/* | |
* A JavaScript implementation of the Secure Hash Algorithm, SHA-256, as defined | |
* in FIPS 180-2 | |
* Version 2.2 Copyright Angel Marin, Paul Johnston 2000 - 2009. | |
* Other contributors: Greg Holt, Andrew Kepert, Ydnar, Lostinet | |
* Distributed under the BSD License | |
* See http://pajhome.org.uk/crypt/md5 for details. | |
* Also http://anmar.eu.org/projects/jssha2/ | |
*/ | |
/* | |
* Configurable variables. You may need to tweak these to be compatible with | |
* the server-side, but the defaults work in most cases. | |
*/ | |
var hexcase = 0; /* hex output format. 0 - lowercase; 1 - uppercase */ | |
var b64pad = ""; /* base-64 pad character. "=" for strict RFC compliance */ | |
/* | |
* These are the functions you'll usually want to call | |
* They take string arguments and return either hex or base-64 encoded strings | |
*/ | |
function hex_sha256(s) { return rstr2hex(rstr_sha256(str2rstr_utf8(s))); } | |
function b64_sha256(s) { return rstr2b64(rstr_sha256(str2rstr_utf8(s))); } | |
function any_sha256(s, e) { return rstr2any(rstr_sha256(str2rstr_utf8(s)), e); } | |
function hex_hmac_sha256(k, d) | |
{ return rstr2hex(rstr_hmac_sha256(str2rstr_utf8(k), str2rstr_utf8(d))); } | |
function b64_hmac_sha256(k, d) | |
{ return rstr2b64(rstr_hmac_sha256(str2rstr_utf8(k), str2rstr_utf8(d))); } | |
function any_hmac_sha256(k, d, e) | |
{ return rstr2any(rstr_hmac_sha256(str2rstr_utf8(k), str2rstr_utf8(d)), e); } | |
/* | |
function hex_sha256(s) { return rstr2hex(rstr_sha256(s)); } | |
function b64_sha256(s) { return rstr2b64(rstr_sha256(s)); } | |
function any_sha256(s, e) { return rstr2any(rstr_sha256(s), e); } | |
function hex_hmac_sha256(k, d) | |
{ return rstr2hex(rstr_hmac_sha256(str2rstr_utf8(k), d)); } | |
function b64_hmac_sha256(k, d) | |
{ return rstr2b64(rstr_hmac_sha256(str2rstr_utf8(k), d)); } | |
function any_hmac_sha256(k, d, e) | |
{ return rstr2any(rstr_hmac_sha256(str2rstr_utf8(k), d), e); } | |
*/ | |
/* | |
* Perform a simple self-test to see if the VM is working | |
*/ | |
function sha256_vm_test() | |
{ | |
return hex_sha256("abc").toLowerCase() == | |
"ba7816bf8f01cfea414140de5dae2223b00361a396177a9cb410ff61f20015ad"; | |
} | |
/* | |
* Calculate the sha256 of a raw string | |
*/ | |
function rstr_sha256(s) | |
{ | |
return binb2rstr(binb_sha256(rstr2binb(s), s.length * 8)); | |
} | |
/* | |
* Calculate the HMAC-sha256 of a key and some data (raw strings) | |
*/ | |
function rstr_hmac_sha256(key, data) | |
{ | |
var bkey = rstr2binb(key); | |
if(bkey.length > 16) bkey = binb_sha256(bkey, key.length * 8); | |
var ipad = Array(16), opad = Array(16); | |
for(var i = 0; i < 16; i++) | |
{ | |
ipad[i] = bkey[i] ^ 0x36363636; | |
opad[i] = bkey[i] ^ 0x5C5C5C5C; | |
} | |
var hash = binb_sha256(ipad.concat(rstr2binb(data)), 512 + data.length * 8); | |
return binb2rstr(binb_sha256(opad.concat(hash), 512 + 256)); | |
} | |
/* | |
* Convert a raw string to a hex string | |
*/ | |
function rstr2hex(input) | |
{ | |
try { hexcase } catch(e) { hexcase=0; } | |
var hex_tab = hexcase ? "0123456789ABCDEF" : "0123456789abcdef"; | |
var output = ""; | |
var x; | |
for(var i = 0; i < input.length; i++) | |
{ | |
x = input.charCodeAt(i); | |
output += hex_tab.charAt((x >>> 4) & 0x0F) | |
+ hex_tab.charAt( x & 0x0F); | |
} | |
return output; | |
} | |
/* | |
* Convert a raw string to a base-64 string | |
*/ | |
function rstr2b64(input) | |
{ | |
try { b64pad } catch(e) { b64pad=''; } | |
var tab = "ABCDEFGHIJKLMNOPQRSTUVWXYZabcdefghijklmnopqrstuvwxyz0123456789+/"; | |
var output = ""; | |
var len = input.length; | |
for(var i = 0; i < len; i += 3) | |
{ | |
var triplet = (input.charCodeAt(i) << 16) | |
| (i + 1 < len ? input.charCodeAt(i+1) << 8 : 0) | |
| (i + 2 < len ? input.charCodeAt(i+2) : 0); | |
