80);
var a = 1732584193;
var b = -271733879;
var c = -1732584194;
var d = 271733878;
var e = -1009589776;
for(var i = 0; i < x.length; i += 16)
{
var olda = a;
var oldb = b;
var oldc = c;
var oldd = d;
var olde = e;
for(var j = 0; j < 80; j++)
{
if(j < 16) w[j] = x[i + j];
else w[j] = bit_rol(w[j-3] ^ w[j-8] ^ w[j-14] ^ w[j-16], 1);
var t = safe_add(safe_add(bit_rol(a, 5), sha1_ft(j, b, c, d)),
safe_add(safe_add(e, w[j]), sha1_kt(j)));
e = d;
d = c;
c = bit_rol(b, 30);
b = a;
a = t;
}
a = safe_add(a, olda);
b = safe_add(b, oldb);
c = safe_add(c, oldc);
d = safe_add(d, oldd);
e = safe_add(e, olde);
}
return Array(a, b, c, d, e);
}
/**
* Perform the appropriate triplet combination function for the current
* iteration
*/
function sha1_ft(t, b, c, d)
{
if(t < 20) return (b & c) | ((~b) & d);
if(t < 40) return b ^ c ^ d;
if(t < 60) return (b & c) | (b & d) | (c & d);
return b ^ c ^ d;
}
/**
* Determine the appropriate additive constant for the current iteration
*/
function sha1_kt(t)
{
return (t < 20) ? 1518500249 : (t < 40) ? 1859775393 :
(t < 60) ? -1894007588 : -899497514;
}
/**
* Add integers, wrapping at 2^32. This uses 16-bit operations internally
* to work around bugs in some JS interpreters.
*/
function safe_add(x, y)
{
var lsw = (x & 0xFFFF) + (y & 0xFFFF);
var msw = (x >> 16) + (y >> 16) + (lsw >> 16);
return (msw << 16) | (lsw & 0xFFFF);
}
/**
* Bitwise rotate a 32-bit number to the left.
*/
function bit_rol(num, cnt)
{
return (num << cnt) | (num >>> (32 - cnt));
}
/*
* A JavaScript implementation of the Secure Hash Algorithm, SHA-256, as defined
* in FIPS 180-2
* Version 2.2 Copyright Angel Marin, Paul Johnston 2000 - 2009.
* Other contributors: Greg Holt, Andrew Kepert, Ydnar, Lostinet
* Distributed under the BSD License
* See http://pajhome.org.uk/crypt/md5 for details.
* Also http://anmar.eu.org/projects/jssha2/
*/
/*
* Configurable variables. You may need to tweak these to be compatible with
* the server-side, but the defaults work in most cases.
*/
var hexcase = 0; /* hex output format. 0 - lowercase; 1 - uppercase */
var b64pad = ""; /* base-64 pad character. "=" for strict RFC compliance */
/*
* These are the functions you'll usually want to call
* They take string arguments and return either hex or base-64 encoded strings
*/
//@author axelcdv
/**
* Computes the Sha-256 hash of the given byte array
* @param {byte[]}
* @return the hex string corresponding to the Sha-256 hash of the byte array
*/
function hex_sha256_from_bytes(byteArray){
return rstr2hex(binb2rstr(binb_sha256( byteArray2binb(byteArray), byteArray.length * 8)));
}
function hex_sha256(s) { return rstr2hex(rstr_sha256(str2rstr_utf8(s))); }
function b64_sha256(s) { return rstr2b64(rstr_sha256(str2rstr_utf8(s))); }
function any_sha256(s, e) { return rstr2any(rstr_sha256(str2rstr_utf8(s)), e); }
function hex_hmac_sha256(k, d)
{ return rstr2hex(rstr_hmac_sha256(str2rstr_utf8(k), str2rstr_utf8(d))); }
function b64_hmac_sha256(k, d)
{ return rstr2b64(rstr_hmac_sha256(str2rstr_utf8(k), str2rstr_utf8(d))); }
function any_hmac_sha256(k, d, e)
{ return rstr2any(rstr_hmac_sha256(str2rstr_utf8(k), str2rstr_utf8(d)), e); }
/*
function hex_sha256(s) { return rstr2hex(rstr_sha256(s)); }
function b64_sha256(s) { return rstr2b64(rstr_sha256(s)); }
function any_sha256(s, e) { return rstr2any(rstr_sha256(s), e); }
function hex_hmac_sha256(k, d)
{ return rstr2hex(rstr_hmac_sha256(str2rstr_utf8(k), d)); }
function b64_hmac_sha256(k, d)
{ return rstr2b64(rstr_hmac_sha256(str2rstr_utf8(k), d)); }
function any_hmac_sha256(k, d, e)
{ return rstr2any(rstr_hmac_sha256(str2rstr_utf8(k), d), e); }
*/
/*
* Perform a simple self-test to see if the VM is working
*/
function sha256_vm_test()
{
return hex_sha256("abc").toLowerCase() ==
"ba7816bf8f01cfea414140de5dae2223b00361a396177a9cb410ff61f20015ad";
}
/**
* Calculate the sha256 of a raw string
* @param s: the raw string
*/
function rstr_sha256(s)
{
return binb2rstr(binb_sha256(rstr2binb(s), s.length * 8));
}
/**
* Calculate the HMAC-sha256 of a key and some data (raw strings)
*/
function rstr_hmac_sha256(key, data)
{
var bkey = rstr2binb(key);
if(bkey.length > 16) bkey = binb_sha256(bkey, key.length * 8);
var ipad = Array(16), opad = Array(16);
for(var i = 0; i < 16; i++)
{
ipad[i] = bkey[i] ^ 0x36363636;
opad[i] = bkey[i] ^ 0x5C5C5C5C;
}
var hash = binb_sha256(ipad.concat(rstr2binb(data)), 512 + data.length * 8);
return binb2rstr(binb_sha256(opad.concat(hash), 512 + 256));
}
/**
* Convert a raw string to a hex string
*/
function rstr2hex(input)
{
try { hexcase } catch(e) { hexcase=0; }
var hex_tab = hexcase ? "0123456789ABCDEF" : "0123456789abcdef";
var output = "";
var x;
for(var i = 0; i < input.length; i++)
{
x = input.charCodeAt(i);
output += hex_tab.charAt((x >>> 4) & 0x0F)
+ hex_tab.charAt( x & 0x0F);
}
return output;
}
/*
* Convert a raw string to a base-64 string
*/
function rstr2b64(input)
{
try { b64pad } catch(e) { b64pad=''; }
var tab = "ABCDEFGHIJKLMNOPQRSTUVWXYZabcdefghijklmnopqrstuvwxyz0123456789+/";
var output = "";
var len = input.length;
for(var i = 0; i < len; i += 3)
{
var triplet = (input.charCodeAt(i) << 16)
| (i + 1 < len ? input.charCodeAt(i+1) << 8 : 0)
| (i + 2 < len ? input.charCodeAt(i+2) : 0);
for(var j = 0; j < 4; j++)
{
if(i * 8 + j * 6 > input.length * 8) output += b64pad;
else output += tab.charAt((triplet >>> 6*(3-j)) & 0x3F);
}
}
return output;
}
/*
* Convert a raw string to an arbitrary string encoding
*/
function rstr2any(input, encoding)
{
var divisor = encoding.length;
var remainders = Array();
var i, q, x, quotient;
/* Convert to an array of 16-bit big-endian values, forming the dividend */
var dividend = Array(Math.ceil(input.length / 2));
for(i = 0; i < dividend.length; i++)
{
dividend[i] = (input.charCodeAt(i * 2) << 8) | input.charCodeAt(i * 2 + 1);
}
/*
* Repeatedly perform a long division. The binary array forms the dividend,
* the length of the encoding is the divisor. Once computed, the quotient
* forms the dividend for the next step. We stop when the dividend is zero.
* All remainders are stored for later use.
*/
while(dividend.length > 0)
{
quotient = Array();
x = 0;
for(i = 0; i < dividend.length; i++)
{
x = (x << 16) + dividend[i];
q = Math.floor(x / divisor);
x -= q * divisor;
if(quotient.length > 0 || q > 0)
quotient[quotient.length] = q;
}
remainders[remainders.length] = x;
dividend = quotient;
}
/* Convert the remainders to the output string */
var output = "";
for(i = remainders.length - 1; i >= 0; i--)
output += encoding.charAt(remainders[i]);
/* Append leading zero equivalents */
var full_length = Math.ceil(input.length * 8 /
(Math.log(encoding.length) / Math.log(2)))
for(i = output.length; i < full_length; i++)
output = encoding[0] + output;
return output;
}
/*
* Encode a string as utf-8.
* For efficiency, this assumes the input is valid utf-16.
*/
function str2rstr_utf8(input)
{
var output = "";
var i = -1;
var x, y;
while(++i < input.length)
{
/* Decode utf-16 surrogate pairs */
x = input.charCodeAt(i);
y = i + 1 < input.length ? input.charCodeAt(i + 1) : 0;
if(0xD800 <= x && x <= 0xDBFF && 0xDC00 <= y && y <= 0xDFFF)
{
x = 0x10000 + ((x & 0x03FF) << 10) + (y & 0x03FF);
i++;
}
/* Encode output as utf-8 */
if(x <= 0x7F)
output += String.fromCharCode(x);
else if(x <= 0x7FF)
output += String.fromCharCode(0xC0 | ((x >>> 6 ) & 0x1F),
0x80 | ( x & 0x3F));
else if(x <= 0xFFFF)
output += String.fromCharCode(0xE0 | ((x >>> 12) & 0x0F),
0x80 | ((x >>> 6 ) & 0x3F),
0x80 | ( x & 0x3F));
else if(x <= 0x1FFFFF)
output += String.fromCharCode(0xF0 | ((x >>> 18) & 0x07),
0x80 | ((x >>> 12) & 0x3F),
0x80 | ((x >>> 6 ) & 0x3F),
0x80 | ( x & 0x3F));
}
return output;
}
/*
* Encode a string as utf-16
*/
function str2rstr_utf16le(input)
{
var output = "";
for(var i = 0; i < input.length; i++)
output += String.fromCharCode( input.charCodeAt(i) & 0xFF,
(input.charCodeAt(i) >>> 8) & 0xFF);
return output;
}
function str2rstr_utf16be(input)
{
var output = "";
for(var i = 0; i < input.length; i++)
output += String.fromCharCode((input.charCodeAt(i) >>> 8) & 0xFF,
input.charCodeAt(i) & 0xFF);
return output;
}
/**
* Convert a raw string to an array of big-endian words
* Characters >255 have their high-byte silently ignored.
*/
function rstr2binb(input)
{
console.log('Raw string comming is '+input);
var output = Array(input.length >> 2);
for(var i = 0; i < output.length; i++)
output[i] = 0;
for(var i = 0; i < input.length * 8; i += 8)
output[i>>5] |= (input.charCodeAt(i / 8) & 0xFF) << (24 - i % 32);
return output;
}
/**
* @author axelcdv
* Convert a byte array to an array of big-endian words
* @param {byte[]} input
* @return the array of big-endian words
*/
function byteArray2binb(input){
console.log("Byte array coming is " + input);
var output = Array(input.length >> 2);
for(var i = 0; i < output.length; i++)
output[i] = 0;
for(var i = 0; i < input.length * 8; i += 8)
output[i>>5] |= (input[i / 8] & 0xFF) << (24 - i % 32);
return output;
}
/*
* Convert an array of big-endian words to a string
*/
function binb2rstr(input)
{
var output = "";
for(var i = 0; i < input.length * 32; i += 8)
output += String.fromCharCode((input[i>>5] >>> (24 - i % 32)) & 0xFF);
return output;
}
/*
* Main sha256 function, with its support functions
*/
function sha256_S (X, n) {return ( X >>> n ) | (X << (32 - n));}
function sha256_R (X, n) {return ( X >>> n );}
function sha256_Ch(x, y, z) {return ((x & y) ^ ((~x) & z));}
function sha256_Maj(x, y, z) {return ((x & y) ^ (x & z) ^ (y & z));}
function sha256_Sigma0256(x) {return (sha256_S(x, 2) ^ sha256_S(x, 13) ^ sha256_S(x, 22));}
function sha256_Sigma1256(x) {return (sha256_S(x, 6) ^ sha256_S(x, 11) ^ sha256_S(x, 25));}
function sha256_Gamma0256(x) {return (sha256_S(x, 7) ^ sha256_S(x, 18) ^ sha256_R(x, 3));}
function sha256_Gamma1256(x) {return (sha256_S(x, 17) ^ sha256_S(x, 19) ^ sha256_R(x, 10));}
function sha256_Sigma0512(x) {return (sha256_S(x, 28) ^ sha256_S(x, 34) ^ sha256_S(x, 39));}
function sha256_Sigma1512(x) {return (sha256_S(x, 14) ^ sha256_S(x, 18) ^ sha256_S(x, 41));}
function sha256_Gamma0512(x) {return (sha256_S(x, 1) ^ sha256_S(x, 8) ^ sha256_R(x, 7));}
function sha256_Gamma1512(x) {return (sha256_S(x, 19) ^ sha256_S(x, 61) ^ sha256_R(x, 6));}
var sha256_K = new Array
(
1116352408, 1899447441, -1245643825, -373957723, 961987163, 1508970993,
-1841331548, -1424204075, -670586216, 310598401, 607225278, 1426881987,
1925078388, -2132889090, -1680079193, -1046744716, -459576895, -272742522,
264347078, 604807628, 770255983, 1249150122, 1555081692, 1996064986,
-1740746414, -1473132947, -1341970488, -1084653625, -958395405, -710438585,
113926993, 338241895, 666307205, 773529912, 1294757372, 1396182291,
1695183700, 1986661051, -2117940946, -1838011259, -1564481375, -1474664885,
-1035236496, -949202525, -778901479, -694614492, -200395387, 275423344,
430227734, 506948616, 659060556, 883997877, 958139571, 1322822218,
1537002063, 1747873779, 1955562222, 2024104815, -2067236844, -1933114872,
-1866530822, -1538233109, -1090935817, -965641998
);
function binb_sha256(m, l)
{
var HASH = new Array(1779033703, -1150833019, 1013904242, -1521486534,
1359893119, -1694144372, 528734635, 1541459225);
var W = new Array(64);
var a, b, c, d, e, f, g, h;
var i, j, T1, T2;
/* append padding */
m[l >> 5] |= 0x80 << (24 - l % 32);
m[((l + 64 >> 9) << 4) + 15] = l;
for(i = 0; i < m.length; i += 16)
{
a = HASH[0];
b = HASH[1];
c = HASH[2];
d = HASH[3];
e = HASH[4];
f = HASH[5];
g = HASH[6];
h = HASH[7];
for(j = 0; j < 64; j++)
{
if (j < 16) W[j] = m[j + i];
else W[j] = safe_add(safe_add(safe_add(sha256_Gamma1256(W[j - 2]), W[j - 7]),
sha256_Gamma0256(W[j - 15])), W[j - 16]);
T1 = safe_add(safe_add(safe_add(safe_add(h, sha256_Sigma1256(e)), sha256_Ch(e, f, g)),
sha256_K[j]), W[j]);
T2 = safe_add(sha256_Sigma0256(a), sha256_Maj(a, b, c));
h = g;
g = f;
f = e;
e = safe_add(d, T1);
d = c;
c = b;
b = a;
a = safe_add(T1, T2);
}
HASH[0] = safe_add(a, HASH[0]);
HASH[1] = safe_add(b, HASH[1]);
HASH[2] = safe_add(c, HASH[2]);
HASH[3] = safe_add(d, HASH[3]);
HASH[4] = safe_add(e, HASH[4]);
HASH[5] = safe_add(f, HASH[5]);
HASH[6] = safe_add(g, HASH[6]);
HASH[7] = safe_add(h, HASH[7]);
}
return HASH;
}
function safe_add (x, y)
{
var lsw = (x & 0xFFFF) + (y & 0xFFFF);
var msw = (x >> 16) + (y >> 16) + (lsw >> 16);
return (msw << 16) | (lsw & 0xFFFF);
}
/*
* A JavaScript implementation of the Secure Hash Algorithm, SHA-512, as defined
* in FIPS 180-2
* Version 2.2 Copyright Anonymous Contributor, Paul Johnston 2000 - 2009.
* Other contributors: Greg Holt, Andrew Kepert, Ydnar, Lostinet
* Distributed under the BSD License
* See http://pajhome.org.uk/crypt/md5 for details.
*/
/*
* Configurable variables. You may need to tweak these to be compatible with
* the server-side, but the defaults work in most cases.
*/
var hexcase = 0; /* hex output format. 0 - lowercase; 1 - uppercase */
var b64pad = ""; /* base-64 pad character. "=" for strict RFC compliance */
/*
* These are the functions you'll usually want to call
* They take string arguments and return either hex or base-64 encoded strings
*/
function hex_sha512(s) { return rstr2hex(rstr_sha512(str2rstr_utf8(s))); }
function b64_sha512(s) { return rstr2b64(rstr_sha512(str2rstr_utf8(s))); }
function any_sha512(s, e) { return rstr2any(rstr_sha512(str2rstr_utf8(s)), e);}
function hex_hmac_sha512(k, d)
{ return rstr2hex(rstr_hmac_sha512(str2rstr_utf8(k), str2rstr_utf8(d))); }
function b64_hmac_sha512(k, d)
{ return rstr2b64(rstr_hmac_sha512(str2rstr_utf8(k), str2rstr_utf8(d))); }
function any_hmac_sha512(k, d, e)
{ return rstr2any(rstr_hmac_sha512(str2rstr_utf8(k), str2rstr_utf8(d)), e);}
/*
* Perform a simple self-test to see if the VM is working
*/
function sha512_vm_test()
{
return hex_sha512("abc").toLowerCase() ==
"ddaf35a193617abacc417349ae20413112e6fa4e89a97ea20a9eeee64b55d39a" +
"2192992a274fc1a836ba3c23a3feebbd454d4423643ce80e2a9ac94fa54ca49f";
}
/*
* Calculate the SHA-512 of a raw string
*/
function rstr_sha512(s)
{
return binb2rstr(binb_sha512(rstr2binb(s), s.length * 8));
}
/*
* Calculate the HMAC-SHA-512 of a key and some data (raw strings)
*/
function rstr_hmac_sha512(key, data)
{
var bkey = rstr2binb(key);
if(bkey.length > 32) bkey = binb_sha512(bkey, key.length * 8);
var ipad = Array(32), opad = Array(32);
for(var i = 0; i < 32; i++)
{
ipad[i] = bkey[i] ^ 0x36363636;
opad[i] = bkey[i] ^ 0x5C5C5C5C;
}
var hash = binb_sha512(ipad.concat(rstr2binb(data)), 1024 + data.length * 8);
return binb2rstr(binb_sha512(opad.concat(hash), 1024 + 512));
}
/*
* Convert a raw string to a hex string
*/
function rstr2hex(input)
{
try { hexcase } catch(e) { hexcase=0; }
var hex_tab = hexcase ? "0123456789ABCDEF" : "0123456789abcdef";
var output = "";
var x;
for(var i = 0; i < input.length; i++)
{
x = input.charCodeAt(i);
output += hex_tab.charAt((x >>> 4) & 0x0F)
+ hex_tab.charAt( x & 0x0F);
}
return output;
}
/*
* Convert a raw string to a base-64 string
*/
function rstr2b64(input)
{
try { b64pad } catch(e) { b64pad=''; }
var tab = "ABCDEFGHIJKLMNOPQRSTUVWXYZabcdefghijklmnopqrstuvwxyz0123456789+/";
var output = "";
var len = input.length;
for(var i = 0; i < len; i += 3)
{
var triplet = (input.charCodeAt(i) << 16)
| (i + 1 < len ? input.charCodeAt(i+1) << 8 : 0)
| (i + 2 < len ? input.charCodeAt(i+2) : 0);
for(var j = 0; j < 4; j++)
{
if(i * 8 + j * 6 > input.length * 8) output += b64pad;
else output += tab.charAt((triplet >>> 6*(3-j)) & 0x3F);
}
}
return output;
}
/*
* Convert a raw string to an arbitrary string encoding
*/
function rstr2any(input, encoding)
{
var divisor = encoding.length;
var i, j, q, x, quotient;
/* Convert to an array of 16-bit big-endian values, forming the dividend */
var dividend = Array(Math.ceil(input.length / 2));
for(i = 0; i < dividend.length; i++)
{
dividend[i] = (input.charCodeAt(i * 2) << 8) | input.charCodeAt(i * 2 + 1);
}
/*
* Repeatedly perform a long division. The binary array forms the dividend,
* the length of the encoding is the divisor. Once computed, the quotient
* forms the dividend for the next step. All remainders are stored for later
* use.
