Adding Security Features

-Security Libraries
-Test HTML Files
-KeyManager.js
diff --git a/js/securityLib/jsbn.js b/js/securityLib/jsbn.js
new file mode 100644
index 0000000..a153e40
--- /dev/null
+++ b/js/securityLib/jsbn.js
@@ -0,0 +1,559 @@
+// Copyright (c) 2005  Tom Wu

+// All Rights Reserved.

+// See "LICENSE" for details.

+

+// Basic JavaScript BN library - subset useful for RSA encryption.

+

+// Bits per digit

+var dbits;

+

+// JavaScript engine analysis

+var canary = 0xdeadbeefcafe;

+var j_lm = ((canary&0xffffff)==0xefcafe);

+

+// (public) Constructor

+function BigInteger(a,b,c) {

+  if(a != null)

+    if("number" == typeof a) this.fromNumber(a,b,c);

+    else if(b == null && "string" != typeof a) this.fromString(a,256);

+    else this.fromString(a,b);

+}

+

+// return new, unset BigInteger

+function nbi() { return new BigInteger(null); }

+

+// am: Compute w_j += (x*this_i), propagate carries,

+// c is initial carry, returns final carry.

+// c < 3*dvalue, x < 2*dvalue, this_i < dvalue

+// We need to select the fastest one that works in this environment.

+

+// am1: use a single mult and divide to get the high bits,

+// max digit bits should be 26 because

+// max internal value = 2*dvalue^2-2*dvalue (< 2^53)

+function am1(i,x,w,j,c,n) {

+  while(--n >= 0) {

+    var v = x*this[i++]+w[j]+c;

+    c = Math.floor(v/0x4000000);

+    w[j++] = v&0x3ffffff;

+  }

+  return c;

+}

+// am2 avoids a big mult-and-extract completely.

+// Max digit bits should be <= 30 because we do bitwise ops

+// on values up to 2*hdvalue^2-hdvalue-1 (< 2^31)

+function am2(i,x,w,j,c,n) {

+  var xl = x&0x7fff, xh = x>>15;

+  while(--n >= 0) {

+    var l = this[i]&0x7fff;

+    var h = this[i++]>>15;

+    var m = xh*l+h*xl;

+    l = xl*l+((m&0x7fff)<<15)+w[j]+(c&0x3fffffff);

+    c = (l>>>30)+(m>>>15)+xh*h+(c>>>30);

+    w[j++] = l&0x3fffffff;

+  }

+  return c;

+}

+// Alternately, set max digit bits to 28 since some

+// browsers slow down when dealing with 32-bit numbers.

+function am3(i,x,w,j,c,n) {

+  var xl = x&0x3fff, xh = x>>14;

+  while(--n >= 0) {

+    var l = this[i]&0x3fff;

+    var h = this[i++]>>14;

+    var m = xh*l+h*xl;

+    l = xl*l+((m&0x3fff)<<14)+w[j]+c;

+    c = (l>>28)+(m>>14)+xh*h;

+    w[j++] = l&0xfffffff;

+  }

+  return c;

+}

+if(j_lm && (navigator.appName == "Microsoft Internet Explorer")) {

+  BigInteger.prototype.am = am2;

+  dbits = 30;

+}

+else if(j_lm && (navigator.appName != "Netscape")) {

+  BigInteger.prototype.am = am1;

+  dbits = 26;

+}

+else { // Mozilla/Netscape seems to prefer am3

+  BigInteger.prototype.am = am3;

+  dbits = 28;

+}

+

+BigInteger.prototype.DB = dbits;

+BigInteger.prototype.DM = ((1<<dbits)-1);

+BigInteger.prototype.DV = (1<<dbits);

+

+var BI_FP = 52;

+BigInteger.prototype.FV = Math.pow(2,BI_FP);

+BigInteger.prototype.F1 = BI_FP-dbits;

+BigInteger.prototype.F2 = 2*dbits-BI_FP;