for(var j = 0; j < 4; j++) | |
{ | |
if(i * 8 + j * 6 > input.length * 8) output += b64pad; | |
else output += tab.charAt((triplet >>> 6*(3-j)) & 0x3F); | |
} | |
} | |
return output; | |
} | |
/* | |
* Convert a raw string to an arbitrary string encoding | |
*/ | |
function rstr2any(input, encoding) | |
{ | |
var divisor = encoding.length; | |
var remainders = Array(); | |
var i, q, x, quotient; | |
/* Convert to an array of 16-bit big-endian values, forming the dividend */ | |
var dividend = Array(Math.ceil(input.length / 2)); | |
for(i = 0; i < dividend.length; i++) | |
{ | |
dividend[i] = (input.charCodeAt(i * 2) << 8) | input.charCodeAt(i * 2 + 1); | |
} | |
/* | |
* Repeatedly perform a long division. The binary array forms the dividend, | |
* the length of the encoding is the divisor. Once computed, the quotient | |
* forms the dividend for the next step. We stop when the dividend is zero. | |
* All remainders are stored for later use. | |
*/ | |
while(dividend.length > 0) | |
{ | |
quotient = Array(); | |
x = 0; | |
for(i = 0; i < dividend.length; i++) | |
{ | |
x = (x << 16) + dividend[i]; | |
q = Math.floor(x / divisor); | |
x -= q * divisor; | |
if(quotient.length > 0 || q > 0) | |
quotient[quotient.length] = q; | |
} | |
remainders[remainders.length] = x; | |
dividend = quotient; | |
} | |
/* Convert the remainders to the output string */ | |
var output = ""; | |
for(i = remainders.length - 1; i >= 0; i--) | |
output += encoding.charAt(remainders[i]); | |
/* Append leading zero equivalents */ | |
var full_length = Math.ceil(input.length * 8 / | |
(Math.log(encoding.length) / Math.log(2))) | |
for(i = output.length; i < full_length; i++) | |
output = encoding[0] + output; | |
return output; | |
} | |
/* | |
* Encode a string as utf-8. | |
* For efficiency, this assumes the input is valid utf-16. | |
*/ | |
function str2rstr_utf8(input) | |
{ | |
var output = ""; | |
var i = -1; | |
var x, y; | |
while(++i < input.length) | |
{ | |
/* Decode utf-16 surrogate pairs */ | |
x = input.charCodeAt(i); | |
y = i + 1 < input.length ? input.charCodeAt(i + 1) : 0; | |
if(0xD800 <= x && x <= 0xDBFF && 0xDC00 <= y && y <= 0xDFFF) | |
{ | |
x = 0x10000 + ((x & 0x03FF) << 10) + (y & 0x03FF); | |
i++; | |
} | |
/* Encode output as utf-8 */ | |
if(x <= 0x7F) | |
output += String.fromCharCode(x); | |
else if(x <= 0x7FF) | |
output += String.fromCharCode(0xC0 | ((x >>> 6 ) & 0x1F), | |
0x80 | ( x & 0x3F)); | |
else if(x <= 0xFFFF) | |
output += String.fromCharCode(0xE0 | ((x >>> 12) & 0x0F), | |
0x80 | ((x >>> 6 ) & 0x3F), | |
0x80 | ( x & 0x3F)); | |
else if(x <= 0x1FFFFF) | |
output += String.fromCharCode(0xF0 | ((x >>> 18) & 0x07), | |
0x80 | ((x >>> 12) & 0x3F), | |
0x80 | ((x >>> 6 ) & 0x3F), | |
0x80 | ( x & 0x3F)); | |
} | |
return output; | |
} | |
/* | |
* Encode a string as utf-16 | |
*/ | |
function str2rstr_utf16le(input) | |
{ | |
var output = ""; | |
for(var i = 0; i < input.length; i++) | |
output += String.fromCharCode( input.charCodeAt(i) & 0xFF, | |
(input.charCodeAt(i) >>> 8) & 0xFF); | |
return output; | |
} | |
function str2rstr_utf16be(input) | |
{ | |
var output = ""; | |
for(var i = 0; i < input.length; i++) | |
output += String.fromCharCode((input.charCodeAt(i) >>> 8) & 0xFF, | |
input.charCodeAt(i) & 0xFF); | |
return output; | |
} | |
/* | |
* Convert a raw string to an array of big-endian words | |
* Characters >255 have their high-byte silently ignored. | |
*/ | |
function rstr2binb(input) | |
{ | |
console.log('Raw string comming is '+input); | |
var output = Array(input.length >> 2); | |
for(var i = 0; i < output.length; i++) | |
output[i] = 0; | |
for(var i = 0; i < input.length * 8; i += 8) | |
output[i>>5] |= (input.charCodeAt(i / 8) & 0xFF) << (24 - i % 32); | |