*/
var full_length = Math.ceil(input.length * 8 /
(Math.log(encoding.length) / Math.log(2)));
var remainders = Array(full_length);
for(j = 0; j < full_length; j++)
{
quotient = Array();
x = 0;
for(i = 0; i < dividend.length; i++)
{
x = (x << 16) + dividend[i];
q = Math.floor(x / divisor);
x -= q * divisor;
if(quotient.length > 0 || q > 0)
quotient[quotient.length] = q;
}
remainders[j] = x;
dividend = quotient;
}
/* Convert the remainders to the output string */
var output = "";
for(i = remainders.length - 1; i >= 0; i--)
output += encoding.charAt(remainders[i]);
return output;
}
/*
* Encode a string as utf-8.
* For efficiency, this assumes the input is valid utf-16.
*/
function str2rstr_utf8(input)
{
var output = "";
var i = -1;
var x, y;
while(++i < input.length)
{
/* Decode utf-16 surrogate pairs */
x = input.charCodeAt(i);
y = i + 1 < input.length ? input.charCodeAt(i + 1) : 0;
if(0xD800 <= x && x <= 0xDBFF && 0xDC00 <= y && y <= 0xDFFF)
{
x = 0x10000 + ((x & 0x03FF) << 10) + (y & 0x03FF);
i++;
}
/* Encode output as utf-8 */
if(x <= 0x7F)
output += String.fromCharCode(x);
else if(x <= 0x7FF)
output += String.fromCharCode(0xC0 | ((x >>> 6 ) & 0x1F),
0x80 | ( x & 0x3F));
else if(x <= 0xFFFF)
output += String.fromCharCode(0xE0 | ((x >>> 12) & 0x0F),
0x80 | ((x >>> 6 ) & 0x3F),
0x80 | ( x & 0x3F));
else if(x <= 0x1FFFFF)
output += String.fromCharCode(0xF0 | ((x >>> 18) & 0x07),
0x80 | ((x >>> 12) & 0x3F),
0x80 | ((x >>> 6 ) & 0x3F),
0x80 | ( x & 0x3F));
}
return output;
}
/*
* Encode a string as utf-16
*/
function str2rstr_utf16le(input)
{
var output = "";
for(var i = 0; i < input.length; i++)
output += String.fromCharCode( input.charCodeAt(i) & 0xFF,
(input.charCodeAt(i) >>> 8) & 0xFF);
return output;
}
function str2rstr_utf16be(input)
{
var output = "";
for(var i = 0; i < input.length; i++)
output += String.fromCharCode((input.charCodeAt(i) >>> 8) & 0xFF,
input.charCodeAt(i) & 0xFF);
return output;
}
/*
* Convert a raw string to an array of big-endian words
* Characters >255 have their high-byte silently ignored.
*/
function rstr2binb(input)
{
var output = Array(input.length >> 2);
for(var i = 0; i < output.length; i++)
output[i] = 0;
for(var i = 0; i < input.length * 8; i += 8)
output[i>>5] |= (input.charCodeAt(i / 8) & 0xFF) << (24 - i % 32);
return output;
}
/*
* Convert an array of big-endian words to a string
*/
function binb2rstr(input)
{
var output = "";
for(var i = 0; i < input.length * 32; i += 8)
output += String.fromCharCode((input[i>>5] >>> (24 - i % 32)) & 0xFF);
return output;
}
/*
* Calculate the SHA-512 of an array of big-endian dwords, and a bit length
*/
var sha512_k;
function binb_sha512(x, len)
{
if(sha512_k == undefined)
{
//SHA512 constants
sha512_k = new Array(
new int64(0x428a2f98, -685199838), new int64(0x71374491, 0x23ef65cd),
new int64(-1245643825, -330482897), new int64(-373957723, -2121671748),
new int64(0x3956c25b, -213338824), new int64(0x59f111f1, -1241133031),
new int64(-1841331548, -1357295717), new int64(-1424204075, -630357736),
new int64(-670586216, -1560083902), new int64(0x12835b01, 0x45706fbe),
new int64(0x243185be, 0x4ee4b28c), new int64(0x550c7dc3, -704662302),
new int64(0x72be5d74, -226784913), new int64(-2132889090, 0x3b1696b1),
new int64(-1680079193, 0x25c71235), new int64(-1046744716, -815192428),
new int64(-459576895, -1628353838), new int64(-272742522, 0x384f25e3),
new int64(0xfc19dc6, -1953704523), new int64(0x240ca1cc, 0x77ac9c65),
new int64(0x2de92c6f, 0x592b0275), new int64(0x4a7484aa, 0x6ea6e483),
new int64(0x5cb0a9dc, -1119749164), new int64(0x76f988da, -2096016459),
new int64(-1740746414, -295247957), new int64(-1473132947, 0x2db43210),
new int64(-1341970488, -1728372417), new int64(-1084653625, -1091629340),
new int64(-958395405, 0x3da88fc2), new int64(-710438585, -1828018395),
new int64(0x6ca6351, -536640913), new int64(0x14292967, 0xa0e6e70),
new int64(0x27b70a85, 0x46d22ffc), new int64(0x2e1b2138, 0x5c26c926),
new int64(0x4d2c6dfc, 0x5ac42aed), new int64(0x53380d13, -1651133473),
new int64(0x650a7354, -1951439906), new int64(0x766a0abb, 0x3c77b2a8),
new int64(-2117940946, 0x47edaee6), new int64(-1838011259, 0x1482353b),
new int64(-1564481375, 0x4cf10364), new int64(-1474664885, -1136513023),
new int64(-1035236496, -789014639), new int64(-949202525, 0x654be30),
new int64(-778901479, -688958952), new int64(-694614492, 0x5565a910),
new int64(-200395387, 0x5771202a), new int64(0x106aa070, 0x32bbd1b8),
new int64(0x19a4c116, -1194143544), new int64(0x1e376c08, 0x5141ab53),
new int64(0x2748774c, -544281703), new int64(0x34b0bcb5, -509917016),
new int64(0x391c0cb3, -976659869), new int64(0x4ed8aa4a, -482243893),
new int64(0x5b9cca4f, 0x7763e373), new int64(0x682e6ff3, -692930397),
new int64(0x748f82ee, 0x5defb2fc), new int64(0x78a5636f, 0x43172f60),
new int64(-2067236844, -1578062990), new int64(-1933114872, 0x1a6439ec),
new int64(-1866530822, 0x23631e28), new int64(-1538233109, -561857047),
new int64(-1090935817, -1295615723), new int64(-965641998, -479046869),
new int64(-903397682, -366583396), new int64(-779700025, 0x21c0c207),
new int64(-354779690, -840897762), new int64(-176337025, -294727304),
new int64(0x6f067aa, 0x72176fba), new int64(0xa637dc5, -1563912026),
new int64(0x113f9804, -1090974290), new int64(0x1b710b35, 0x131c471b),
new int64(0x28db77f5, 0x23047d84), new int64(0x32caab7b, 0x40c72493),
new int64(0x3c9ebe0a, 0x15c9bebc), new int64(0x431d67c4, -1676669620),
new int64(0x4cc5d4be, -885112138), new int64(0x597f299c, -60457430),
new int64(0x5fcb6fab, 0x3ad6faec), new int64(0x6c44198c, 0x4a475817));
}
//Initial hash values
var H = new Array(
new int64(0x6a09e667, -205731576),
new int64(-1150833019, -2067093701),
new int64(0x3c6ef372, -23791573),
new int64(-1521486534, 0x5f1d36f1),
new int64(0x510e527f, -1377402159),
new int64(-1694144372, 0x2b3e6c1f),
new int64(0x1f83d9ab, -79577749),
new int64(0x5be0cd19, 0x137e2179));
var T1 = new int64(0, 0),
T2 = new int64(0, 0),
a = new int64(0,0),
b = new int64(0,0),
c = new int64(0,0),
d = new int64(0,0),
e = new int64(0,0),
f = new int64(0,0),
g = new int64(0,0),
h = new int64(0,0),
//Temporary variables not specified by the document
s0 = new int64(0, 0),
s1 = new int64(0, 0),
Ch = new int64(0, 0),
Maj = new int64(0, 0),
r1 = new int64(0, 0),
r2 = new int64(0, 0),
r3 = new int64(0, 0);
var j, i;
var W = new Array(80);
for(i=0; i<80; i++)
W[i] = new int64(0, 0);
// append padding to the source string. The format is described in the FIPS.
x[len >> 5] |= 0x80 << (24 - (len & 0x1f));
x[((len + 128 >> 10)<< 5) + 31] = len;
for(i = 0; i<x.length; i+=32) //32 dwords is the block size
{
int64copy(a, H[0]);
int64copy(b, H[1]);
int64copy(c, H[2]);
int64copy(d, H[3]);
int64copy(e, H[4]);
int64copy(f, H[5]);
int64copy(g, H[6]);
int64copy(h, H[7]);
for(j=0; j<16; j++)
{
W[j].h = x[i + 2*j];
W[j].l = x[i + 2*j + 1];
}
for(j=16; j<80; j++)
{
//sigma1
int64rrot(r1, W[j-2], 19);
int64revrrot(r2, W[j-2], 29);
int64shr(r3, W[j-2], 6);
s1.l = r1.l ^ r2.l ^ r3.l;
s1.h = r1.h ^ r2.h ^ r3.h;
//sigma0
int64rrot(r1, W[j-15], 1);
int64rrot(r2, W[j-15], 8);
int64shr(r3, W[j-15], 7);
s0.l = r1.l ^ r2.l ^ r3.l;
s0.h = r1.h ^ r2.h ^ r3.h;
int64add4(W[j], s1, W[j-7], s0, W[j-16]);
}
for(j = 0; j < 80; j++)
{
//Ch
Ch.l = (e.l & f.l) ^ (~e.l & g.l);
Ch.h = (e.h & f.h) ^ (~e.h & g.h);
//Sigma1
int64rrot(r1, e, 14);
int64rrot(r2, e, 18);
int64revrrot(r3, e, 9);
s1.l = r1.l ^ r2.l ^ r3.l;
s1.h = r1.h ^ r2.h ^ r3.h;
//Sigma0
int64rrot(r1, a, 28);
int64revrrot(r2, a, 2);
int64revrrot(r3, a, 7);
s0.l = r1.l ^ r2.l ^ r3.l;
s0.h = r1.h ^ r2.h ^ r3.h;
//Maj
Maj.l = (a.l & b.l) ^ (a.l & c.l) ^ (b.l & c.l);
Maj.h = (a.h & b.h) ^ (a.h & c.h) ^ (b.h & c.h);
int64add5(T1, h, s1, Ch, sha512_k[j], W[j]);
int64add(T2, s0, Maj);
int64copy(h, g);
int64copy(g, f);
int64copy(f, e);
int64add(e, d, T1);
int64copy(d, c);
int64copy(c, b);
int64copy(b, a);
int64add(a, T1, T2);
}
int64add(H[0], H[0], a);
int64add(H[1], H[1], b);
int64add(H[2], H[2], c);
int64add(H[3], H[3], d);
int64add(H[4], H[4], e);
int64add(H[5], H[5], f);
int64add(H[6], H[6], g);
int64add(H[7], H[7], h);
}
//represent the hash as an array of 32-bit dwords
var hash = new Array(16);
for(i=0; i<8; i++)
{
hash[2*i] = H[i].h;
hash[2*i + 1] = H[i].l;
}
return hash;
}
//A constructor for 64-bit numbers
function int64(h, l)
{
this.h = h;
this.l = l;
//this.toString = int64toString;
}
//Copies src into dst, assuming both are 64-bit numbers
function int64copy(dst, src)
{
dst.h = src.h;
dst.l = src.l;
}
//Right-rotates a 64-bit number by shift
//Won't handle cases of shift>=32
//The function revrrot() is for that
function int64rrot(dst, x, shift)
{
dst.l = (x.l >>> shift) | (x.h << (32-shift));
dst.h = (x.h >>> shift) | (x.l << (32-shift));
}
//Reverses the dwords of the source and then rotates right by shift.
//This is equivalent to rotation by 32+shift
function int64revrrot(dst, x, shift)
{
dst.l = (x.h >>> shift) | (x.l << (32-shift));
dst.h = (x.l >>> shift) | (x.h << (32-shift));
}
//Bitwise-shifts right a 64-bit number by shift
//Won't handle shift>=32, but it's never needed in SHA512
function int64shr(dst, x, shift)
{
dst.l = (x.l >>> shift) | (x.h << (32-shift));
dst.h = (x.h >>> shift);
}
//Adds two 64-bit numbers
//Like the original implementation, does not rely on 32-bit operations
function int64add(dst, x, y)
{
var w0 = (x.l & 0xffff) + (y.l & 0xffff);
var w1 = (x.l >>> 16) + (y.l >>> 16) + (w0 >>> 16);
var w2 = (x.h & 0xffff) + (y.h & 0xffff) + (w1 >>> 16);
var w3 = (x.h >>> 16) + (y.h >>> 16) + (w2 >>> 16);
dst.l = (w0 & 0xffff) | (w1 << 16);
dst.h = (w2 & 0xffff) | (w3 << 16);
}
//Same, except with 4 addends. Works faster than adding them one by one.
function int64add4(dst, a, b, c, d)
{
var w0 = (a.l & 0xffff) + (b.l & 0xffff) + (c.l & 0xffff) + (d.l & 0xffff);
var w1 = (a.l >>> 16) + (b.l >>> 16) + (c.l >>> 16) + (d.l >>> 16) + (w0 >>> 16);
var w2 = (a.h & 0xffff) + (b.h & 0xffff) + (c.h & 0xffff) + (d.h & 0xffff) + (w1 >>> 16);
var w3 = (a.h >>> 16) + (b.h >>> 16) + (c.h >>> 16) + (d.h >>> 16) + (w2 >>> 16);
dst.l = (w0 & 0xffff) | (w1 << 16);
dst.h = (w2 & 0xffff) | (w3 << 16);
}
//Same, except with 5 addends
function int64add5(dst, a, b, c, d, e)
{
var w0 = (a.l & 0xffff) + (b.l & 0xffff) + (c.l & 0xffff) + (d.l & 0xffff) + (e.l & 0xffff);
var w1 = (a.l >>> 16) + (b.l >>> 16) + (c.l >>> 16) + (d.l >>> 16) + (e.l >>> 16) + (w0 >>> 16);
var w2 = (a.h & 0xffff) + (b.h & 0xffff) + (c.h & 0xffff) + (d.h & 0xffff) + (e.h & 0xffff) + (w1 >>> 16);
var w3 = (a.h >>> 16) + (b.h >>> 16) + (c.h >>> 16) + (d.h >>> 16) + (e.h >>> 16) + (w2 >>> 16);
dst.l = (w0 & 0xffff) | (w1 << 16);
dst.h = (w2 & 0xffff) | (w3 << 16);
}
/*
* A JavaScript implementation of the RSA Data Security, Inc. MD5 Message
* Digest Algorithm, as defined in RFC 1321.
* Version 2.2 Copyright (C) Paul Johnston 1999 - 2009
* Other contributors: Greg Holt, Andrew Kepert, Ydnar, Lostinet
* Distributed under the BSD License
* See http://pajhome.org.uk/crypt/md5 for more info.
*/
/*
* Configurable variables. You may need to tweak these to be compatible with
* the server-side, but the defaults work in most cases.
*/
var hexcase = 0; /* hex output format. 0 - lowercase; 1 - uppercase */
var b64pad = ""; /* base-64 pad character. "=" for strict RFC compliance */
/*
* These are the functions you'll usually want to call
* They take string arguments and return either hex or base-64 encoded strings
*/
function hex_md5(s) { return rstr2hex(rstr_md5(str2rstr_utf8(s))); }
function b64_md5(s) { return rstr2b64(rstr_md5(str2rstr_utf8(s))); }
function any_md5(s, e) { return rstr2any(rstr_md5(str2rstr_utf8(s)), e); }
function hex_hmac_md5(k, d)
{ return rstr2hex(rstr_hmac_md5(str2rstr_utf8(k), str2rstr_utf8(d))); }
function b64_hmac_md5(k, d)
{ return rstr2b64(rstr_hmac_md5(str2rstr_utf8(k), str2rstr_utf8(d))); }
function any_hmac_md5(k, d, e)
{ return rstr2any(rstr_hmac_md5(str2rstr_utf8(k), str2rstr_utf8(d)), e); }
/*
* Perform a simple self-test to see if the VM is working
*/
function md5_vm_test()
{
return hex_md5("abc").toLowerCase() == "900150983cd24fb0d6963f7d28e17f72";
}
/*
* Calculate the MD5 of a raw string
*/
function rstr_md5(s)
{
return binl2rstr(binl_md5(rstr2binl(s), s.length * 8));
}
/*
* Calculate the HMAC-MD5, of a key and some data (raw strings)
*/
function rstr_hmac_md5(key, data)
{
var bkey = rstr2binl(key);
if(bkey.length > 16) bkey = binl_md5(bkey, key.length * 8);
var ipad = Array(16), opad = Array(16);
for(var i = 0; i < 16; i++)
{
ipad[i] = bkey[i] ^ 0x36363636;
opad[i] = bkey[i] ^ 0x5C5C5C5C;
}
var hash = binl_md5(ipad.concat(rstr2binl(data)), 512 + data.length * 8);
return binl2rstr(binl_md5(opad.concat(hash), 512 + 128));
}
/*
* Convert a raw string to a hex string
*/
function rstr2hex(input)
{
try { hexcase } catch(e) { hexcase=0; }
var hex_tab = hexcase ? "0123456789ABCDEF" : "0123456789abcdef";
var output = "";
var x;
for(var i = 0; i < input.length; i++)
{
x = input.charCodeAt(i);
output += hex_tab.charAt((x >>> 4) & 0x0F)
+ hex_tab.charAt( x & 0x0F);
}
return output;
}
/*
* Convert a raw string to a base-64 string
*/
function rstr2b64(input)
{
try { b64pad } catch(e) { b64pad=''; }
var tab = "ABCDEFGHIJKLMNOPQRSTUVWXYZabcdefghijklmnopqrstuvwxyz0123456789+/";
var output = "";
var len = input.length;
for(var i = 0; i < len; i += 3)
{
var triplet = (input.charCodeAt(i) << 16)
| (i + 1 < len ? input.charCodeAt(i+1) << 8 : 0)
| (i + 2 < len ? input.charCodeAt(i+2) : 0);
for(var j = 0; j < 4; j++)
{
if(i * 8 + j * 6 > input.length * 8) output += b64pad;
else output += tab.charAt((triplet >>> 6*(3-j)) & 0x3F);
}
}
return output;
}
/*
* Convert a raw string to an arbitrary string encoding
*/
function rstr2any(input, encoding)
{
var divisor = encoding.length;
var i, j, q, x, quotient;
/* Convert to an array of 16-bit big-endian values, forming the dividend */
var dividend = Array(Math.ceil(input.length / 2));
for(i = 0; i < dividend.length; i++)
{
dividend[i] = (input.charCodeAt(i * 2) << 8) | input.charCodeAt(i * 2 + 1);
}
/*
* Repeatedly perform a long division. The binary array forms the dividend,
* the length of the encoding is the divisor. Once computed, the quotient
* forms the dividend for the next step. All remainders are stored for later
* use.