+

+// Digit conversions

+var BI_RM = "0123456789abcdefghijklmnopqrstuvwxyz";

+var BI_RC = new Array();

+var rr,vv;

+rr = "0".charCodeAt(0);

+for(vv = 0; vv <= 9; ++vv) BI_RC[rr++] = vv;

+rr = "a".charCodeAt(0);

+for(vv = 10; vv < 36; ++vv) BI_RC[rr++] = vv;

+rr = "A".charCodeAt(0);

+for(vv = 10; vv < 36; ++vv) BI_RC[rr++] = vv;

+

+function int2char(n) { return BI_RM.charAt(n); }

+function intAt(s,i) {

+  var c = BI_RC[s.charCodeAt(i)];

+  return (c==null)?-1:c;

+}

+

+// (protected) copy this to r

+function bnpCopyTo(r) {

+  for(var i = this.t-1; i >= 0; --i) r[i] = this[i];

+  r.t = this.t;

+  r.s = this.s;

+}

+

+// (protected) set from integer value x, -DV <= x < DV

+function bnpFromInt(x) {

+  this.t = 1;

+  this.s = (x<0)?-1:0;

+  if(x > 0) this[0] = x;

+  else if(x < -1) this[0] = x+DV;

+  else this.t = 0;

+}

+

+// return bigint initialized to value

+function nbv(i) { var r = nbi(); r.fromInt(i); return r; }

+

+// (protected) set from string and radix

+function bnpFromString(s,b) {

+  var k;

+  if(b == 16) k = 4;

+  else if(b == 8) k = 3;

+  else if(b == 256) k = 8; // byte array

+  else if(b == 2) k = 1;

+  else if(b == 32) k = 5;

+  else if(b == 4) k = 2;

+  else { this.fromRadix(s,b); return; }

+  this.t = 0;

+  this.s = 0;

+  var i = s.length, mi = false, sh = 0;

+  while(--i >= 0) {

+    var x = (k==8)?s[i]&0xff:intAt(s,i);

+    if(x < 0) {

+      if(s.charAt(i) == "-") mi = true;

+      continue;

+    }

+    mi = false;

+    if(sh == 0)

+      this[this.t++] = x;

+    else if(sh+k > this.DB) {

+      this[this.t-1] |= (x&((1<<(this.DB-sh))-1))<<sh;

+      this[this.t++] = (x>>(this.DB-sh));

+    }

+    else

+      this[this.t-1] |= x<<sh;

+    sh += k;

+    if(sh >= this.DB) sh -= this.DB;

+  }

+  if(k == 8 && (s[0]&0x80) != 0) {

+    this.s = -1;

+    if(sh > 0) this[this.t-1] |= ((1<<(this.DB-sh))-1)<<sh;

+  }

+  this.clamp();

+  if(mi) BigInteger.ZERO.subTo(this,this);

+}

+

+// (protected) clamp off excess high words

+function bnpClamp() {

+  var c = this.s&this.DM;

+  while(this.t > 0 && this[this.t-1] == c) --this.t;

+}

+

+// (public) return string representation in given radix

+function bnToString(b) {

+  if(this.s < 0) return "-"+this.negate().toString(b);

+  var k;

+  if(b == 16) k = 4;

+  else if(b == 8) k = 3;

+  else if(b == 2) k = 1;

+  else if(b == 32) k = 5;

+  else if(b == 4) k = 2;

+  else return this.toRadix(b);

+  var km = (1<<k)-1, d, m = false, r = "", i = this.t;

+  var p = this.DB-(i*this.DB)%k;

+  if(i-- > 0) {

+    if(p < this.DB && (d = this[i]>>p) > 0) { m = true; r = int2char(d); }

+    while(i >= 0) {

+      if(p < k) {

+        d = (this[i]&((1<<p)-1))<<(k-p);

+        d |= this[--i]>>(p+=this.DB-k);