return output; | |
} | |
/* | |
* Convert an array of big-endian words to a string | |
*/ | |
function binb2rstr(input) | |
{ | |
var output = ""; | |
for(var i = 0; i < input.length * 32; i += 8) | |
output += String.fromCharCode((input[i>>5] >>> (24 - i % 32)) & 0xFF); | |
return output; | |
} | |
/* | |
* Main sha256 function, with its support functions | |
*/ | |
function sha256_S (X, n) {return ( X >>> n ) | (X << (32 - n));} | |
function sha256_R (X, n) {return ( X >>> n );} | |
function sha256_Ch(x, y, z) {return ((x & y) ^ ((~x) & z));} | |
function sha256_Maj(x, y, z) {return ((x & y) ^ (x & z) ^ (y & z));} | |
function sha256_Sigma0256(x) {return (sha256_S(x, 2) ^ sha256_S(x, 13) ^ sha256_S(x, 22));} | |
function sha256_Sigma1256(x) {return (sha256_S(x, 6) ^ sha256_S(x, 11) ^ sha256_S(x, 25));} | |
function sha256_Gamma0256(x) {return (sha256_S(x, 7) ^ sha256_S(x, 18) ^ sha256_R(x, 3));} | |
function sha256_Gamma1256(x) {return (sha256_S(x, 17) ^ sha256_S(x, 19) ^ sha256_R(x, 10));} | |
function sha256_Sigma0512(x) {return (sha256_S(x, 28) ^ sha256_S(x, 34) ^ sha256_S(x, 39));} | |
function sha256_Sigma1512(x) {return (sha256_S(x, 14) ^ sha256_S(x, 18) ^ sha256_S(x, 41));} | |
function sha256_Gamma0512(x) {return (sha256_S(x, 1) ^ sha256_S(x, 8) ^ sha256_R(x, 7));} | |
function sha256_Gamma1512(x) {return (sha256_S(x, 19) ^ sha256_S(x, 61) ^ sha256_R(x, 6));} | |
var sha256_K = new Array | |
( | |
1116352408, 1899447441, -1245643825, -373957723, 961987163, 1508970993, | |
-1841331548, -1424204075, -670586216, 310598401, 607225278, 1426881987, | |
1925078388, -2132889090, -1680079193, -1046744716, -459576895, -272742522, | |
264347078, 604807628, 770255983, 1249150122, 1555081692, 1996064986, | |
-1740746414, -1473132947, -1341970488, -1084653625, -958395405, -710438585, | |
113926993, 338241895, 666307205, 773529912, 1294757372, 1396182291, | |
1695183700, 1986661051, -2117940946, -1838011259, -1564481375, -1474664885, | |
-1035236496, -949202525, -778901479, -694614492, -200395387, 275423344, | |
430227734, 506948616, 659060556, 883997877, 958139571, 1322822218, | |
1537002063, 1747873779, 1955562222, 2024104815, -2067236844, -1933114872, | |
-1866530822, -1538233109, -1090935817, -965641998 | |
); | |
function binb_sha256(m, l) | |
{ | |
var HASH = new Array(1779033703, -1150833019, 1013904242, -1521486534, | |
1359893119, -1694144372, 528734635, 1541459225); | |
var W = new Array(64); | |
var a, b, c, d, e, f, g, h; | |
var i, j, T1, T2; | |
/* append padding */ | |
m[l >> 5] |= 0x80 << (24 - l % 32); | |
m[((l + 64 >> 9) << 4) + 15] = l; | |
for(i = 0; i < m.length; i += 16) | |
{ | |
a = HASH[0]; | |
b = HASH[1]; | |
c = HASH[2]; | |
d = HASH[3]; | |
e = HASH[4]; | |
f = HASH[5]; | |
g = HASH[6]; | |
h = HASH[7]; | |
for(j = 0; j < 64; j++) | |
{ | |
if (j < 16) W[j] = m[j + i]; | |
else W[j] = safe_add(safe_add(safe_add(sha256_Gamma1256(W[j - 2]), W[j - 7]), | |
sha256_Gamma0256(W[j - 15])), W[j - 16]); | |
T1 = safe_add(safe_add(safe_add(safe_add(h, sha256_Sigma1256(e)), sha256_Ch(e, f, g)), | |
sha256_K[j]), W[j]); | |
T2 = safe_add(sha256_Sigma0256(a), sha256_Maj(a, b, c)); | |
h = g; | |
g = f; | |
f = e; | |
e = safe_add(d, T1); | |
d = c; | |
c = b; | |
b = a; | |
a = safe_add(T1, T2); | |
} | |
HASH[0] = safe_add(a, HASH[0]); | |
HASH[1] = safe_add(b, HASH[1]); | |
HASH[2] = safe_add(c, HASH[2]); | |
HASH[3] = safe_add(d, HASH[3]); | |
HASH[4] = safe_add(e, HASH[4]); | |
HASH[5] = safe_add(f, HASH[5]); | |
HASH[6] = safe_add(g, HASH[6]); | |
HASH[7] = safe_add(h, HASH[7]); | |
} | |
return HASH; | |
} | |
function safe_add (x, y) | |
{ | |
var lsw = (x & 0xFFFF) + (y & 0xFFFF); | |
var msw = (x >> 16) + (y >> 16) + (lsw >> 16); | |
return (msw << 16) | (lsw & 0xFFFF); | |
} |