*/
var full_length = Math.ceil(input.length * 8 /
(Math.log(encoding.length) / Math.log(2)));
var remainders = Array(full_length);
for(j = 0; j < full_length; j++)
{
quotient = Array();
x = 0;
for(i = 0; i < dividend.length; i++)
{
x = (x << 16) + dividend[i];
q = Math.floor(x / divisor);
x -= q * divisor;
if(quotient.length > 0 || q > 0)
quotient[quotient.length] = q;
}
remainders[j] = x;
dividend = quotient;
}
/* Convert the remainders to the output string */
var output = "";
for(i = remainders.length - 1; i >= 0; i--)
output += encoding.charAt(remainders[i]);
return output;
}
/*
* Encode a string as utf-8.
* For efficiency, this assumes the input is valid utf-16.
*/
function str2rstr_utf8(input)
{
var output = "";
var i = -1;
var x, y;
while(++i < input.length)
{
/* Decode utf-16 surrogate pairs */
x = input.charCodeAt(i);
y = i + 1 < input.length ? input.charCodeAt(i + 1) : 0;
if(0xD800 <= x && x <= 0xDBFF && 0xDC00 <= y && y <= 0xDFFF)
{
x = 0x10000 + ((x & 0x03FF) << 10) + (y & 0x03FF);
i++;
}
/* Encode output as utf-8 */
if(x <= 0x7F)
output += String.fromCharCode(x);
else if(x <= 0x7FF)
output += String.fromCharCode(0xC0 | ((x >>> 6 ) & 0x1F),
0x80 | ( x & 0x3F));
else if(x <= 0xFFFF)
output += String.fromCharCode(0xE0 | ((x >>> 12) & 0x0F),
0x80 | ((x >>> 6 ) & 0x3F),
0x80 | ( x & 0x3F));
else if(x <= 0x1FFFFF)
output += String.fromCharCode(0xF0 | ((x >>> 18) & 0x07),
0x80 | ((x >>> 12) & 0x3F),
0x80 | ((x >>> 6 ) & 0x3F),
0x80 | ( x & 0x3F));
}
return output;
}
/*
* Encode a string as utf-16
*/
function str2rstr_utf16le(input)
{
var output = "";
for(var i = 0; i < input.length; i++)
output += String.fromCharCode( input.charCodeAt(i) & 0xFF,
(input.charCodeAt(i) >>> 8) & 0xFF);
return output;
}
function str2rstr_utf16be(input)
{
var output = "";
for(var i = 0; i < input.length; i++)
output += String.fromCharCode((input.charCodeAt(i) >>> 8) & 0xFF,
input.charCodeAt(i) & 0xFF);
return output;
}
/*
* Convert a raw string to an array of little-endian words
* Characters >255 have their high-byte silently ignored.
*/
function rstr2binl(input)
{
var output = Array(input.length >> 2);
for(var i = 0; i < output.length; i++)
output[i] = 0;
for(var i = 0; i < input.length * 8; i += 8)
output[i>>5] |= (input.charCodeAt(i / 8) & 0xFF) << (i%32);
return output;
}
/*
* Convert an array of little-endian words to a string
*/
function binl2rstr(input)
{
var output = "";
for(var i = 0; i < input.length * 32; i += 8)
output += String.fromCharCode((input[i>>5] >>> (i % 32)) & 0xFF);
return output;
}
/*
* Calculate the MD5 of an array of little-endian words, and a bit length.
*/
function binl_md5(x, len)
{
/* append padding */
x[len >> 5] |= 0x80 << ((len) % 32);
x[(((len + 64) >>> 9) << 4) + 14] = len;
var a = 1732584193;
var b = -271733879;
var c = -1732584194;
var d = 271733878;
for(var i = 0; i < x.length; i += 16)
{
var olda = a;
var oldb = b;
var oldc = c;
var oldd = d;
a = md5_ff(a, b, c, d, x[i+ 0], 7 , -680876936);
d = md5_ff(d, a, b, c, x[i+ 1], 12, -389564586);
c = md5_ff(c, d, a, b, x[i+ 2], 17, 606105819);
b = md5_ff(b, c, d, a, x[i+ 3], 22, -1044525330);
a = md5_ff(a, b, c, d, x[i+ 4], 7 , -176418897);
d = md5_ff(d, a, b, c, x[i+ 5], 12, 1200080426);
c = md5_ff(c, d, a, b, x[i+ 6], 17, -1473231341);
b = md5_ff(b, c, d, a, x[i+ 7], 22, -45705983);
a = md5_ff(a, b, c, d, x[i+ 8], 7 , 1770035416);
d = md5_ff(d, a, b, c, x[i+ 9], 12, -1958414417);
c = md5_ff(c, d, a, b, x[i+10], 17, -42063);
b = md5_ff(b, c, d, a, x[i+11], 22, -1990404162);
a = md5_ff(a, b, c, d, x[i+12], 7 , 1804603682);
d = md5_ff(d, a, b, c, x[i+13], 12, -40341101);
c = md5_ff(c, d, a, b, x[i+14], 17, -1502002290);
b = md5_ff(b, c, d, a, x[i+15], 22, 1236535329);
a = md5_gg(a, b, c, d, x[i+ 1], 5 , -165796510);
d = md5_gg(d, a, b, c, x[i+ 6], 9 , -1069501632);
c = md5_gg(c, d, a, b, x[i+11], 14, 643717713);
b = md5_gg(b, c, d, a, x[i+ 0], 20, -373897302);
a = md5_gg(a, b, c, d, x[i+ 5], 5 , -701558691);
d = md5_gg(d, a, b, c, x[i+10], 9 , 38016083);
c = md5_gg(c, d, a, b, x[i+15], 14, -660478335);
b = md5_gg(b, c, d, a, x[i+ 4], 20, -405537848);
a = md5_gg(a, b, c, d, x[i+ 9], 5 , 568446438);
d = md5_gg(d, a, b, c, x[i+14], 9 , -1019803690);
c = md5_gg(c, d, a, b, x[i+ 3], 14, -187363961);
b = md5_gg(b, c, d, a, x[i+ 8], 20, 1163531501);
a = md5_gg(a, b, c, d, x[i+13], 5 , -1444681467);
d = md5_gg(d, a, b, c, x[i+ 2], 9 , -51403784);
c = md5_gg(c, d, a, b, x[i+ 7], 14, 1735328473);
b = md5_gg(b, c, d, a, x[i+12], 20, -1926607734);
a = md5_hh(a, b, c, d, x[i+ 5], 4 , -378558);
d = md5_hh(d, a, b, c, x[i+ 8], 11, -2022574463);
c = md5_hh(c, d, a, b, x[i+11], 16, 1839030562);
b = md5_hh(b, c, d, a, x[i+14], 23, -35309556);
a = md5_hh(a, b, c, d, x[i+ 1], 4 , -1530992060);
d = md5_hh(d, a, b, c, x[i+ 4], 11, 1272893353);
c = md5_hh(c, d, a, b, x[i+ 7], 16, -155497632);
b = md5_hh(b, c, d, a, x[i+10], 23, -1094730640);
a = md5_hh(a, b, c, d, x[i+13], 4 , 681279174);
d = md5_hh(d, a, b, c, x[i+ 0], 11, -358537222);
c = md5_hh(c, d, a, b, x[i+ 3], 16, -722521979);
b = md5_hh(b, c, d, a, x[i+ 6], 23, 76029189);
a = md5_hh(a, b, c, d, x[i+ 9], 4 , -640364487);
d = md5_hh(d, a, b, c, x[i+12], 11, -421815835);
c = md5_hh(c, d, a, b, x[i+15], 16, 530742520);
b = md5_hh(b, c, d, a, x[i+ 2], 23, -995338651);
a = md5_ii(a, b, c, d, x[i+ 0], 6 , -198630844);
d = md5_ii(d, a, b, c, x[i+ 7], 10, 1126891415);
c = md5_ii(c, d, a, b, x[i+14], 15, -1416354905);
b = md5_ii(b, c, d, a, x[i+ 5], 21, -57434055);
a = md5_ii(a, b, c, d, x[i+12], 6 , 1700485571);
d = md5_ii(d, a, b, c, x[i+ 3], 10, -1894986606);
c = md5_ii(c, d, a, b, x[i+10], 15, -1051523);
b = md5_ii(b, c, d, a, x[i+ 1], 21, -2054922799);
a = md5_ii(a, b, c, d, x[i+ 8], 6 , 1873313359);
d = md5_ii(d, a, b, c, x[i+15], 10, -30611744);
c = md5_ii(c, d, a, b, x[i+ 6], 15, -1560198380);
b = md5_ii(b, c, d, a, x[i+13], 21, 1309151649);
a = md5_ii(a, b, c, d, x[i+ 4], 6 , -145523070);
d = md5_ii(d, a, b, c, x[i+11], 10, -1120210379);
c = md5_ii(c, d, a, b, x[i+ 2], 15, 718787259);
b = md5_ii(b, c, d, a, x[i+ 9], 21, -343485551);
a = safe_add(a, olda);
b = safe_add(b, oldb);
c = safe_add(c, oldc);
d = safe_add(d, oldd);
}
return Array(a, b, c, d);
}
/*
* These functions implement the four basic operations the algorithm uses.
*/
function md5_cmn(q, a, b, x, s, t)
{
return safe_add(bit_rol(safe_add(safe_add(a, q), safe_add(x, t)), s),b);
}
function md5_ff(a, b, c, d, x, s, t)
{
return md5_cmn((b & c) | ((~b) & d), a, b, x, s, t);
}
function md5_gg(a, b, c, d, x, s, t)
{
return md5_cmn((b & d) | (c & (~d)), a, b, x, s, t);
}
function md5_hh(a, b, c, d, x, s, t)
{
return md5_cmn(b ^ c ^ d, a, b, x, s, t);
}
function md5_ii(a, b, c, d, x, s, t)
{
return md5_cmn(c ^ (b | (~d)), a, b, x, s, t);
}
/*
* Add integers, wrapping at 2^32. This uses 16-bit operations internally
* to work around bugs in some JS interpreters.
*/
function safe_add(x, y)
{
var lsw = (x & 0xFFFF) + (y & 0xFFFF);
var msw = (x >> 16) + (y >> 16) + (lsw >> 16);
return (msw << 16) | (lsw & 0xFFFF);
}
/*
* Bitwise rotate a 32-bit number to the left.
*/
function bit_rol(num, cnt)
{
return (num << cnt) | (num >>> (32 - cnt));
}
/*
* A JavaScript implementation of the RIPEMD-160 Algorithm
* Version 2.2 Copyright Jeremy Lin, Paul Johnston 2000 - 2009.
* Other contributors: Greg Holt, Andrew Kepert, Ydnar, Lostinet
* Distributed under the BSD License
* See http://pajhome.org.uk/crypt/md5 for details.
* Also http://www.ocf.berkeley.edu/~jjlin/jsotp/
*/
/*
* Configurable variables. You may need to tweak these to be compatible with
* the server-side, but the defaults work in most cases.
*/
var hexcase = 0; /* hex output format. 0 - lowercase; 1 - uppercase */
var b64pad = ""; /* base-64 pad character. "=" for strict RFC compliance */
/*
* These are the functions you'll usually want to call
* They take string arguments and return either hex or base-64 encoded strings
*/
function hex_rmd160(s) { return rstr2hex(rstr_rmd160(str2rstr_utf8(s))); }
function b64_rmd160(s) { return rstr2b64(rstr_rmd160(str2rstr_utf8(s))); }
function any_rmd160(s, e) { return rstr2any(rstr_rmd160(str2rstr_utf8(s)), e); }
function hex_hmac_rmd160(k, d)
{ return rstr2hex(rstr_hmac_rmd160(str2rstr_utf8(k), str2rstr_utf8(d))); }
function b64_hmac_rmd160(k, d)
{ return rstr2b64(rstr_hmac_rmd160(str2rstr_utf8(k), str2rstr_utf8(d))); }
function any_hmac_rmd160(k, d, e)
{ return rstr2any(rstr_hmac_rmd160(str2rstr_utf8(k), str2rstr_utf8(d)), e); }
/*
* Perform a simple self-test to see if the VM is working
*/
function rmd160_vm_test()
{
return hex_rmd160("abc").toLowerCase() == "8eb208f7e05d987a9b044a8e98c6b087f15a0bfc";
}
/*
* Calculate the rmd160 of a raw string
*/
function rstr_rmd160(s)
{
return binl2rstr(binl_rmd160(rstr2binl(s), s.length * 8));
}
/*
* Calculate the HMAC-rmd160 of a key and some data (raw strings)
*/
function rstr_hmac_rmd160(key, data)
{
var bkey = rstr2binl(key);
if(bkey.length > 16) bkey = binl_rmd160(bkey, key.length * 8);
var ipad = Array(16), opad = Array(16);
for(var i = 0; i < 16; i++)
{
ipad[i] = bkey[i] ^ 0x36363636;
opad[i] = bkey[i] ^ 0x5C5C5C5C;
}
var hash = binl_rmd160(ipad.concat(rstr2binl(data)), 512 + data.length * 8);
return binl2rstr(binl_rmd160(opad.concat(hash), 512 + 160));
}
/*
* Convert a raw string to a hex string
*/
function rstr2hex(input)
{
try { hexcase } catch(e) { hexcase=0; }
var hex_tab = hexcase ? "0123456789ABCDEF" : "0123456789abcdef";
var output = "";
var x;
for(var i = 0; i < input.length; i++)
{
x = input.charCodeAt(i);
output += hex_tab.charAt((x >>> 4) & 0x0F)
+ hex_tab.charAt( x & 0x0F);
}
return output;
}
/*
* Convert a raw string to a base-64 string
*/
function rstr2b64(input)
{
try { b64pad } catch(e) { b64pad=''; }
var tab = "ABCDEFGHIJKLMNOPQRSTUVWXYZabcdefghijklmnopqrstuvwxyz0123456789+/";
var output = "";
var len = input.length;
for(var i = 0; i < len; i += 3)
{
var triplet = (input.charCodeAt(i) << 16)
| (i + 1 < len ? input.charCodeAt(i+1) << 8 : 0)
| (i + 2 < len ? input.charCodeAt(i+2) : 0);
for(var j = 0; j < 4; j++)
{
if(i * 8 + j * 6 > input.length * 8) output += b64pad;
else output += tab.charAt((triplet >>> 6*(3-j)) & 0x3F);
}
}
return output;
}
/*
* Convert a raw string to an arbitrary string encoding
*/
function rstr2any(input, encoding)
{
var divisor = encoding.length;
var remainders = Array();
var i, q, x, quotient;
/* Convert to an array of 16-bit big-endian values, forming the dividend */
var dividend = Array(Math.ceil(input.length / 2));
for(i = 0; i < dividend.length; i++)
{
dividend[i] = (input.charCodeAt(i * 2) << 8) | input.charCodeAt(i * 2 + 1);
}
/*
* Repeatedly perform a long division. The binary array forms the dividend,
* the length of the encoding is the divisor. Once computed, the quotient
* forms the dividend for the next step. We stop when the dividend is zero.
* All remainders are stored for later use.
*/
while(dividend.length > 0)
{
quotient = Array();
x = 0;
for(i = 0; i < dividend.length; i++)
{
x = (x << 16) + dividend[i];
q = Math.floor(x / divisor);
x -= q * divisor;
if(quotient.length > 0 || q > 0)
quotient[quotient.length] = q;
}
remainders[remainders.length] = x;
dividend = quotient;
}
/* Convert the remainders to the output string */
var output = "";
for(i = remainders.length - 1; i >= 0; i--)
output += encoding.charAt(remainders[i]);
/* Append leading zero equivalents */
var full_length = Math.ceil(input.length * 8 /
(Math.log(encoding.length) / Math.log(2)))
for(i = output.length; i < full_length; i++)
output = encoding[0] + output;
return output;
}
/*
* Encode a string as utf-8.
* For efficiency, this assumes the input is valid utf-16.
*/
function str2rstr_utf8(input)
{
var output = "";
var i = -1;
var x, y;
while(++i < input.length)
{
/* Decode utf-16 surrogate pairs */
x = input.charCodeAt(i);
y = i + 1 < input.length ? input.charCodeAt(i + 1) : 0;
if(0xD800 <= x && x <= 0xDBFF && 0xDC00 <= y && y <= 0xDFFF)
{
x = 0x10000 + ((x & 0x03FF) << 10) + (y & 0x03FF);
i++;
}
/* Encode output as utf-8 */
if(x <= 0x7F)
output += String.fromCharCode(x);
else if(x <= 0x7FF)
output += String.fromCharCode(0xC0 | ((x >>> 6 ) & 0x1F),
0x80 | ( x & 0x3F));
else if(x <= 0xFFFF)
output += String.fromCharCode(0xE0 | ((x >>> 12) & 0x0F),
0x80 | ((x >>> 6 ) & 0x3F),
0x80 | ( x & 0x3F));
else if(x <= 0x1FFFFF)
output += String.fromCharCode(0xF0 | ((x >>> 18) & 0x07),
0x80 | ((x >>> 12) & 0x3F),
0x80 | ((x >>> 6 ) & 0x3F),
0x80 | ( x & 0x3F));
}
return output;
}
/*
* Encode a string as utf-16
*/
function str2rstr_utf16le(input)
{
var output = "";
for(var i = 0; i < input.length; i++)
output += String.fromCharCode( input.charCodeAt(i) & 0xFF,
(input.charCodeAt(i) >>> 8) & 0xFF);
return output;
}
function str2rstr_utf16be(input)
{
var output = "";
for(var i = 0; i < input.length; i++)
output += String.fromCharCode((input.charCodeAt(i) >>> 8) & 0xFF,
input.charCodeAt(i) & 0xFF);
return output;
}
/*
* Convert a raw string to an array of little-endian words
* Characters >255 have their high-byte silently ignored.
*/
function rstr2binl(input)
{
var output = Array(input.length >> 2);
for(var i = 0; i < output.length; i++)
output[i] = 0;
for(var i = 0; i < input.length * 8; i += 8)
output[i>>5] |= (input.charCodeAt(i / 8) & 0xFF) << (i%32);
return output;
}
/*
* Convert an array of little-endian words to a string
*/
function binl2rstr(input)
{
var output = "";
for(var i = 0; i < input.length * 32; i += 8)
output += String.fromCharCode((input[i>>5] >>> (i % 32)) & 0xFF);
return output;
}
/*
* Calculate the RIPE-MD160 of an array of little-endian words, and a bit length.