+      }

+      else {

+        d = (this[i]>>(p-=k))&km;

+        if(p <= 0) { p += this.DB; --i; }

+      }

+      if(d > 0) m = true;

+      if(m) r += int2char(d);

+    }

+  }

+  return m?r:"0";

+}

+

+// (public) -this

+function bnNegate() { var r = nbi(); BigInteger.ZERO.subTo(this,r); return r; }

+

+// (public) |this|

+function bnAbs() { return (this.s<0)?this.negate():this; }

+

+// (public) return + if this > a, - if this < a, 0 if equal

+function bnCompareTo(a) {

+  var r = this.s-a.s;

+  if(r != 0) return r;

+  var i = this.t;

+  r = i-a.t;

+  if(r != 0) return r;

+  while(--i >= 0) if((r=this[i]-a[i]) != 0) return r;

+  return 0;

+}

+

+// returns bit length of the integer x

+function nbits(x) {

+  var r = 1, t;

+  if((t=x>>>16) != 0) { x = t; r += 16; }

+  if((t=x>>8) != 0) { x = t; r += 8; }

+  if((t=x>>4) != 0) { x = t; r += 4; }

+  if((t=x>>2) != 0) { x = t; r += 2; }

+  if((t=x>>1) != 0) { x = t; r += 1; }

+  return r;

+}

+

+// (public) return the number of bits in "this"

+function bnBitLength() {

+  if(this.t <= 0) return 0;

+  return this.DB*(this.t-1)+nbits(this[this.t-1]^(this.s&this.DM));

+}

+

+// (protected) r = this << n*DB

+function bnpDLShiftTo(n,r) {

+  var i;

+  for(i = this.t-1; i >= 0; --i) r[i+n] = this[i];

+  for(i = n-1; i >= 0; --i) r[i] = 0;

+  r.t = this.t+n;

+  r.s = this.s;

+}

+

+// (protected) r = this >> n*DB

+function bnpDRShiftTo(n,r) {

+  for(var i = n; i < this.t; ++i) r[i-n] = this[i];

+  r.t = Math.max(this.t-n,0);

+  r.s = this.s;

+}

+

+// (protected) r = this << n

+function bnpLShiftTo(n,r) {

+  var bs = n%this.DB;

+  var cbs = this.DB-bs;

+  var bm = (1<<cbs)-1;

+  var ds = Math.floor(n/this.DB), c = (this.s<<bs)&this.DM, i;

+  for(i = this.t-1; i >= 0; --i) {

+    r[i+ds+1] = (this[i]>>cbs)|c;

+    c = (this[i]&bm)<<bs;

+  }

+  for(i = ds-1; i >= 0; --i) r[i] = 0;

+  r[ds] = c;

+  r.t = this.t+ds+1;

+  r.s = this.s;

+  r.clamp();

+}

+

+// (protected) r = this >> n

+function bnpRShiftTo(n,r) {

+  r.s = this.s;

+  var ds = Math.floor(n/this.DB);

+  if(ds >= this.t) { r.t = 0; return; }

+  var bs = n%this.DB;

+  var cbs = this.DB-bs;

+  var bm = (1<<bs)-1;

+  r[0] = this[ds]>>bs;

+  for(var i = ds+1; i < this.t; ++i) {

+    r[i-ds-1] |= (this[i]&bm)<<cbs;

+    r[i-ds] = this[i]>>bs;

+  }

+  if(bs > 0) r[this.t-ds-1] |= (this.s&bm)<<cbs;

+  r.t = this.t-ds;

+  r.clamp();

+}

+

+// (protected) r = this - a

+function bnpSubTo(a,r) {

+  var i = 0, c = 0, m = Math.min(a.t,this.t);

+  while(i < m) {

+    c += this[i]-a[i];

+    r[i++] = c&this.DM;

+    c >>= this.DB;

+  }

+  if(a.t < this.t) {

+    c -= a.s;