*/
function binl_rmd160(x, len)
{
/* append padding */
x[len >> 5] |= 0x80 << (len % 32);
x[(((len + 64) >>> 9) << 4) + 14] = len;
var h0 = 0x67452301;
var h1 = 0xefcdab89;
var h2 = 0x98badcfe;
var h3 = 0x10325476;
var h4 = 0xc3d2e1f0;
for (var i = 0; i < x.length; i += 16) {
var T;
var A1 = h0, B1 = h1, C1 = h2, D1 = h3, E1 = h4;
var A2 = h0, B2 = h1, C2 = h2, D2 = h3, E2 = h4;
for (var j = 0; j <= 79; ++j) {
T = safe_add(A1, rmd160_f(j, B1, C1, D1));
T = safe_add(T, x[i + rmd160_r1[j]]);
T = safe_add(T, rmd160_K1(j));
T = safe_add(bit_rol(T, rmd160_s1[j]), E1);
A1 = E1; E1 = D1; D1 = bit_rol(C1, 10); C1 = B1; B1 = T;
T = safe_add(A2, rmd160_f(79-j, B2, C2, D2));
T = safe_add(T, x[i + rmd160_r2[j]]);
T = safe_add(T, rmd160_K2(j));
T = safe_add(bit_rol(T, rmd160_s2[j]), E2);
A2 = E2; E2 = D2; D2 = bit_rol(C2, 10); C2 = B2; B2 = T;
}
T = safe_add(h1, safe_add(C1, D2));
h1 = safe_add(h2, safe_add(D1, E2));
h2 = safe_add(h3, safe_add(E1, A2));
h3 = safe_add(h4, safe_add(A1, B2));
h4 = safe_add(h0, safe_add(B1, C2));
h0 = T;
}
return [h0, h1, h2, h3, h4];
}
function rmd160_f(j, x, y, z)
{
return ( 0 <= j && j <= 15) ? (x ^ y ^ z) :
(16 <= j && j <= 31) ? (x & y) | (~x & z) :
(32 <= j && j <= 47) ? (x | ~y) ^ z :
(48 <= j && j <= 63) ? (x & z) | (y & ~z) :
(64 <= j && j <= 79) ? x ^ (y | ~z) :
"rmd160_f: j out of range";
}
function rmd160_K1(j)
{
return ( 0 <= j && j <= 15) ? 0x00000000 :
(16 <= j && j <= 31) ? 0x5a827999 :
(32 <= j && j <= 47) ? 0x6ed9eba1 :
(48 <= j && j <= 63) ? 0x8f1bbcdc :
(64 <= j && j <= 79) ? 0xa953fd4e :
"rmd160_K1: j out of range";
}
function rmd160_K2(j)
{
return ( 0 <= j && j <= 15) ? 0x50a28be6 :
(16 <= j && j <= 31) ? 0x5c4dd124 :
(32 <= j && j <= 47) ? 0x6d703ef3 :
(48 <= j && j <= 63) ? 0x7a6d76e9 :
(64 <= j && j <= 79) ? 0x00000000 :
"rmd160_K2: j out of range";
}
var rmd160_r1 = [
0, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15,
7, 4, 13, 1, 10, 6, 15, 3, 12, 0, 9, 5, 2, 14, 11, 8,
3, 10, 14, 4, 9, 15, 8, 1, 2, 7, 0, 6, 13, 11, 5, 12,
1, 9, 11, 10, 0, 8, 12, 4, 13, 3, 7, 15, 14, 5, 6, 2,
4, 0, 5, 9, 7, 12, 2, 10, 14, 1, 3, 8, 11, 6, 15, 13
];
var rmd160_r2 = [
5, 14, 7, 0, 9, 2, 11, 4, 13, 6, 15, 8, 1, 10, 3, 12,
6, 11, 3, 7, 0, 13, 5, 10, 14, 15, 8, 12, 4, 9, 1, 2,
15, 5, 1, 3, 7, 14, 6, 9, 11, 8, 12, 2, 10, 0, 4, 13,
8, 6, 4, 1, 3, 11, 15, 0, 5, 12, 2, 13, 9, 7, 10, 14,
12, 15, 10, 4, 1, 5, 8, 7, 6, 2, 13, 14, 0, 3, 9, 11
];
var rmd160_s1 = [
11, 14, 15, 12, 5, 8, 7, 9, 11, 13, 14, 15, 6, 7, 9, 8,
7, 6, 8, 13, 11, 9, 7, 15, 7, 12, 15, 9, 11, 7, 13, 12,
11, 13, 6, 7, 14, 9, 13, 15, 14, 8, 13, 6, 5, 12, 7, 5,
11, 12, 14, 15, 14, 15, 9, 8, 9, 14, 5, 6, 8, 6, 5, 12,
9, 15, 5, 11, 6, 8, 13, 12, 5, 12, 13, 14, 11, 8, 5, 6
];
var rmd160_s2 = [
8, 9, 9, 11, 13, 15, 15, 5, 7, 7, 8, 11, 14, 14, 12, 6,
9, 13, 15, 7, 12, 8, 9, 11, 7, 7, 12, 7, 6, 15, 13, 11,
9, 7, 15, 11, 8, 6, 6, 14, 12, 13, 5, 14, 13, 13, 7, 5,
15, 5, 8, 11, 14, 14, 6, 14, 6, 9, 12, 9, 12, 5, 15, 8,
8, 5, 12, 9, 12, 5, 14, 6, 8, 13, 6, 5, 15, 13, 11, 11
];
/*
* Add integers, wrapping at 2^32. This uses 16-bit operations internally
* to work around bugs in some JS interpreters.
*/
function safe_add(x, y)
{
var lsw = (x & 0xFFFF) + (y & 0xFFFF);
var msw = (x >> 16) + (y >> 16) + (lsw >> 16);
return (msw << 16) | (lsw & 0xFFFF);
}
/*
* Bitwise rotate a 32-bit number to the left.
*/
function bit_rol(num, cnt)
{
return (num << cnt) | (num >>> (32 - cnt));
}
var b64map="ABCDEFGHIJKLMNOPQRSTUVWXYZabcdefghijklmnopqrstuvwxyz0123456789+/";
var b64pad="=";
function hex2b64(h) {
var i;
var c;
var ret = "";
for(i = 0; i+3 <= h.length; i+=3) {
c = parseInt(h.substring(i,i+3),16);
ret += b64map.charAt(c >> 6) + b64map.charAt(c & 63);
}
if(i+1 == h.length) {
c = parseInt(h.substring(i,i+1),16);
ret += b64map.charAt(c << 2);
}
else if(i+2 == h.length) {
c = parseInt(h.substring(i,i+2),16);
ret += b64map.charAt(c >> 2) + b64map.charAt((c & 3) << 4);
}
while((ret.length & 3) > 0) ret += b64pad;
return ret;
}
// convert a base64 string to hex
function b64tohex(s) {
var ret = ""
var i;
var k = 0; // b64 state, 0-3
var slop;
for(i = 0; i < s.length; ++i) {
if(s.charAt(i) == b64pad) break;
v = b64map.indexOf(s.charAt(i));
if(v < 0) continue;
if(k == 0) {
ret += int2char(v >> 2);
slop = v & 3;
k = 1;
}
else if(k == 1) {
ret += int2char((slop << 2) | (v >> 4));
slop = v & 0xf;
k = 2;
}
else if(k == 2) {
ret += int2char(slop);
ret += int2char(v >> 2);
slop = v & 3;
k = 3;
}
else {
ret += int2char((slop << 2) | (v >> 4));
ret += int2char(v & 0xf);
k = 0;
}
}
if(k == 1)
ret += int2char(slop << 2);
return ret;
}
// convert a base64 string to a byte/number array
function b64toBA(s) {
//piggyback on b64tohex for now, optimize later
var h = b64tohex(s);
var i;
var a = new Array();
for(i = 0; 2*i < h.length; ++i) {
a[i] = parseInt(h.substring(2*i,2*i+2),16);
}
return a;
}
// Depends on jsbn.js and rng.js
// Version 1.1: support utf-8 encoding in pkcs1pad2
// convert a (hex) string to a bignum object
function parseBigInt(str,r) {
return new BigInteger(str,r);
}
function linebrk(s,n) {
var ret = "";
var i = 0;
while(i + n < s.length) {
ret += s.substring(i,i+n) + "\n";
i += n;
}
return ret + s.substring(i,s.length);
}
function byte2Hex(b) {
if(b < 0x10)
return "0" + b.toString(16);
else
return b.toString(16);
}
/**
* PKCS#1 (type 2, random) pad input string s to n bytes, and return a bigint
* @param s: the string to encode
* @param n: the size in byte
*/
function pkcs1pad2(s,n) {
if(n < s.length + 11) { // TODO: fix for utf-8
alert("Message too long for RSA");
return null;
}
var ba = new Array();
var i = s.length - 1;
while(i >= 0 && n > 0) {
var c = s.charCodeAt(i--);
if(c < 128) { // encode using utf-8
ba[--n] = c;
}
else if((c > 127) && (c < 2048)) {
ba[--n] = (c & 63) | 128;
ba[--n] = (c >> 6) | 192;
}
else {
ba[--n] = (c & 63) | 128;
ba[--n] = ((c >> 6) & 63) | 128;
ba[--n] = (c >> 12) | 224;
}
}
ba[--n] = 0;
var rng = new SecureRandom();
var x = new Array();
while(n > 2) { // random non-zero pad
x[0] = 0;
while(x[0] == 0) rng.nextBytes(x);
ba[--n] = x[0];
}
ba[--n] = 2;
ba[--n] = 0;
return new BigInteger(ba);
}
/**
* "empty" RSA key constructor
* @returns {RSAKey}
*/
function RSAKey() {
this.n = null;
this.e = 0;
this.d = null;
this.p = null;
this.q = null;
this.dmp1 = null;
this.dmq1 = null;
this.coeff = null;
}
/**
* Set the public key fields N and e from hex strings
* @param N
* @param E
* @returns {RSASetPublic}
*/
function RSASetPublic(N,E) {
if(N != null && E != null && N.length > 0 && E.length > 0) {
this.n = parseBigInt(N,16);
this.e = parseInt(E,16);
}
else
alert("Invalid RSA public key");
}
/**
* Perform raw public operation on "x": return x^e (mod n)
* @param x
* @returns x^e (mod n)
*/
function RSADoPublic(x) {
return x.modPowInt(this.e, this.n);
}
/**
* Return the PKCS#1 RSA encryption of "text" as an even-length hex string
*/
function RSAEncrypt(text) {
var m = pkcs1pad2(text,(this.n.bitLength()+7)>>3);
if(m == null) return null;
var c = this.doPublic(m);
if(c == null) return null;
var h = c.toString(16);
if((h.length & 1) == 0) return h; else return "0" + h;
}
// Return the PKCS#1 RSA encryption of "text" as a Base64-encoded string
//function RSAEncryptB64(text) {
// var h = this.encrypt(text);
// if(h) return hex2b64(h); else return null;
//}
// protected
RSAKey.prototype.doPublic = RSADoPublic;
// public
RSAKey.prototype.setPublic = RSASetPublic;
RSAKey.prototype.encrypt = RSAEncrypt;
//RSAKey.prototype.encrypt_b64 = RSAEncryptB64;
// Depends on rsa.js and jsbn2.js
// Version 1.1: support utf-8 decoding in pkcs1unpad2
// Undo PKCS#1 (type 2, random) padding and, if valid, return the plaintext
function pkcs1unpad2(d,n) {
var b = d.toByteArray();
var i = 0;
while(i < b.length && b[i] == 0) ++i;
if(b.length-i != n-1 || b[i] != 2)
return null;
++i;
while(b[i] != 0)
if(++i >= b.length) return null;
var ret = "";
while(++i < b.length) {
var c = b[i] & 255;
if(c < 128) { // utf-8 decode
ret += String.fromCharCode(c);
}
else if((c > 191) && (c < 224)) {
ret += String.fromCharCode(((c & 31) << 6) | (b[i+1] & 63));
++i;
}
else {
ret += String.fromCharCode(((c & 15) << 12) | ((b[i+1] & 63) << 6) | (b[i+2] & 63));
i += 2;
}
}
return ret;
}
// Set the private key fields N, e, and d from hex strings
function RSASetPrivate(N,E,D) {
if(N != null && E != null && N.length > 0 && E.length > 0) {
this.n = parseBigInt(N,16);
this.e = parseInt(E,16);
this.d = parseBigInt(D,16);
}
else
alert("Invalid RSA private key");
}
// Set the private key fields N, e, d and CRT params from hex strings
function RSASetPrivateEx(N,E,D,P,Q,DP,DQ,C) {
if(N != null && E != null && N.length > 0 && E.length > 0) {
this.n = parseBigInt(N,16);
this.e = parseInt(E,16);
this.d = parseBigInt(D,16);
this.p = parseBigInt(P,16);
this.q = parseBigInt(Q,16);
this.dmp1 = parseBigInt(DP,16);
this.dmq1 = parseBigInt(DQ,16);
this.coeff = parseBigInt(C,16);
}
else
alert("Invalid RSA private key");
}
/**
* Generate a new random private key B bits long, using public expt E
*/
function RSAGenerate(B,E) {
var rng = new SecureRandom();
var qs = B>>1;
this.e = parseInt(E,16);
var ee = new BigInteger(E,16);
for(;;) {
for(;;) {
this.p = new BigInteger(B-qs,1,rng);
if(this.p.subtract(BigInteger.ONE).gcd(ee).compareTo(BigInteger.ONE) == 0 && this.p.isProbablePrime(10)) break;
}
for(;;) {
this.q = new BigInteger(qs,1,rng);
if(this.q.subtract(BigInteger.ONE).gcd(ee).compareTo(BigInteger.ONE) == 0 && this.q.isProbablePrime(10)) break;
}
if(this.p.compareTo(this.q) <= 0) {
var t = this.p;
this.p = this.q;
this.q = t;
}
var p1 = this.p.subtract(BigInteger.ONE); // p1 = p - 1
var q1 = this.q.subtract(BigInteger.ONE); // q1 = q - 1
var phi = p1.multiply(q1);
if(phi.gcd(ee).compareTo(BigInteger.ONE) == 0) {
this.n = this.p.multiply(this.q); // this.n = p * q
this.d = ee.modInverse(phi); // this.d =
this.dmp1 = this.d.mod(p1); // this.dmp1 = d mod (p - 1)
this.dmq1 = this.d.mod(q1); // this.dmq1 = d mod (q - 1)
this.coeff = this.q.modInverse(this.p); // this.coeff = (q ^ -1) mod p
break;
}
}
}
/**
* Perform raw private operation on "x": return x^d (mod n)
* @return x^d (mod n)
*/
function RSADoPrivate(x) {
if(this.p == null || this.q == null)
return x.modPow(this.d, this.n);
// TODO: re-calculate any missing CRT params
var xp = x.mod(this.p).modPow(this.dmp1, this.p); // xp=cp?
var xq = x.mod(this.q).modPow(this.dmq1, this.q); // xq=cq?
while(xp.compareTo(xq) < 0)
xp = xp.add(this.p);
// NOTE:
// xp.subtract(xq) => cp -cq
// xp.subtract(xq).multiply(this.coeff).mod(this.p) => (cp - cq) * u mod p = h
// xp.subtract(xq).multiply(this.coeff).mod(this.p).multiply(this.q).add(xq) => cq + (h * q) = M
return xp.subtract(xq).multiply(this.coeff).mod(this.p).multiply(this.q).add(xq);
}
// Return the PKCS#1 RSA decryption of "ctext".
// "ctext" is an even-length hex string and the output is a plain string.
function RSADecrypt(ctext) {
var c = parseBigInt(ctext, 16);
var m = this.doPrivate(c);
if(m == null) return null;
return pkcs1unpad2(m, (this.n.bitLength()+7)>>3);
}
// Return the PKCS#1 RSA decryption of "ctext".
// "ctext" is a Base64-encoded string and the output is a plain string.
//function RSAB64Decrypt(ctext) {
// var h = b64tohex(ctext);
// if(h) return this.decrypt(h); else return null;
//}
// protected
RSAKey.prototype.doPrivate = RSADoPrivate;
// public
RSAKey.prototype.setPrivate = RSASetPrivate;
RSAKey.prototype.setPrivateEx = RSASetPrivateEx;
RSAKey.prototype.generate = RSAGenerate;
RSAKey.prototype.decrypt = RSADecrypt;
//RSAKey.prototype.b64_decrypt = RSAB64Decrypt;
/*! rsapem-1.1.js (c) 2012 Kenji Urushima | kjur.github.com/jsrsasign/license
*/
//
// rsa-pem.js - adding function for reading/writing PKCS#1 PEM private key
// to RSAKey class.
//
// version: 1.1 (2012-May-10)
//
// Copyright (c) 2010-2012 Kenji Urushima (kenji.urushima@gmail.com)
//
// This software is licensed under the terms of the MIT License.
// http://kjur.github.com/jsrsasign/license/
//
// The above copyright and license notice shall be
// included in all copies or substantial portions of the Software.
//
//
// Depends on:
//
//
//
// _RSApem_pemToBase64(sPEM)
//
// removing PEM header, PEM footer and space characters including
// new lines from PEM formatted RSA private key string.
//
function _rsapem_pemToBase64(sPEMPrivateKey) {
var s = sPEMPrivateKey;
s = s.replace("-----BEGIN RSA PRIVATE KEY-----", "");
s = s.replace("-----END RSA PRIVATE KEY-----", "");
s = s.replace(/[ \n]+/g, "");
return s;
}
function _rsapem_getPosArrayOfChildrenFromHex(hPrivateKey) {
var a = new Array();
var v1 = ASN1HEX.getStartPosOfV_AtObj(hPrivateKey, 0);
var n1 = ASN1HEX.getPosOfNextSibling_AtObj(hPrivateKey, v1);
var e1 = ASN1HEX.getPosOfNextSibling_AtObj(hPrivateKey, n1);
var d1 = ASN1HEX.getPosOfNextSibling_AtObj(hPrivateKey, e1);
var p1 = ASN1HEX.getPosOfNextSibling_AtObj(hPrivateKey, d1);
var q1 = ASN1HEX.getPosOfNextSibling_AtObj(hPrivateKey, p1);
var dp1 = ASN1HEX.getPosOfNextSibling_AtObj(hPrivateKey, q1);
var dq1 = ASN1HEX.getPosOfNextSibling_AtObj(hPrivateKey, dp1);
var co1 = ASN1HEX.getPosOfNextSibling_AtObj(hPrivateKey, dq1);
a.push(v1, n1, e1, d1, p1, q1, dp1, dq1, co1);
return a;
}
function _rsapem_getHexValueArrayOfChildrenFromHex(hPrivateKey) {
var posArray = _rsapem_getPosArrayOfChildrenFromHex(hPrivateKey);
var v = ASN1HEX.getHexOfV_AtObj(hPrivateKey, posArray[0]);
var n = ASN1HEX.getHexOfV_AtObj(hPrivateKey, posArray[1]);
var e = ASN1HEX.getHexOfV_AtObj(hPrivateKey, posArray[2]);
var d = ASN1HEX.getHexOfV_AtObj(hPrivateKey, posArray[3]);
var p = ASN1HEX.getHexOfV_AtObj(hPrivateKey, posArray[4]);
var q = ASN1HEX.getHexOfV_AtObj(hPrivateKey, posArray[5]);
var dp = ASN1HEX.getHexOfV_AtObj(hPrivateKey, posArray[6]);
var dq = ASN1HEX.getHexOfV_AtObj(hPrivateKey, posArray[7]);
var co = ASN1HEX.getHexOfV_AtObj(hPrivateKey, posArray[8]);
var a = new Array();
a.push(v, n, e, d, p, q, dp, dq, co);
return a;
}
/**
* read PKCS#1 private key from a string
* @name readPrivateKeyFromPEMString
* @memberOf RSAKey#
* @function
* @param {String} keyPEM string of PKCS#1 private key.
*/
function _rsapem_readPrivateKeyFromPEMString(keyPEM) {
var keyB64 = _rsapem_pemToBase64(keyPEM);
var keyHex = b64tohex(keyB64) // depends base64.js
var a = _rsapem_getHexValueArrayOfChildrenFromHex(keyHex);
this.setPrivateEx(a[1],a[2],a[3],a[4],a[5],a[6],a[7],a[8]);
}
RSAKey.prototype.readPrivateKeyFromPEMString = _rsapem_readPrivateKeyFromPEMString;
/*! rsasign-1.2.js (c) 2012 Kenji Urushima | kjur.github.com/jsrsasign/license
*/
//
// rsa-sign.js - adding signing functions to RSAKey class.
//
//
// version: 1.2.1 (08 May 2012)
//
// Copyright (c) 2010-2012 Kenji Urushima (kenji.urushima@gmail.com)
//
// This software is licensed under the terms of the MIT License.
// http://kjur.github.com/jsrsasign/license/
//
// The above copyright and license notice shall be
// included in all copies or substantial portions of the Software.
//
// Depends on:
// function sha1.hex(s) of sha1.js
// jsbn.js
// jsbn2.js
// rsa.js
// rsa2.js
//
// keysize / pmstrlen
// 512 / 128
// 1024 / 256
// 2048 / 512
// 4096 / 1024
/**
* @property {Dictionary} _RSASIGN_DIHEAD
* @description Array of head part of hexadecimal DigestInfo value for hash algorithms.
* You can add any DigestInfo hash algorith for signing.
* See PKCS#1 v2.1 spec (p38).
*/
var _RSASIGN_DIHEAD = [];
_RSASIGN_DIHEAD['sha1'] = "3021300906052b0e03021a05000414";
_RSASIGN_DIHEAD['sha256'] = "3031300d060960864801650304020105000420";
_RSASIGN_DIHEAD['sha384'] = "3041300d060960864801650304020205000430";
_RSASIGN_DIHEAD['sha512'] = "3051300d060960864801650304020305000440";
_RSASIGN_DIHEAD['md2'] = "3020300c06082a864886f70d020205000410";
_RSASIGN_DIHEAD['md5'] = "3020300c06082a864886f70d020505000410";
_RSASIGN_DIHEAD['ripemd160'] = "3021300906052b2403020105000414";
/**
* @property {Dictionary} _RSASIGN_HASHHEXFUNC
* @description Array of functions which calculate hash and returns it as hexadecimal.
* You can add any hash algorithm implementations.
*/
var _RSASIGN_HASHHEXFUNC = [];
_RSASIGN_HASHHEXFUNC['sha1'] = function(s){return hex_sha1(s);}; // http://pajhome.org.uk/crypt/md5/md5.html
_RSASIGN_HASHHEXFUNC['sha256'] = function(s){return hex_sha256(s);} // http://pajhome.org.uk/crypt/md5/md5.html
_RSASIGN_HASHHEXFUNC['sha512'] = function(s){return hex_sha512(s);} // http://pajhome.org.uk/crypt/md5/md5.html
_RSASIGN_HASHHEXFUNC['md5'] = function(s){return hex_md5(s);}; // http://pajhome.org.uk/crypt/md5/md5.html
_RSASIGN_HASHHEXFUNC['ripemd160'] = function(s){return hex_rmd160(s);}; // http://pajhome.org.uk/crypt/md5/md5.html
//@author axelcdv
var _RSASIGN_HASHBYTEFUNC = [];
_RSASIGN_HASHBYTEFUNC['sha256'] = function(byteArray){return hex_sha256_from_bytes(byteArray);};
//_RSASIGN_HASHHEXFUNC['sha1'] = function(s){return sha1.hex(s);} // http://user1.matsumoto.ne.jp/~goma/js/hash.html
//_RSASIGN_HASHHEXFUNC['sha256'] = function(s){return sha256.hex;} // http://user1.matsumoto.ne.jp/~goma/js/hash.html
var _RE_HEXDECONLY = new RegExp("");
_RE_HEXDECONLY.compile("[^0-9a-f]", "gi");
// ========================================================================
// Signature Generation
// ========================================================================
function _rsasign_getHexPaddedDigestInfoForString(s, keySize, hashAlg) {
var pmStrLen = keySize / 4;
var hashFunc = _RSASIGN_HASHHEXFUNC[hashAlg];
var sHashHex = hashFunc(s);
var sHead = "0001";
var sTail = "00" + _RSASIGN_DIHEAD[hashAlg] + sHashHex;
var sMid = "";
var fLen = pmStrLen - sHead.length - sTail.length;
for (var i = 0; i < fLen; i += 2) {
sMid += "ff";
}
sPaddedMessageHex = sHead + sMid + sTail;
return sPaddedMessageHex;
}
//@author: ucla-cs
function _rsasign_getHexPaddedDigestInfoForStringHEX(s, keySize, hashAlg) {
var pmStrLen = keySize / 4;
var hashFunc = _RSASIGN_HASHHEXFUNC[hashAlg];
var sHashHex = hashFunc(s);
var sHead = "0001";
var sTail = "00" + _RSASIGN_DIHEAD[hashAlg] + sHashHex;
var sMid = "";
var fLen = pmStrLen - sHead.length - sTail.length;
for (var i = 0; i < fLen; i += 2) {
sMid += "ff";
}
sPaddedMessageHex = sHead + sMid + sTail;
return sPaddedMessageHex;
}
/**
* Apply padding, then computes the hash of the given byte array, according to the key size and with the hash algorithm
* @param byteArray (byte[])
* @param keySize (int)
* @param hashAlg the hash algorithm to apply (string)
* @return the hash of byteArray
*/
function _rsasign_getHexPaddedDigestInfoForByteArray(byteArray, keySize, hashAlg){
var pmStrLen = keySize / 4;
var hashFunc = _RSASIGN_HASHBYTEFUNC[hashAlg];
var sHashHex = hashFunc(byteArray); //returns hex hash
var sHead = "0001";
var sTail = "00" + _RSASIGN_DIHEAD[hashAlg] + sHashHex;
var sMid = "";
var fLen = pmStrLen - sHead.length - sTail.length;
for (var i = 0; i < fLen; i += 2) {
sMid += "ff";
}
sPaddedMessageHex = sHead + sMid + sTail;
return sPaddedMessageHex;
}
function _zeroPaddingOfSignature(hex, bitLength) {
var s = "";
var nZero = bitLength / 4 - hex.length;
for (var i = 0; i < nZero; i++) {
s = s + "0";
}
return s + hex;
}
/**
* sign for a message string with RSA private key.<br/>
* @name signString
* @memberOf RSAKey#
* @function
* @param {String} s message string to be signed.
* @param {String} hashAlg hash algorithm name for signing.<br/>
* @return returns hexadecimal string of signature value.
*/
function _rsasign_signString(s, hashAlg) {
//alert("this.n.bitLength() = " + this.n.bitLength());
var hPM = _rsasign_getHexPaddedDigestInfoForString(s, this.n.bitLength(), hashAlg);
var biPaddedMessage = parseBigInt(hPM, 16);
var biSign = this.doPrivate(biPaddedMessage);
var hexSign = biSign.toString(16);
return _zeroPaddingOfSignature(hexSign, this.n.bitLength());
}
//@author: ucla-cs
function _rsasign_signStringHEX(s, hashAlg) {
//alert("this.n.bitLength() = " + this.n.bitLength());
var hPM = _rsasign_getHexPaddedDigestInfoForString(s, this.n.bitLength(), hashAlg);
var biPaddedMessage = parseBigInt(hPM, 16);
var biSign = this.doPrivate(biPaddedMessage);
var hexSign = biSign.toString(16);
return _zeroPaddingOfSignature(hexSign, this.n.bitLength());
}
/**
* Sign a message byteArray with an RSA private key
* @name signByteArray
* @memberOf RSAKey#
* @function
* @param {byte[]} byteArray
* @param {Sring} hashAlg the hash algorithm to apply
* @param {RSAKey} rsa key to sign with: hack because the context is lost here
* @return hexadecimal string of signature value
*/
function _rsasign_signByteArray(byteArray, hashAlg, rsaKey) {
var hPM = _rsasign_getHexPaddedDigestInfoForByteArray(byteArray, rsaKey.n.bitLength(), hashAlg); ///hack because the context is lost here
var biPaddedMessage = parseBigInt(hPM, 16);
var biSign = rsaKey.doPrivate(biPaddedMessage); //hack because the context is lost here
var hexSign = biSign.toString(16);
return _zeroPaddingOfSignature(hexSign, rsaKey.n.bitLength()); //hack because the context is lost here
}
/**
* Sign a byte array with the Sha-256 algorithm
* @param {byte[]} byteArray
* @return hexadecimal string of signature value
*/
function _rsasign_signByteArrayWithSHA256(byteArray){
return _rsasign_signByteArray(byteArray, 'sha256', this); //Hack because the context is lost in the next function
}
function _rsasign_signStringWithSHA1(s) {
return _rsasign_signString(s, 'sha1');
}
function _rsasign_signStringWithSHA256(s) {
return _rsasign_signString(s, 'sha256');
}
// ========================================================================
// Signature Verification
// ========================================================================
function _rsasign_getDecryptSignatureBI(biSig, hN, hE) {
var rsa = new RSAKey();
rsa.setPublic(hN, hE);
var biDecryptedSig = rsa.doPublic(biSig);
return biDecryptedSig;
}
function _rsasign_getHexDigestInfoFromSig(biSig, hN, hE) {
var biDecryptedSig = _rsasign_getDecryptSignatureBI(biSig, hN, hE);
var hDigestInfo = biDecryptedSig.toString(16).replace(/^1f+00/, '');
return hDigestInfo;
}
function _rsasign_getAlgNameAndHashFromHexDisgestInfo(hDigestInfo) {
for (var algName in _RSASIGN_DIHEAD) {
var head = _RSASIGN_DIHEAD[algName];
var len = head.length;
if (hDigestInfo.substring(0, len) == head) {
var a = [algName, hDigestInfo.substring(len)];
return a;
}
}
return [];
}
function _rsasign_verifySignatureWithArgs(sMsg, biSig, hN, hE) {
var hDigestInfo = _rsasign_getHexDigestInfoFromSig(biSig, hN, hE);
var digestInfoAry = _rsasign_getAlgNameAndHashFromHexDisgestInfo(hDigestInfo);
if (digestInfoAry.length == 0) return false;
var algName = digestInfoAry[0];
var diHashValue = digestInfoAry[1];
var ff = _RSASIGN_HASHHEXFUNC[algName];
var msgHashValue = ff(sMsg);
return (diHashValue == msgHashValue);
}
function _rsasign_verifyHexSignatureForMessage(hSig, sMsg) {
var biSig = parseBigInt(hSig, 16);
var result = _rsasign_verifySignatureWithArgs(sMsg, biSig,
this.n.toString(16),
this.e.toString(16));
return result;
}
/**
* verifies a sigature for a message string with RSA public key.<br/>
* @name verifyString
* @memberOf RSAKey#
* @function
* @param {String} sMsg message string to be verified.
* @param {String} hSig hexadecimal string of siganture.<br/>
* non-hexadecimal charactors including new lines will be ignored.
* @return returns 1 if valid, otherwise 0
*/
function _rsasign_verifyString(sMsg, hSig) {
hSig = hSig.replace(_RE_HEXDECONLY, '');
if(LOG>3)console.log('n is '+this.n);
if(LOG>3)console.log('e is '+this.e);
if (hSig.length != this.n.bitLength() / 4) return 0;
hSig = hSig.replace(/[ \n]+/g, "");
var biSig = parseBigInt(hSig, 16);
var biDecryptedSig = this.doPublic(biSig);
var hDigestInfo = biDecryptedSig.toString(16).replace(/^1f+00/, '');
var digestInfoAry = _rsasign_getAlgNameAndHashFromHexDisgestInfo(hDigestInfo);
if (digestInfoAry.length == 0) return false;
var algName = digestInfoAry[0];
var diHashValue = digestInfoAry[1];
var ff = _RSASIGN_HASHHEXFUNC[algName];
var msgHashValue = ff(sMsg);
return (diHashValue == msgHashValue);
}
/**
* verifies a sigature for a message byte array with RSA public key.<br/>
* @name verifyByteArray
* @memberOf RSAKey#
* @function
* @param {byte[]} byteArray message byte array to be verified.
* @param {String} hSig hexadecimal string of signature.<br/>
* non-hexadecimal charactors including new lines will be ignored.
* @return returns 1 if valid, otherwise 0
*/
function _rsasign_verifyByteArray(byteArray, hSig) {
hSig = hSig.replace(_RE_HEXDECONLY, '');
if(LOG>3)console.log('n is '+this.n);
if(LOG>3)console.log('e is '+this.e);
if (hSig.length != this.n.bitLength() / 4) return 0;
hSig = hSig.replace(/[ \n]+/g, "");
var biSig = parseBigInt(hSig, 16);
var biDecryptedSig = this.doPublic(biSig);
var hDigestInfo = biDecryptedSig.toString(16).replace(/^1f+00/, '');
var digestInfoAry = _rsasign_getAlgNameAndHashFromHexDisgestInfo(hDigestInfo);
if (digestInfoAry.length == 0) return false;
var algName = digestInfoAry[0];
var diHashValue = digestInfoAry[1];
var ff = _RSASIGN_HASHBYTEFUNC[algName];
var msgHashValue = ff(byteArray);
return (diHashValue == msgHashValue);
}
RSAKey.prototype.signString = _rsasign_signString;
RSAKey.prototype.signByteArray = _rsasign_signByteArray; //@author axelcdv
RSAKey.prototype.signByteArrayWithSHA256 = _rsasign_signByteArrayWithSHA256; //@author axelcdv
RSAKey.prototype.signStringWithSHA1 = _rsasign_signStringWithSHA1;
RSAKey.prototype.signStringWithSHA256 = _rsasign_signStringWithSHA256;
RSAKey.prototype.sign = _rsasign_signString;
RSAKey.prototype.signWithSHA1 = _rsasign_signStringWithSHA1;
RSAKey.prototype.signWithSHA256 = _rsasign_signStringWithSHA256;
/*RSAKey.prototype.signStringHEX = _rsasign_signStringHEX;
RSAKey.prototype.signStringWithSHA1HEX = _rsasign_signStringWithSHA1HEX;
RSAKey.prototype.signStringWithSHA256HEX = _rsasign_signStringWithSHA256HEX;
RSAKey.prototype.signHEX = _rsasign_signStringHEX;
RSAKey.prototype.signWithSHA1HEX = _rsasign_signStringWithSHA1HEX;
RSAKey.prototype.signWithSHA256HEX = _rsasign_signStringWithSHA256HEX;
*/
RSAKey.prototype.verifyByteArray = _rsasign_verifyByteArray;
RSAKey.prototype.verifyString = _rsasign_verifyString;
RSAKey.prototype.verifyHexSignatureForMessage = _rsasign_verifyHexSignatureForMessage;
RSAKey.prototype.verify = _rsasign_verifyString;
RSAKey.prototype.verifyHexSignatureForByteArrayMessage = _rsasign_verifyHexSignatureForMessage;
/*
RSAKey.prototype.verifyStringHEX = _rsasign_verifyStringHEX;
RSAKey.prototype.verifyHexSignatureForMessageHEX = _rsasign_verifyHexSignatureForMessageHEX;
RSAKey.prototype.verifyHEX = _rsasign_verifyStringHEX;
RSAKey.prototype.verifyHexSignatureForByteArrayMessageHEX = _rsasign_verifyHexSignatureForMessageHEX;
*/
/**
* @name RSAKey
* @class
* @description Tom Wu's RSA Key class and extension
*/
/*! asn1hex-1.1.js (c) 2012 Kenji Urushima | kjur.github.com/jsrsasign/license
*/
//
// asn1hex.js - Hexadecimal represented ASN.1 string library
//
// version: 1.1 (09-May-2012)
//
// Copyright (c) 2010-2012 Kenji Urushima (kenji.urushima@gmail.com)
//
// This software is licensed under the terms of the MIT License.
// http://kjur.github.com/jsrsasign/license/
//
// The above copyright and license notice shall be
// included in all copies or substantial portions of the Software.
//
// Depends on:
//
// MEMO:
// f('3082025b02...', 2) ... 82025b ... 3bytes
// f('020100', 2) ... 01 ... 1byte
// f('0203001...', 2) ... 03 ... 1byte
// f('02818003...', 2) ... 8180 ... 2bytes
// f('3080....0000', 2) ... 80 ... -1
//
// Requirements:
// - ASN.1 type octet length MUST be 1.
// (i.e. ASN.1 primitives like SET, SEQUENCE, INTEGER, OCTETSTRING ...)
// -
/**
* get byte length for ASN.1 L(length) bytes
* @name getByteLengthOfL_AtObj
* @memberOf ASN1HEX
* @function
* @param {String} s hexadecimal string of ASN.1 DER encoded data
* @param {Number} pos string index
* @return byte length for ASN.1 L(length) bytes
*/
function _asnhex_getByteLengthOfL_AtObj(s, pos) {
if (s.substring(pos + 2, pos + 3) != '8') return 1;
var i = parseInt(s.substring(pos + 3, pos + 4));
if (i == 0) return -1; // length octet '80' indefinite length
if (0 < i && i < 10) return i + 1; // including '8?' octet;
return -2; // malformed format
}
/**
* get hexadecimal string for ASN.1 L(length) bytes
* @name getHexOfL_AtObj
* @memberOf ASN1HEX
* @function
* @param {String} s hexadecimal string of ASN.1 DER encoded data
* @param {Number} pos string index
* @return {String} hexadecimal string for ASN.1 L(length) bytes
*/
function _asnhex_getHexOfL_AtObj(s, pos) {
var len = _asnhex_getByteLengthOfL_AtObj(s, pos);
if (len < 1) return '';
return s.substring(pos + 2, pos + 2 + len * 2);
}
//
// getting ASN.1 length value at the position 'idx' of
// hexa decimal string 's'.
//
// f('3082025b02...', 0) ... 82025b ... ???
// f('020100', 0) ... 01 ... 1
// f('0203001...', 0) ... 03 ... 3
// f('02818003...', 0) ... 8180 ... 128
/**
* get integer value of ASN.1 length for ASN.1 data
* @name getIntOfL_AtObj
* @memberOf ASN1HEX
* @function
* @param {String} s hexadecimal string of ASN.1 DER encoded data
* @param {Number} pos string index
* @return ASN.1 L(length) integer value
*/
function _asnhex_getIntOfL_AtObj(s, pos) {
var hLength = _asnhex_getHexOfL_AtObj(s, pos);
if (hLength == '') return -1;
var bi;
if (parseInt(hLength.substring(0, 1)) < 8) {
bi = parseBigInt(hLength, 16);
} else {
bi = parseBigInt(hLength.substring(2), 16);
}
return bi.intValue();
}
/**
* get ASN.1 value starting string position for ASN.1 object refered by index 'idx'.
* @name getStartPosOfV_AtObj
* @memberOf ASN1HEX
* @function
* @param {String} s hexadecimal string of ASN.1 DER encoded data
* @param {Number} pos string index
*/
function _asnhex_getStartPosOfV_AtObj(s, pos) {
var l_len = _asnhex_getByteLengthOfL_AtObj(s, pos);
if (l_len < 0) return l_len;
return pos + (l_len + 1) * 2;
}
/**
* get hexadecimal string of ASN.1 V(value)
* @name getHexOfV_AtObj
* @memberOf ASN1HEX
* @function
* @param {String} s hexadecimal string of ASN.1 DER encoded data
* @param {Number} pos string index
* @return {String} hexadecimal string of ASN.1 value.
*/
function _asnhex_getHexOfV_AtObj(s, pos) {
var pos1 = _asnhex_getStartPosOfV_AtObj(s, pos);
var len = _asnhex_getIntOfL_AtObj(s, pos);
return s.substring(pos1, pos1 + len * 2);
}
/**
* get hexadecimal string of ASN.1 TLV at
* @name getHexOfTLV_AtObj
* @memberOf ASN1HEX
* @function
* @param {String} s hexadecimal string of ASN.1 DER encoded data
* @param {Number} pos string index
* @return {String} hexadecimal string of ASN.1 TLV.
* @since 1.1
*/
function _asnhex_getHexOfTLV_AtObj(s, pos) {
var hT = s.substr(pos, 2);
var hL = _asnhex_getHexOfL_AtObj(s, pos);
var hV = _asnhex_getHexOfV_AtObj(s, pos);
return hT + hL + hV;
}
/**
* get next sibling starting index for ASN.1 object string
* @name getPosOfNextSibling_AtObj
* @memberOf ASN1HEX
* @function
* @param {String} s hexadecimal string of ASN.1 DER encoded data
* @param {Number} pos string index
* @return next sibling starting index for ASN.1 object string
*/
function _asnhex_getPosOfNextSibling_AtObj(s, pos) {
var pos1 = _asnhex_getStartPosOfV_AtObj(s, pos);
var len = _asnhex_getIntOfL_AtObj(s, pos);
return pos1 + len * 2;
}
/**
* get array of indexes of child ASN.1 objects
* @name getPosArrayOfChildren_AtObj
* @memberOf ASN1HEX
* @function
* @param {String} s hexadecimal string of ASN.1 DER encoded data
* @param {Number} start string index of ASN.1 object
* @return {Array of Number} array of indexes for childen of ASN.1 objects
*/
function _asnhex_getPosArrayOfChildren_AtObj(h, pos) {
var a = new Array();
var p0 = _asnhex_getStartPosOfV_AtObj(h, pos);
a.push(p0);
var len = _asnhex_getIntOfL_AtObj(h, pos);
var p = p0;
var k = 0;
while (1) {
var pNext = _asnhex_getPosOfNextSibling_AtObj(h, p);
if (pNext == null || (pNext - p0 >= (len * 2))) break;
if (k >= 200) break;
a.push(pNext);
p = pNext;
k++;
}
return a;
}
/**
* get string index of nth child object of ASN.1 object refered by h, idx
* @name getNthChildIndex_AtObj
* @memberOf ASN1HEX
* @function
* @param {String} h hexadecimal string of ASN.1 DER encoded data
* @param {Number} idx start string index of ASN.1 object
* @param {Number} nth for child
* @return {Number} string index of nth child.
* @since 1.1
*/
function _asnhex_getNthChildIndex_AtObj(h, idx, nth) {
var a = _asnhex_getPosArrayOfChildren_AtObj(h, idx);
return a[nth];
}
// ========== decendant methods ==============================
/**
* get string index of nth child object of ASN.1 object refered by h, idx
* @name getDecendantIndexByNthList
* @memberOf ASN1HEX
* @function
* @param {String} h hexadecimal string of ASN.1 DER encoded data
* @param {Number} currentIndex start string index of ASN.1 object
* @param {Array of Number} nthList array list of nth
* @return {Number} string index refered by nthList
* @since 1.1
*/
function _asnhex_getDecendantIndexByNthList(h, currentIndex, nthList) {
if (nthList.length == 0) {
return currentIndex;
}
var firstNth = nthList.shift();
var a = _asnhex_getPosArrayOfChildren_AtObj(h, currentIndex);
return _asnhex_getDecendantIndexByNthList(h, a[firstNth], nthList);
}
/**
* get hexadecimal string of ASN.1 TLV refered by current index and nth index list.
* @name getDecendantHexTLVByNthList
* @memberOf ASN1HEX
* @function
* @param {String} h hexadecimal string of ASN.1 DER encoded data
* @param {Number} currentIndex start string index of ASN.1 object
* @param {Array of Number} nthList array list of nth
* @return {Number} hexadecimal string of ASN.1 TLV refered by nthList
* @since 1.1
*/
function _asnhex_getDecendantHexTLVByNthList(h, currentIndex, nthList) {
var idx = _asnhex_getDecendantIndexByNthList(h, currentIndex, nthList);
return _asnhex_getHexOfTLV_AtObj(h, idx);
}
/**
* get hexadecimal string of ASN.1 V refered by current index and nth index list.
* @name getDecendantHexVByNthList
* @memberOf ASN1HEX
* @function
* @param {String} h hexadecimal string of ASN.1 DER encoded data
* @param {Number} currentIndex start string index of ASN.1 object
* @param {Array of Number} nthList array list of nth
* @return {Number} hexadecimal string of ASN.1 V refered by nthList
* @since 1.1
*/
function _asnhex_getDecendantHexVByNthList(h, currentIndex, nthList) {
var idx = _asnhex_getDecendantIndexByNthList(h, currentIndex, nthList);
return _asnhex_getHexOfV_AtObj(h, idx);
}
// ========== class definition ==============================
/**
* ASN.1 DER encoded hexadecimal string utility class
* @class ASN.1 DER encoded hexadecimal string utility class
* @author Kenji Urushima
* @version 1.1 (09 May 2012)
* @see <a href="http://kjur.github.com/jsrsasigns/">'jwrsasign'(RSA Sign JavaScript Library) home page http://kjur.github.com/jsrsasign/</a>
* @since 1.1
*/
function ASN1HEX() {
return ASN1HEX;
}
ASN1HEX.getByteLengthOfL_AtObj = _asnhex_getByteLengthOfL_AtObj;
ASN1HEX.getHexOfL_AtObj = _asnhex_getHexOfL_AtObj;
ASN1HEX.getIntOfL_AtObj = _asnhex_getIntOfL_AtObj;
ASN1HEX.getStartPosOfV_AtObj = _asnhex_getStartPosOfV_AtObj;
ASN1HEX.getHexOfV_AtObj = _asnhex_getHexOfV_AtObj;
ASN1HEX.getHexOfTLV_AtObj = _asnhex_getHexOfTLV_AtObj;
ASN1HEX.getPosOfNextSibling_AtObj = _asnhex_getPosOfNextSibling_AtObj;
ASN1HEX.getPosArrayOfChildren_AtObj = _asnhex_getPosArrayOfChildren_AtObj;
ASN1HEX.getNthChildIndex_AtObj = _asnhex_getNthChildIndex_AtObj;
ASN1HEX.getDecendantIndexByNthList = _asnhex_getDecendantIndexByNthList;
ASN1HEX.getDecendantHexVByNthList = _asnhex_getDecendantHexVByNthList;
ASN1HEX.getDecendantHexTLVByNthList = _asnhex_getDecendantHexTLVByNthList;
/*! x509-1.1.js (c) 2012 Kenji Urushima | kjur.github.com/jsrsasign/license
*/
//
// x509.js - X509 class to read subject public key from certificate.
//
// version: 1.1 (10-May-2012)
//
// Copyright (c) 2010-2012 Kenji Urushima (kenji.urushima@gmail.com)
//
// This software is licensed under the terms of the MIT License.
// http://kjur.github.com/jsrsasign/license
//
// The above copyright and license notice shall be
// included in all copies or substantial portions of the Software.
//
// Depends:
// base64.js
// rsa.js
// asn1hex.js
function _x509_pemToBase64(sCertPEM) {
var s = sCertPEM;
s = s.replace("-----BEGIN CERTIFICATE-----", "");
s = s.replace("-----END CERTIFICATE-----", "");
s = s.replace(/[ \n]+/g, "");
return s;
}
function _x509_pemToHex(sCertPEM) {
var b64Cert = _x509_pemToBase64(sCertPEM);
var hCert = b64tohex(b64Cert);
return hCert;
}
function _x509_getHexTbsCertificateFromCert(hCert) {
var pTbsCert = ASN1HEX.getStartPosOfV_AtObj(hCert, 0);
return pTbsCert;
}
// NOTE: privateKeyUsagePeriod field of X509v2 not supported.
// NOTE: v1 and v3 supported
function _x509_getSubjectPublicKeyInfoPosFromCertHex(hCert) {
var pTbsCert = ASN1HEX.getStartPosOfV_AtObj(hCert, 0);
var a = ASN1HEX.getPosArrayOfChildren_AtObj(hCert, pTbsCert);
if (a.length < 1) return -1;
if (hCert.substring(a[0], a[0] + 10) == "a003020102") { // v3
if (a.length < 6) return -1;
return a[6];
} else {
if (a.length < 5) return -1;
return a[5];
}
}
// NOTE: Without BITSTRING encapsulation.
function _x509_getSubjectPublicKeyPosFromCertHex(hCert) {
var pInfo = _x509_getSubjectPublicKeyInfoPosFromCertHex(hCert);
if (pInfo == -1) return -1;
var a = ASN1HEX.getPosArrayOfChildren_AtObj(hCert, pInfo);
if (a.length != 2) return -1;
var pBitString = a[1];
if (hCert.substring(pBitString, pBitString + 2) != '03') return -1;
var pBitStringV = ASN1HEX.getStartPosOfV_AtObj(hCert, pBitString);
if (hCert.substring(pBitStringV, pBitStringV + 2) != '00') return -1;
return pBitStringV + 2;
}
function _x509_getPublicKeyHexArrayFromCertHex(hCert) {
var p = _x509_getSubjectPublicKeyPosFromCertHex(hCert);
var a = ASN1HEX.getPosArrayOfChildren_AtObj(hCert, p);
//var a = ASN1HEX.getPosArrayOfChildren_AtObj(hCert, a[3]);
if(LOG>4){
console.log('a is now');
console.log(a);
}
//if (a.length != 2) return [];
if (a.length < 2) return [];
var hN = ASN1HEX.getHexOfV_AtObj(hCert, a[0]);
var hE = ASN1HEX.getHexOfV_AtObj(hCert, a[1]);
if (hN != null && hE != null) {
return [hN, hE];
} else {
return [];
}
}
function _x509_getPublicKeyHexArrayFromCertPEM(sCertPEM) {
var hCert = _x509_pemToHex(sCertPEM);
var a = _x509_getPublicKeyHexArrayFromCertHex(hCert);
return a;
}
// ===== get basic fields from hex =====================================
/**
* get hexadecimal string of serialNumber field of certificate.<br/>
* @name getSerialNumberHex
* @memberOf X509#
* @function
*/
function _x509_getSerialNumberHex() {
return ASN1HEX.getDecendantHexVByNthList(this.hex, 0, [0, 1]);
}
/**
* get hexadecimal string of issuer field of certificate.<br/>
* @name getIssuerHex
* @memberOf X509#
* @function
*/
function _x509_getIssuerHex() {
return ASN1HEX.getDecendantHexTLVByNthList(this.hex, 0, [0, 3]);
}
/**
* get string of issuer field of certificate.<br/>
* @name getIssuerString
* @memberOf X509#
* @function
*/
function _x509_getIssuerString() {
return _x509_hex2dn(ASN1HEX.getDecendantHexTLVByNthList(this.hex, 0, [0, 3]));
}
/**
* get hexadecimal string of subject field of certificate.<br/>
* @name getSubjectHex
* @memberOf X509#
* @function
*/
function _x509_getSubjectHex() {
return ASN1HEX.getDecendantHexTLVByNthList(this.hex, 0, [0, 5]);
}
/**
* get string of subject field of certificate.<br/>
* @name getSubjectString
* @memberOf X509#
* @function
*/
function _x509_getSubjectString() {
return _x509_hex2dn(ASN1HEX.getDecendantHexTLVByNthList(this.hex, 0, [0, 5]));
}
/**
* get notBefore field string of certificate.<br/>
* @name getNotBefore
* @memberOf X509#
* @function
*/
function _x509_getNotBefore() {
var s = ASN1HEX.getDecendantHexVByNthList(this.hex, 0, [0, 4, 0]);
s = s.replace(/(..)/g, "%$1");
s = decodeURIComponent(s);
return s;
}
/**
* get notAfter field string of certificate.<br/>
* @name getNotAfter
* @memberOf X509#
* @function
*/
function _x509_getNotAfter() {
var s = ASN1HEX.getDecendantHexVByNthList(this.hex, 0, [0, 4, 1]);
s = s.replace(/(..)/g, "%$1");
s = decodeURIComponent(s);
return s;
}
// ===== read certificate =====================================
_x509_DN_ATTRHEX = {
"0603550406": "C",
"060355040a": "O",
"060355040b": "OU",
"0603550403": "CN",
"0603550405": "SN",
"0603550408": "ST",
"0603550407": "L" };
function _x509_hex2dn(hDN) {
var s = "";
var a = ASN1HEX.getPosArrayOfChildren_AtObj(hDN, 0);
for (var i = 0; i < a.length; i++) {
var hRDN = ASN1HEX.getHexOfTLV_AtObj(hDN, a[i]);
s = s + "/" + _x509_hex2rdn(hRDN);
}
return s;
}
function _x509_hex2rdn(hRDN) {
var hType = ASN1HEX.getDecendantHexTLVByNthList(hRDN, 0, [0, 0]);
var hValue = ASN1HEX.getDecendantHexVByNthList(hRDN, 0, [0, 1]);
var type = "";
try { type = _x509_DN_ATTRHEX[hType]; } catch (ex) { type = hType; }
hValue = hValue.replace(/(..)/g, "%$1");
var value = decodeURIComponent(hValue);
return type + "=" + value;
}
// ===== read certificate =====================================
/**
* read PEM formatted X.509 certificate from string.<br/>
* @name readCertPEM
* @memberOf X509#
* @function
* @param {String} sCertPEM string for PEM formatted X.509 certificate
*/
function _x509_readCertPEM(sCertPEM) {
var hCert = _x509_pemToHex(sCertPEM);
var a = _x509_getPublicKeyHexArrayFromCertHex(hCert);
if(LOG>4){
console.log('HEX VALUE IS ' + hCert);
console.log('type of a' + typeof a);
console.log('a VALUE IS ');
console.log(a);
console.log('a[0] VALUE IS ' + a[0]);
console.log('a[1] VALUE IS ' + a[1]);
}
var rsa = new RSAKey();
rsa.setPublic(a[0], a[1]);
this.subjectPublicKeyRSA = rsa;
this.subjectPublicKeyRSA_hN = a[0];
this.subjectPublicKeyRSA_hE = a[1];
this.hex = hCert;
}
function _x509_readCertPEMWithoutRSAInit(sCertPEM) {
var hCert = _x509_pemToHex(sCertPEM);
var a = _x509_getPublicKeyHexArrayFromCertHex(hCert);
this.subjectPublicKeyRSA.setPublic(a[0], a[1]);
this.subjectPublicKeyRSA_hN = a[0];
this.subjectPublicKeyRSA_hE = a[1];
this.hex = hCert;
}
/**
* X.509 certificate class.<br/>
* @class X.509 certificate class
* @property {RSAKey} subjectPublicKeyRSA Tom Wu's RSAKey object
* @property {String} subjectPublicKeyRSA_hN hexadecimal string for modulus of RSA public key
* @property {String} subjectPublicKeyRSA_hE hexadecimal string for public exponent of RSA public key
* @property {String} hex hexacedimal string for X.509 certificate.
* @author Kenji Urushima
* @version 1.0.1 (08 May 2012)
* @see <a href="http://kjur.github.com/jsrsasigns/">'jwrsasign'(RSA Sign JavaScript Library) home page http://kjur.github.com/jsrsasign/</a>
*/
function X509() {
this.subjectPublicKeyRSA = null;
this.subjectPublicKeyRSA_hN = null;
this.subjectPublicKeyRSA_hE = null;
this.hex = null;
}
X509.prototype.readCertPEM = _x509_readCertPEM;
X509.prototype.readCertPEMWithoutRSAInit = _x509_readCertPEMWithoutRSAInit;
X509.prototype.getSerialNumberHex = _x509_getSerialNumberHex;
X509.prototype.getIssuerHex = _x509_getIssuerHex;
X509.prototype.getSubjectHex = _x509_getSubjectHex;
X509.prototype.getIssuerString = _x509_getIssuerString;
X509.prototype.getSubjectString = _x509_getSubjectString;
X509.prototype.getNotBefore = _x509_getNotBefore;
X509.prototype.getNotAfter = _x509_getNotAfter;
// Copyright (c) 2005 Tom Wu
// All Rights Reserved.
// See "LICENSE" for details.
// Basic JavaScript BN library - subset useful for RSA encryption.
// Bits per digit
var dbits;
// JavaScript engine analysis
var canary = 0xdeadbeefcafe;
var j_lm = ((canary&0xffffff)==0xefcafe);
// (public) Constructor
function BigInteger(a,b,c) {
if(a != null)
if("number" == typeof a) this.fromNumber(a,b,c);
else if(b == null && "string" != typeof a) this.fromString(a,256);
else this.fromString(a,b);
}
// return new, unset BigInteger
function nbi() { return new BigInteger(null); }
// am: Compute w_j += (x*this_i), propagate carries,
// c is initial carry, returns final carry.
// c < 3*dvalue, x < 2*dvalue, this_i < dvalue
// We need to select the fastest one that works in this environment.
// am1: use a single mult and divide to get the high bits,
// max digit bits should be 26 because
// max internal value = 2*dvalue^2-2*dvalue (< 2^53)
function am1(i,x,w,j,c,n) {
while(--n >= 0) {
var v = x*this[i++]+w[j]+c;
c = Math.floor(v/0x4000000);
w[j++] = v&0x3ffffff;
}
return c;
}
// am2 avoids a big mult-and-extract completely.
// Max digit bits should be <= 30 because we do bitwise ops
// on values up to 2*hdvalue^2-hdvalue-1 (< 2^31)
function am2(i,x,w,j,c,n) {
var xl = x&0x7fff, xh = x>>15;
while(--n >= 0) {
var l = this[i]&0x7fff;
var h = this[i++]>>15;
var m = xh*l+h*xl;
l = xl*l+((m&0x7fff)<<15)+w[j]+(c&0x3fffffff);
c = (l>>>30)+(m>>>15)+xh*h+(c>>>30);
w[j++] = l&0x3fffffff;
}
return c;
}
// Alternately, set max digit bits to 28 since some
// browsers slow down when dealing with 32-bit numbers.
function am3(i,x,w,j,c,n) {
var xl = x&0x3fff, xh = x>>14;
while(--n >= 0) {
var l = this[i]&0x3fff;
var h = this[i++]>>14;
var m = xh*l+h*xl;
l = xl*l+((m&0x3fff)<<14)+w[j]+c;
c = (l>>28)+(m>>14)+xh*h;
w[j++] = l&0xfffffff;
}
return c;
}
if(j_lm && (navigator.appName == "Microsoft Internet Explorer")) {
BigInteger.prototype.am = am2;
dbits = 30;
}
else if(j_lm && (navigator.appName != "Netscape")) {
BigInteger.prototype.am = am1;
dbits = 26;
}
else { // Mozilla/Netscape seems to prefer am3
BigInteger.prototype.am = am3;
dbits = 28;
}
BigInteger.prototype.DB = dbits;
BigInteger.prototype.DM = ((1<<dbits)-1);
BigInteger.prototype.DV = (1<<dbits);
var BI_FP = 52;
BigInteger.prototype.FV = Math.pow(2,BI_FP);
BigInteger.prototype.F1 = BI_FP-dbits;
BigInteger.prototype.F2 = 2*dbits-BI_FP;
// Digit conversions
var BI_RM = "0123456789abcdefghijklmnopqrstuvwxyz";
var BI_RC = new Array();
var rr,vv;
rr = "0".charCodeAt(0);
for(vv = 0; vv <= 9; ++vv) BI_RC[rr++] = vv;
rr = "a".charCodeAt(0);
for(vv = 10; vv < 36; ++vv) BI_RC[rr++] = vv;
rr = "A".charCodeAt(0);
for(vv = 10; vv < 36; ++vv) BI_RC[rr++] = vv;
function int2char(n) { return BI_RM.charAt(n); }
function intAt(s,i) {
var c = BI_RC[s.charCodeAt(i)];
return (c==null)?-1:c;
}
// (protected) copy this to r
function bnpCopyTo(r) {
for(var i = this.t-1; i >= 0; --i) r[i] = this[i];
r.t = this.t;
r.s = this.s;
}
// (protected) set from integer value x, -DV <= x < DV
function bnpFromInt(x) {
this.t = 1;
this.s = (x<0)?-1:0;
if(x > 0) this[0] = x;
else if(x < -1) this[0] = x+DV;
else this.t = 0;
}
// return bigint initialized to value
function nbv(i) { var r = nbi(); r.fromInt(i); return r; }
// (protected) set from string and radix
function bnpFromString(s,b) {
var k;
if(b == 16) k = 4;
else if(b == 8) k = 3;
else if(b == 256) k = 8; // byte array
else if(b == 2) k = 1;
else if(b == 32) k = 5;
else if(b == 4) k = 2;
else { this.fromRadix(s,b); return; }
this.t = 0;
this.s = 0;
var i = s.length, mi = false, sh = 0;
while(--i >= 0) {
var x = (k==8)?s[i]&0xff:intAt(s,i);
if(x < 0) {
if(s.charAt(i) == "-") mi = true;
continue;
}
mi = false;
if(sh == 0)
this[this.t++] = x;
else if(sh+k > this.DB) {
this[this.t-1] |= (x&((1<<(this.DB-sh))-1))<<sh;
this[this.t++] = (x>>(this.DB-sh));
}
else
this[this.t-1] |= x<<sh;
sh += k;
if(sh >= this.DB) sh -= this.DB;
}
if(k == 8 && (s[0]&0x80) != 0) {
this.s = -1;
if(sh > 0) this[this.t-1] |= ((1<<(this.DB-sh))-1)<<sh;
}
this.clamp();
if(mi) BigInteger.ZERO.subTo(this,this);
}
// (protected) clamp off excess high words
function bnpClamp() {
var c = this.s&this.DM;
while(this.t > 0 && this[this.t-1] == c) --this.t;
}
// (public) return string representation in given radix
function bnToString(b) {
if(this.s < 0) return "-"+this.negate().toString(b);
var k;
if(b == 16) k = 4;
else if(b == 8) k = 3;
else if(b == 2) k = 1;
else if(b == 32) k = 5;
else if(b == 4) k = 2;
else return this.toRadix(b);
var km = (1<<k)-1, d, m = false, r = "", i = this.t;
var p = this.DB-(i*this.DB)%k;
if(i-- > 0) {
if(p < this.DB && (d = this[i]>>p) > 0) { m = true; r = int2char(d); }
while(i >= 0) {
if(p < k) {
d = (this[i]&((1<<p)-1))<<(k-p);
d |= this[--i]>>(p+=this.DB-k);
}
else {
d = (this[i]>>(p-=k))&km;
if(p <= 0) { p += this.DB; --i; }
}
if(d > 0) m = true;
if(m) r += int2char(d);
}
}
return m?r:"0";
}
// (public) -this
function bnNegate() { var r = nbi(); BigInteger.ZERO.subTo(this,r); return r; }
// (public) |this|
function bnAbs() { return (this.s<0)?this.negate():this; }
// (public) return + if this > a, - if this < a, 0 if equal
function bnCompareTo(a) {
var r = this.s-a.s;
if(r != 0) return r;
var i = this.t;
r = i-a.t;
if(r != 0) return r;
while(--i >= 0) if((r=this[i]-a[i]) != 0) return r;
return 0;
}
// returns bit length of the integer x
function nbits(x) {
var r = 1, t;
if((t=x>>>16) != 0) { x = t; r += 16; }
if((t=x>>8) != 0) { x = t; r += 8; }
if((t=x>>4) != 0) { x = t; r += 4; }
if((t=x>>2) != 0) { x = t; r += 2; }
if((t=x>>1) != 0) { x = t; r += 1; }
return r;
}
// (public) return the number of bits in "this"
function bnBitLength() {
if(this.t <= 0) return 0;
return this.DB*(this.t-1)+nbits(this[this.t-1]^(this.s&this.DM));
}
// (protected) r = this << n*DB
function bnpDLShiftTo(n,r) {
var i;
for(i = this.t-1; i >= 0; --i) r[i+n] = this[i];
for(i = n-1; i >= 0; --i) r[i] = 0;
r.t = this.t+n;
r.s = this.s;
}
// (protected) r = this >> n*DB
function bnpDRShiftTo(n,r) {
for(var i = n; i < this.t; ++i) r[i-n] = this[i];
r.t = Math.max(this.t-n,0);
r.s = this.s;
}
// (protected) r = this << n
function bnpLShiftTo(n,r) {
var bs = n%this.DB;
var cbs = this.DB-bs;
var bm = (1<<cbs)-1;
var ds = Math.floor(n/this.DB), c = (this.s<<bs)&this.DM, i;
for(i = this.t-1; i >= 0; --i) {
r[i+ds+1] = (this[i]>>cbs)|c;
c = (this[i]&bm)<<bs;
}
for(i = ds-1; i >= 0; --i) r[i] = 0;
r[ds] = c;
r.t = this.t+ds+1;
r.s = this.s;
r.clamp();
}
// (protected) r = this >> n
function bnpRShiftTo(n,r) {
r.s = this.s;
var ds = Math.floor(n/this.DB);
if(ds >= this.t) { r.t = 0; return; }
var bs = n%this.DB;
var cbs = this.DB-bs;
var bm = (1<<bs)-1;
r[0] = this[ds]>>bs;
for(var i = ds+1; i < this.t; ++i) {
r[i-ds-1] |= (this[i]&bm)<<cbs;
r[i-ds] = this[i]>>bs;
}
if(bs > 0) r[this.t-ds-1] |= (this.s&bm)<<cbs;
r.t = this.t-ds;
r.clamp();
}
// (protected) r = this - a
function bnpSubTo(a,r) {
var i = 0, c = 0, m = Math.min(a.t,this.t);
while(i < m) {
c += this[i]-a[i];
r[i++] = c&this.DM;
c >>= this.DB;
}
if(a.t < this.t) {
c -= a.s;
while(i < this.t) {
c += this[i];
r[i++] = c&this.DM;
c >>= this.DB;
}
c += this.s;
}
else {
c += this.s;
while(i < a.t) {
c -= a[i];
r[i++] = c&this.DM;
c >>= this.DB;
}
c -= a.s;
}
r.s = (c<0)?-1:0;
if(c < -1) r[i++] = this.DV+c;
else if(c > 0) r[i++] = c;
r.t = i;
r.clamp();
}
// (protected) r = this * a, r != this,a (HAC 14.12)
// "this" should be the larger one if appropriate.
function bnpMultiplyTo(a,r) {
var x = this.abs(), y = a.abs();
var i = x.t;
r.t = i+y.t;
while(--i >= 0) r[i] = 0;
for(i = 0; i < y.t; ++i) r[i+x.t] = x.am(0,y[i],r,i,0,x.t);
r.s = 0;
r.clamp();
if(this.s != a.s) BigInteger.ZERO.subTo(r,r);
}
// (protected) r = this^2, r != this (HAC 14.16)
function bnpSquareTo(r) {
var x = this.abs();
var i = r.t = 2*x.t;
while(--i >= 0) r[i] = 0;
for(i = 0; i < x.t-1; ++i) {
var c = x.am(i,x[i],r,2*i,0,1);
if((r[i+x.t]+=x.am(i+1,2*x[i],r,2*i+1,c,x.t-i-1)) >= x.DV) {
r[i+x.t] -= x.DV;
r[i+x.t+1] = 1;
}
}
if(r.t > 0) r[r.t-1] += x.am(i,x[i],r,2*i,0,1);
r.s = 0;
r.clamp();
}
// (protected) divide this by m, quotient and remainder to q, r (HAC 14.20)
// r != q, this != m. q or r may be null.
function bnpDivRemTo(m,q,r) {
var pm = m.abs();
if(pm.t <= 0) return;
var pt = this.abs();
if(pt.t < pm.t) {
if(q != null) q.fromInt(0);
if(r != null) this.copyTo(r);
return;
}
if(r == null) r = nbi();
var y = nbi(), ts = this.s, ms = m.s;
var nsh = this.DB-nbits(pm[pm.t-1]); // normalize modulus
if(nsh > 0) { pm.lShiftTo(nsh,y); pt.lShiftTo(nsh,r); }
else { pm.copyTo(y); pt.copyTo(r); }
var ys = y.t;
var y0 = y[ys-1];
if(y0 == 0) return;
var yt = y0*(1<<this.F1)+((ys>1)?y[ys-2]>>this.F2:0);
var d1 = this.FV/yt, d2 = (1<<this.F1)/yt, e = 1<<this.F2;
var i = r.t, j = i-ys, t = (q==null)?nbi():q;
y.dlShiftTo(j,t);
if(r.compareTo(t) >= 0) {
r[r.t++] = 1;
r.subTo(t,r);
}
BigInteger.ONE.dlShiftTo(ys,t);
t.subTo(y,y); // "negative" y so we can replace sub with am later
while(y.t < ys) y[y.t++] = 0;
while(--j >= 0) {
// Estimate quotient digit
var qd = (r[--i]==y0)?this.DM:Math.floor(r[i]*d1+(r[i-1]+e)*d2);
if((r[i]+=y.am(0,qd,r,j,0,ys)) < qd) { // Try it out
y.dlShiftTo(j,t);
r.subTo(t,r);
while(r[i] < --qd) r.subTo(t,r);
}
}
if(q != null) {
r.drShiftTo(ys,q);
if(ts != ms) BigInteger.ZERO.subTo(q,q);
}
r.t = ys;
r.clamp();
if(nsh > 0) r.rShiftTo(nsh,r); // Denormalize remainder
if(ts < 0) BigInteger.ZERO.subTo(r,r);
}
// (public) this mod a
function bnMod(a) {
var r = nbi();
this.abs().divRemTo(a,null,r);
if(this.s < 0 && r.compareTo(BigInteger.ZERO) > 0) a.subTo(r,r);
return r;
}
// Modular reduction using "classic" algorithm
function Classic(m) { this.m = m; }
function cConvert(x) {
if(x.s < 0 || x.compareTo(this.m) >= 0) return x.mod(this.m);
else return x;
}
function cRevert(x) { return x; }
function cReduce(x) { x.divRemTo(this.m,null,x); }
function cMulTo(x,y,r) { x.multiplyTo(y,r); this.reduce(r); }
function cSqrTo(x,r) { x.squareTo(r); this.reduce(r); }
Classic.prototype.convert = cConvert;
Classic.prototype.revert = cRevert;
Classic.prototype.reduce = cReduce;
Classic.prototype.mulTo = cMulTo;
Classic.prototype.sqrTo = cSqrTo;
// (protected) return "-1/this % 2^DB"; useful for Mont. reduction
// justification:
// xy == 1 (mod m)
// xy = 1+km
// xy(2-xy) = (1+km)(1-km)
// x[y(2-xy)] = 1-k^2m^2
// x[y(2-xy)] == 1 (mod m^2)
// if y is 1/x mod m, then y(2-xy) is 1/x mod m^2
// should reduce x and y(2-xy) by m^2 at each step to keep size bounded.
// JS multiply "overflows" differently from C/C++, so care is needed here.
function bnpInvDigit() {
if(this.t < 1) return 0;
var x = this[0];
if((x&1) == 0) return 0;
var y = x&3; // y == 1/x mod 2^2
y = (y*(2-(x&0xf)*y))&0xf; // y == 1/x mod 2^4
y = (y*(2-(x&0xff)*y))&0xff; // y == 1/x mod 2^8
y = (y*(2-(((x&0xffff)*y)&0xffff)))&0xffff; // y == 1/x mod 2^16
// last step - calculate inverse mod DV directly;
// assumes 16 < DB <= 32 and assumes ability to handle 48-bit ints
y = (y*(2-x*y%this.DV))%this.DV; // y == 1/x mod 2^dbits
// we really want the negative inverse, and -DV < y < DV
return (y>0)?this.DV-y:-y;
}
// Montgomery reduction
function Montgomery(m) {
this.m = m;
this.mp = m.invDigit();
this.mpl = this.mp&0x7fff;
this.mph = this.mp>>15;
this.um = (1<<(m.DB-15))-1;
this.mt2 = 2*m.t;
}
// xR mod m
function montConvert(x) {
var r = nbi();
x.abs().dlShiftTo(this.m.t,r);
r.divRemTo(this.m,null,r);
if(x.s < 0 && r.compareTo(BigInteger.ZERO) > 0) this.m.subTo(r,r);
return r;
}
// x/R mod m
function montRevert(x) {
var r = nbi();
x.copyTo(r);
this.reduce(r);
return r;
}
// x = x/R mod m (HAC 14.32)
function montReduce(x) {
while(x.t <= this.mt2) // pad x so am has enough room later
x[x.t++] = 0;
for(var i = 0; i < this.m.t; ++i) {
// faster way of calculating u0 = x[i]*mp mod DV
var j = x[i]&0x7fff;
var u0 = (j*this.mpl+(((j*this.mph+(x[i]>>15)*this.mpl)&this.um)<<15))&x.DM;
// use am to combine the multiply-shift-add into one call
j = i+this.m.t;
x[j] += this.m.am(0,u0,x,i,0,this.m.t);
// propagate carry
while(x[j] >= x.DV) { x[j] -= x.DV; x[++j]++; }
}
x.clamp();
x.drShiftTo(this.m.t,x);
if(x.compareTo(this.m) >= 0) x.subTo(this.m,x);
}
// r = "x^2/R mod m"; x != r
function montSqrTo(x,r) { x.squareTo(r); this.reduce(r); }
// r = "xy/R mod m"; x,y != r
function montMulTo(x,y,r) { x.multiplyTo(y,r); this.reduce(r); }
Montgomery.prototype.convert = montConvert;
Montgomery.prototype.revert = montRevert;
Montgomery.prototype.reduce = montReduce;
Montgomery.prototype.mulTo = montMulTo;
Montgomery.prototype.sqrTo = montSqrTo;
// (protected) true iff this is even
function bnpIsEven() { return ((this.t>0)?(this[0]&1):this.s) == 0; }
// (protected) this^e, e < 2^32, doing sqr and mul with "r" (HAC 14.79)
function bnpExp(e,z) {
if(e > 0xffffffff || e < 1) return BigInteger.ONE;
var r = nbi(), r2 = nbi(), g = z.convert(this), i = nbits(e)-1;
g.copyTo(r);
while(--i >= 0) {
z.sqrTo(r,r2);
if((e&(1<<i)) > 0) z.mulTo(r2,g,r);
else { var t = r; r = r2; r2 = t; }
}
return z.revert(r);
}
// (public) this^e % m, 0 <= e < 2^32
function bnModPowInt(e,m) {
var z;
if(e < 256 || m.isEven()) z = new Classic(m); else z = new Montgomery(m);
return this.exp(e,z);
}
// protected
BigInteger.prototype.copyTo = bnpCopyTo;
BigInteger.prototype.fromInt = bnpFromInt;
BigInteger.prototype.fromString = bnpFromString;
BigInteger.prototype.clamp = bnpClamp;
BigInteger.prototype.dlShiftTo = bnpDLShiftTo;
BigInteger.prototype.drShiftTo = bnpDRShiftTo;
BigInteger.prototype.lShiftTo = bnpLShiftTo;
BigInteger.prototype.rShiftTo = bnpRShiftTo;
BigInteger.prototype.subTo = bnpSubTo;
BigInteger.prototype.multiplyTo = bnpMultiplyTo;
BigInteger.prototype.squareTo = bnpSquareTo;
BigInteger.prototype.divRemTo = bnpDivRemTo;
BigInteger.prototype.invDigit = bnpInvDigit;
BigInteger.prototype.isEven = bnpIsEven;
BigInteger.prototype.exp = bnpExp;
// public
BigInteger.prototype.toString = bnToString;
BigInteger.prototype.negate = bnNegate;
BigInteger.prototype.abs = bnAbs;
BigInteger.prototype.compareTo = bnCompareTo;
BigInteger.prototype.bitLength = bnBitLength;
BigInteger.prototype.mod = bnMod;
BigInteger.prototype.modPowInt = bnModPowInt;
// "constants"
BigInteger.ZERO = nbv(0);
BigInteger.ONE = nbv(1);
// Copyright (c) 2005-2009 Tom Wu
// All Rights Reserved.
// See "LICENSE" for details.
// Extended JavaScript BN functions, required for RSA private ops.
// Version 1.1: new BigInteger("0", 10) returns "proper" zero
// (public)
function bnClone() { var r = nbi(); this.copyTo(r); return r; }
// (public) return value as integer
function bnIntValue() {
if(this.s < 0) {
if(this.t == 1) return this[0]-this.DV;
else if(this.t == 0) return -1;
}
else if(this.t == 1) return this[0];
else if(this.t == 0) return 0;
// assumes 16 < DB < 32
return ((this[1]&((1<<(32-this.DB))-1))<<this.DB)|this[0];
}
// (public) return value as byte
function bnByteValue() { return (this.t==0)?this.s:(this[0]<<24)>>24; }
// (public) return value as short (assumes DB>=16)
function bnShortValue() { return (this.t==0)?this.s:(this[0]<<16)>>16; }
// (protected) return x s.t. r^x < DV
function bnpChunkSize(r) { return Math.floor(Math.LN2*this.DB/Math.log(r)); }
// (public) 0 if this == 0, 1 if this > 0
function bnSigNum() {
if(this.s < 0) return -1;
else if(this.t <= 0 || (this.t == 1 && this[0] <= 0)) return 0;
else return 1;
}
// (protected) convert to radix string
function bnpToRadix(b) {
if(b == null) b = 10;
if(this.signum() == 0 || b < 2 || b > 36) return "0";
var cs = this.chunkSize(b);
var a = Math.pow(b,cs);
var d = nbv(a), y = nbi(), z = nbi(), r = "";
this.divRemTo(d,y,z);
while(y.signum() > 0) {
r = (a+z.intValue()).toString(b).substr(1) + r;
y.divRemTo(d,y,z);
}
return z.intValue().toString(b) + r;
}
// (protected) convert from radix string
function bnpFromRadix(s,b) {
this.fromInt(0);
if(b == null) b = 10;
var cs = this.chunkSize(b);
var d = Math.pow(b,cs), mi = false, j = 0, w = 0;
for(var i = 0; i < s.length; ++i) {
var x = intAt(s,i);
if(x < 0) {
if(s.charAt(i) == "-" && this.signum() == 0) mi = true;
continue;
}
w = b*w+x;
if(++j >= cs) {
this.dMultiply(d);
this.dAddOffset(w,0);
j = 0;
w = 0;
}
}
if(j > 0) {
this.dMultiply(Math.pow(b,j));
this.dAddOffset(w,0);
}
if(mi) BigInteger.ZERO.subTo(this,this);
}
// (protected) alternate constructor
function bnpFromNumber(a,b,c) {
if("number" == typeof b) {
// new BigInteger(int,int,RNG)
if(a < 2) this.fromInt(1);
else {
this.fromNumber(a,c);
if(!this.testBit(a-1)) // force MSB set
this.bitwiseTo(BigInteger.ONE.shiftLeft(a-1),op_or,this);
if(this.isEven()) this.dAddOffset(1,0); // force odd
while(!this.isProbablePrime(b)) {
this.dAddOffset(2,0);
if(this.bitLength() > a) this.subTo(BigInteger.ONE.shiftLeft(a-1),this);
}
}
}
else {
// new BigInteger(int,RNG)
var x = new Array(), t = a&7;
x.length = (a>>3)+1;
b.nextBytes(x);
if(t > 0) x[0] &= ((1<<t)-1); else x[0] = 0;
this.fromString(x,256);
}
}
// (public) convert to bigendian byte array
function bnToByteArray() {
var i = this.t, r = new Array();
r[0] = this.s;
var p = this.DB-(i*this.DB)%8, d, k = 0;
if(i-- > 0) {
if(p < this.DB && (d = this[i]>>p) != (this.s&this.DM)>>p)
r[k++] = d|(this.s<<(this.DB-p));
while(i >= 0) {
if(p < 8) {
d = (this[i]&((1<<p)-1))<<(8-p);
d |= this[--i]>>(p+=this.DB-8);
}
else {
d = (this[i]>>(p-=8))&0xff;
if(p <= 0) { p += this.DB; --i; }
}
if((d&0x80) != 0) d |= -256;
if(k == 0 && (this.s&0x80) != (d&0x80)) ++k;
if(k > 0 || d != this.s) r[k++] = d;
}
}
return r;
}
function bnEquals(a) { return(this.compareTo(a)==0); }
function bnMin(a) { return(this.compareTo(a)<0)?this:a; }
function bnMax(a) { return(this.compareTo(a)>0)?this:a; }
// (protected) r = this op a (bitwise)
function bnpBitwiseTo(a,op,r) {
var i, f, m = Math.min(a.t,this.t);
for(i = 0; i < m; ++i) r[i] = op(this[i],a[i]);
if(a.t < this.t) {
f = a.s&this.DM;
for(i = m; i < this.t; ++i) r[i] = op(this[i],f);
r.t = this.t;
}
else {
f = this.s&this.DM;
for(i = m; i < a.t; ++i) r[i] = op(f,a[i]);
r.t = a.t;
}
r.s = op(this.s,a.s);
r.clamp();
}
// (public) this & a
function op_and(x,y) { return x&y; }
function bnAnd(a) { var r = nbi(); this.bitwiseTo(a,op_and,r); return r; }
// (public) this | a
function op_or(x,y) { return x|y; }
function bnOr(a) { var r = nbi(); this.bitwiseTo(a,op_or,r); return r; }
// (public) this ^ a
function op_xor(x,y) { return x^y; }
function bnXor(a) { var r = nbi(); this.bitwiseTo(a,op_xor,r); return r; }
// (public) this & ~a
function op_andnot(x,y) { return x&~y; }
function bnAndNot(a) { var r = nbi(); this.bitwiseTo(a,op_andnot,r); return r; }
// (public) ~this
function bnNot() {
var r = nbi();
for(var i = 0; i < this.t; ++i) r[i] = this.DM&~this[i];
r.t = this.t;
r.s = ~this.s;
return r;
}
// (public) this << n
function bnShiftLeft(n) {
var r = nbi();
if(n < 0) this.rShiftTo(-n,r); else this.lShiftTo(n,r);
return r;
}
// (public) this >> n
function bnShiftRight(n) {
var r = nbi();
if(n < 0) this.lShiftTo(-n,r); else this.rShiftTo(n,r);
return r;
}
// return index of lowest 1-bit in x, x < 2^31
function lbit(x) {
if(x == 0) return -1;
var r = 0;
if((x&0xffff) == 0) { x >>= 16; r += 16; }
if((x&0xff) == 0) { x >>= 8; r += 8; }
if((x&0xf) == 0) { x >>= 4; r += 4; }
if((x&3) == 0) { x >>= 2; r += 2; }
if((x&1) == 0) ++r;
return r;
}
// (public) returns index of lowest 1-bit (or -1 if none)
function bnGetLowestSetBit() {
for(var i = 0; i < this.t; ++i)
if(this[i] != 0) return i*this.DB+lbit(this[i]);
if(this.s < 0) return this.t*this.DB;
return -1;
}
// return number of 1 bits in x
function cbit(x) {
var r = 0;
while(x != 0) { x &= x-1; ++r; }
return r;
}
// (public) return number of set bits
function bnBitCount() {
var r = 0, x = this.s&this.DM;
for(var i = 0; i < this.t; ++i) r += cbit(this[i]^x);
return r;
}
// (public) true iff nth bit is set
function bnTestBit(n) {
var j = Math.floor(n/this.DB);
if(j >= this.t) return(this.s!=0);
return((this[j]&(1<<(n%this.DB)))!=0);
}
// (protected) this op (1<<n)
function bnpChangeBit(n,op) {
var r = BigInteger.ONE.shiftLeft(n);
this.bitwiseTo(r,op,r);
return r;
}
// (public) this | (1<<n)
function bnSetBit(n) { return this.changeBit(n,op_or); }
// (public) this & ~(1<<n)
function bnClearBit(n) { return this.changeBit(n,op_andnot); }
// (public) this ^ (1<<n)
function bnFlipBit(n) { return this.changeBit(n,op_xor); }
// (protected) r = this + a
function bnpAddTo(a,r) {
var i = 0, c = 0, m = Math.min(a.t,this.t);
while(i < m) {
c += this[i]+a[i];
r[i++] = c&this.DM;
c >>= this.DB;
}
if(a.t < this.t) {
c += a.s;
while(i < this.t) {
c += this[i];
r[i++] = c&this.DM;
c >>= this.DB;
}
c += this.s;
}
else {
c += this.s;
while(i < a.t) {
c += a[i];
r[i++] = c&this.DM;
c >>= this.DB;
}
c += a.s;
}
r.s = (c<0)?-1:0;
if(c > 0) r[i++] = c;
else if(c < -1) r[i++] = this.DV+c;
r.t = i;
r.clamp();
}
// (public) this + a
function bnAdd(a) { var r = nbi(); this.addTo(a,r); return r; }
// (public) this - a
function bnSubtract(a) { var r = nbi(); this.subTo(a,r); return r; }
// (public) this * a
function bnMultiply(a) { var r = nbi(); this.multiplyTo(a,r); return r; }
// (public) this / a
function bnDivide(a) { var r = nbi(); this.divRemTo(a,r,null); return r; }
// (public) this % a
function bnRemainder(a) { var r = nbi(); this.divRemTo(a,null,r); return r; }
// (public) [this/a,this%a]
function bnDivideAndRemainder(a) {
var q = nbi(), r = nbi();
this.divRemTo(a,q,r);
return new Array(q,r);
}
// (protected) this *= n, this >= 0, 1 < n < DV
function bnpDMultiply(n) {
this[this.t] = this.am(0,n-1,this,0,0,this.t);
++this.t;
this.clamp();
}
// (protected) this += n << w words, this >= 0
function bnpDAddOffset(n,w) {
if(n == 0) return;
while(this.t <= w) this[this.t++] = 0;
this[w] += n;
while(this[w] >= this.DV) {
this[w] -= this.DV;
if(++w >= this.t) this[this.t++] = 0;
++this[w];
}
}
// A "null" reducer
function NullExp() {}
function nNop(x) { return x; }
function nMulTo(x,y,r) { x.multiplyTo(y,r); }
function nSqrTo(x,r) { x.squareTo(r); }
NullExp.prototype.convert = nNop;
NullExp.prototype.revert = nNop;
NullExp.prototype.mulTo = nMulTo;
NullExp.prototype.sqrTo = nSqrTo;
// (public) this^e
function bnPow(e) { return this.exp(e,new NullExp()); }
// (protected) r = lower n words of "this * a", a.t <= n
// "this" should be the larger one if appropriate.
function bnpMultiplyLowerTo(a,n,r) {
var i = Math.min(this.t+a.t,n);
r.s = 0; // assumes a,this >= 0
r.t = i;
while(i > 0) r[--i] = 0;
var j;
for(j = r.t-this.t; i < j; ++i) r[i+this.t] = this.am(0,a[i],r,i,0,this.t);
for(j = Math.min(a.t,n); i < j; ++i) this.am(0,a[i],r,i,0,n-i);
r.clamp();
}
// (protected) r = "this * a" without lower n words, n > 0
// "this" should be the larger one if appropriate.
function bnpMultiplyUpperTo(a,n,r) {
--n;
var i = r.t = this.t+a.t-n;
r.s = 0; // assumes a,this >= 0
while(--i >= 0) r[i] = 0;
for(i = Math.max(n-this.t,0); i < a.t; ++i)
r[this.t+i-n] = this.am(n-i,a[i],r,0,0,this.t+i-n);
r.clamp();
r.drShiftTo(1,r);
}
// Barrett modular reduction
function Barrett(m) {
// setup Barrett
this.r2 = nbi();
this.q3 = nbi();
BigInteger.ONE.dlShiftTo(2*m.t,this.r2);
this.mu = this.r2.divide(m);
this.m = m;
}
function barrettConvert(x) {
if(x.s < 0 || x.t > 2*this.m.t) return x.mod(this.m);
else if(x.compareTo(this.m) < 0) return x;
else { var r = nbi(); x.copyTo(r); this.reduce(r); return r; }
}
function barrettRevert(x) { return x; }
// x = x mod m (HAC 14.42)
function barrettReduce(x) {
x.drShiftTo(this.m.t-1,this.r2);
if(x.t > this.m.t+1) { x.t = this.m.t+1; x.clamp(); }
this.mu.multiplyUpperTo(this.r2,this.m.t+1,this.q3);
this.m.multiplyLowerTo(this.q3,this.m.t+1,this.r2);
while(x.compareTo(this.r2) < 0) x.dAddOffset(1,this.m.t+1);
x.subTo(this.r2,x);
while(x.compareTo(this.m) >= 0) x.subTo(this.m,x);
}
// r = x^2 mod m; x != r
function barrettSqrTo(x,r) { x.squareTo(r); this.reduce(r); }
// r = x*y mod m; x,y != r
function barrettMulTo(x,y,r) { x.multiplyTo(y,r); this.reduce(r); }
Barrett.prototype.convert = barrettConvert;
Barrett.prototype.revert = barrettRevert;
Barrett.prototype.reduce = barrettReduce;
Barrett.prototype.mulTo = barrettMulTo;
Barrett.prototype.sqrTo = barrettSqrTo;
// (public) this^e % m (HAC 14.85)
function bnModPow(e,m) {
var i = e.bitLength(), k, r = nbv(1), z;
if(i <= 0) return r;
else if(i < 18) k = 1;
else if(i < 48) k = 3;
else if(i < 144) k = 4;
else if(i < 768) k = 5;
else k = 6;
if(i < 8)
z = new Classic(m);
else if(m.isEven())
z = new Barrett(m);
else
z = new Montgomery(m);
// precomputation
var g = new Array(), n = 3, k1 = k-1, km = (1<<k)-1;
g[1] = z.convert(this);
if(k > 1) {
var g2 = nbi();
z.sqrTo(g[1],g2);
while(n <= km) {
g[n] = nbi();
z.mulTo(g2,g[n-2],g[n]);
n += 2;
}
}
var j = e.t-1, w, is1 = true, r2 = nbi(), t;
i = nbits(e[j])-1;
while(j >= 0) {
if(i >= k1) w = (e[j]>>(i-k1))&km;
else {
w = (e[j]&((1<<(i+1))-1))<<(k1-i);
if(j > 0) w |= e[j-1]>>(this.DB+i-k1);
}
n = k;
while((w&1) == 0) { w >>= 1; --n; }
if((i -= n) < 0) { i += this.DB; --j; }
if(is1) { // ret == 1, don't bother squaring or multiplying it
g[w].copyTo(r);
is1 = false;
}
else {
while(n > 1) { z.sqrTo(r,r2); z.sqrTo(r2,r); n -= 2; }
if(n > 0) z.sqrTo(r,r2); else { t = r; r = r2; r2 = t; }
z.mulTo(r2,g[w],r);
}
while(j >= 0 && (e[j]&(1<<i)) == 0) {
z.sqrTo(r,r2); t = r; r = r2; r2 = t;
if(--i < 0) { i = this.DB-1; --j; }
}
}
return z.revert(r);
}
// (public) gcd(this,a) (HAC 14.54)
function bnGCD(a) {
var x = (this.s<0)?this.negate():this.clone();
var y = (a.s<0)?a.negate():a.clone();
if(x.compareTo(y) < 0) { var t = x; x = y; y = t; }
var i = x.getLowestSetBit(), g = y.getLowestSetBit();
if(g < 0) return x;
if(i < g) g = i;
if(g > 0) {
x.rShiftTo(g,x);
y.rShiftTo(g,y);
}
while(x.signum() > 0) {
if((i = x.getLowestSetBit()) > 0) x.rShiftTo(i,x);
if((i = y.getLowestSetBit()) > 0) y.rShiftTo(i,y);
if(x.compareTo(y) >= 0) {
x.subTo(y,x);
x.rShiftTo(1,x);
}
else {
y.subTo(x,y);
y.rShiftTo(1,y);
}
}
if(g > 0) y.lShiftTo(g,y);
return y;
}
// (protected) this % n, n < 2^26
function bnpModInt(n) {
if(n <= 0) return 0;
var d = this.DV%n, r = (this.s<0)?n-1:0;
if(this.t > 0)
if(d == 0) r = this[0]%n;
else for(var i = this.t-1; i >= 0; --i) r = (d*r+this[i])%n;
return r;
}
// (public) 1/this % m (HAC 14.61)
function bnModInverse(m) {
var ac = m.isEven();
if((this.isEven() && ac) || m.signum() == 0) return BigInteger.ZERO;
var u = m.clone(), v = this.clone();
var a = nbv(1), b = nbv(0), c = nbv(0), d = nbv(1);
while(u.signum() != 0) {
while(u.isEven()) {
u.rShiftTo(1,u);
if(ac) {
if(!a.isEven() || !b.isEven()) { a.addTo(this,a); b.subTo(m,b); }
a.rShiftTo(1,a);
}
else if(!b.isEven()) b.subTo(m,b);
b.rShiftTo(1,b);
}
while(v.isEven()) {
v.rShiftTo(1,v);
if(ac) {
if(!c.isEven() || !d.isEven()) { c.addTo(this,c); d.subTo(m,d); }
c.rShiftTo(1,c);
}
else if(!d.isEven()) d.subTo(m,d);
d.rShiftTo(1,d);
}
if(u.compareTo(v) >= 0) {
u.subTo(v,u);
if(ac) a.subTo(c,a);
b.subTo(d,b);
}
else {
v.subTo(u,v);
if(ac) c.subTo(a,c);
d.subTo(b,d);
}
}
if(v.compareTo(BigInteger.ONE) != 0) return BigInteger.ZERO;
if(d.compareTo(m) >= 0) return d.subtract(m);
if(d.signum() < 0) d.addTo(m,d); else return d;
if(d.signum() < 0) return d.add(m); else return d;
}
var lowprimes = [2,3,5,7,11,13,17,19,23,29,31,37,41,43,47,53,59,61,67,71,73,79,83,89,97,101,103,107,109,113,127,131,137,139,149,151,157,163,167,173,179,181,191,193,197,199,211,223,227,229,233,239,241,251,257,263,269,271,277,281,283,293,307,311,313,317,331,337,347,349,353,359,367,373,379,383,389,397,401,409,419,421,431,433,439,443,449,457,461,463,467,479,487,491,499,503,509];
var lplim = (1<<26)/lowprimes[lowprimes.length-1];
// (public) test primality with certainty >= 1-.5^t
function bnIsProbablePrime(t) {
var i, x = this.abs();
if(x.t == 1 && x[0] <= lowprimes[lowprimes.length-1]) {
for(i = 0; i < lowprimes.length; ++i)
if(x[0] == lowprimes[i]) return true;
return false;
}
if(x.isEven()) return false;
i = 1;
while(i < lowprimes.length) {
var m = lowprimes[i], j = i+1;
while(j < lowprimes.length && m < lplim) m *= lowprimes[j++];
m = x.modInt(m);
while(i < j) if(m%lowprimes[i++] == 0) return false;
}
return x.millerRabin(t);
}
// (protected) true if probably prime (HAC 4.24, Miller-Rabin)
function bnpMillerRabin(t) {
var n1 = this.subtract(BigInteger.ONE);
var k = n1.getLowestSetBit();
if(k <= 0) return false;
var r = n1.shiftRight(k);
t = (t+1)>>1;
if(t > lowprimes.length) t = lowprimes.length;
var a = nbi();
for(var i = 0; i < t; ++i) {
a.fromInt(lowprimes[i]);
var y = a.modPow(r,this);
if(y.compareTo(BigInteger.ONE) != 0 && y.compareTo(n1) != 0) {
var j = 1;
while(j++ < k && y.compareTo(n1) != 0) {
y = y.modPowInt(2,this);
if(y.compareTo(BigInteger.ONE) == 0) return false;
}
if(y.compareTo(n1) != 0) return false;
}
}
return true;
}
// protected
BigInteger.prototype.chunkSize = bnpChunkSize;
BigInteger.prototype.toRadix = bnpToRadix;
BigInteger.prototype.fromRadix = bnpFromRadix;
BigInteger.prototype.fromNumber = bnpFromNumber;
BigInteger.prototype.bitwiseTo = bnpBitwiseTo;
BigInteger.prototype.changeBit = bnpChangeBit;
BigInteger.prototype.addTo = bnpAddTo;
BigInteger.prototype.dMultiply = bnpDMultiply;
BigInteger.prototype.dAddOffset = bnpDAddOffset;
BigInteger.prototype.multiplyLowerTo = bnpMultiplyLowerTo;
BigInteger.prototype.multiplyUpperTo = bnpMultiplyUpperTo;
BigInteger.prototype.modInt = bnpModInt;
BigInteger.prototype.millerRabin = bnpMillerRabin;
// public
BigInteger.prototype.clone = bnClone;
BigInteger.prototype.intValue = bnIntValue;
BigInteger.prototype.byteValue = bnByteValue;
BigInteger.prototype.shortValue = bnShortValue;
BigInteger.prototype.signum = bnSigNum;
BigInteger.prototype.toByteArray = bnToByteArray;
BigInteger.prototype.equals = bnEquals;
BigInteger.prototype.min = bnMin;
BigInteger.prototype.max = bnMax;
BigInteger.prototype.and = bnAnd;
BigInteger.prototype.or = bnOr;
BigInteger.prototype.xor = bnXor;
BigInteger.prototype.andNot = bnAndNot;
BigInteger.prototype.not = bnNot;
BigInteger.prototype.shiftLeft = bnShiftLeft;
BigInteger.prototype.shiftRight = bnShiftRight;
BigInteger.prototype.getLowestSetBit = bnGetLowestSetBit;
BigInteger.prototype.bitCount = bnBitCount;
BigInteger.prototype.testBit = bnTestBit;
BigInteger.prototype.setBit = bnSetBit;
BigInteger.prototype.clearBit = bnClearBit;
BigInteger.prototype.flipBit = bnFlipBit;
BigInteger.prototype.add = bnAdd;
BigInteger.prototype.subtract = bnSubtract;
BigInteger.prototype.multiply = bnMultiply;
BigInteger.prototype.divide = bnDivide;
BigInteger.prototype.remainder = bnRemainder;
BigInteger.prototype.divideAndRemainder = bnDivideAndRemainder;
BigInteger.prototype.modPow = bnModPow;
BigInteger.prototype.modInverse = bnModInverse;
BigInteger.prototype.pow = bnPow;
BigInteger.prototype.gcd = bnGCD;
BigInteger.prototype.isProbablePrime = bnIsProbablePrime;
// BigInteger interfaces not implemented in jsbn:
// BigInteger(int signum, byte[] magnitude)
// double doubleValue()
// float floatValue()
// int hashCode()
// long longValue()
// static BigInteger valueOf(long val)