+    while(i < this.t) {

+      c += this[i];

+      r[i++] = c&this.DM;

+      c >>= this.DB;

+    }

+    c += this.s;

+  }

+  else {

+    c += this.s;

+    while(i < a.t) {

+      c -= a[i];

+      r[i++] = c&this.DM;

+      c >>= this.DB;

+    }

+    c -= a.s;

+  }

+  r.s = (c<0)?-1:0;

+  if(c < -1) r[i++] = this.DV+c;

+  else if(c > 0) r[i++] = c;

+  r.t = i;

+  r.clamp();

+}

+

+// (protected) r = this * a, r != this,a (HAC 14.12)

+// "this" should be the larger one if appropriate.

+function bnpMultiplyTo(a,r) {

+  var x = this.abs(), y = a.abs();

+  var i = x.t;

+  r.t = i+y.t;

+  while(--i >= 0) r[i] = 0;

+  for(i = 0; i < y.t; ++i) r[i+x.t] = x.am(0,y[i],r,i,0,x.t);

+  r.s = 0;

+  r.clamp();

+  if(this.s != a.s) BigInteger.ZERO.subTo(r,r);

+}

+

+// (protected) r = this^2, r != this (HAC 14.16)

+function bnpSquareTo(r) {

+  var x = this.abs();

+  var i = r.t = 2*x.t;

+  while(--i >= 0) r[i] = 0;

+  for(i = 0; i < x.t-1; ++i) {

+    var c = x.am(i,x[i],r,2*i,0,1);

+    if((r[i+x.t]+=x.am(i+1,2*x[i],r,2*i+1,c,x.t-i-1)) >= x.DV) {

+      r[i+x.t] -= x.DV;

+      r[i+x.t+1] = 1;

+    }

+  }

+  if(r.t > 0) r[r.t-1] += x.am(i,x[i],r,2*i,0,1);

+  r.s = 0;

+  r.clamp();

+}

+

+// (protected) divide this by m, quotient and remainder to q, r (HAC 14.20)

+// r != q, this != m.  q or r may be null.

+function bnpDivRemTo(m,q,r) {

+  var pm = m.abs();

+  if(pm.t <= 0) return;

+  var pt = this.abs();

+  if(pt.t < pm.t) {

+    if(q != null) q.fromInt(0);

+    if(r != null) this.copyTo(r);

+    return;

+  }

+  if(r == null) r = nbi();

+  var y = nbi(), ts = this.s, ms = m.s;

+  var nsh = this.DB-nbits(pm[pm.t-1]);	// normalize modulus

+  if(nsh > 0) { pm.lShiftTo(nsh,y); pt.lShiftTo(nsh,r); }

+  else { pm.copyTo(y); pt.copyTo(r); }

+  var ys = y.t;

+  var y0 = y[ys-1];

+  if(y0 == 0) return;

+  var yt = y0*(1<<this.F1)+((ys>1)?y[ys-2]>>this.F2:0);

+  var d1 = this.FV/yt, d2 = (1<<this.F1)/yt, e = 1<<this.F2;

+  var i = r.t, j = i-ys, t = (q==null)?nbi():q;

+  y.dlShiftTo(j,t);

+  if(r.compareTo(t) >= 0) {

+    r[r.t++] = 1;

+    r.subTo(t,r);

+  }

+  BigInteger.ONE.dlShiftTo(ys,t);

+  t.subTo(y,y);	// "negative" y so we can replace sub with am later

+  while(y.t < ys) y[y.t++] = 0;

+  while(--j >= 0) {

+    // Estimate quotient digit

+    var qd = (r[--i]==y0)?this.DM:Math.floor(r[i]*d1+(r[i-1]+e)*d2);

+    if((r[i]+=y.am(0,qd,r,j,0,ys)) < qd) {	// Try it out

+      y.dlShiftTo(j,t);

+      r.subTo(t,r);

+      while(r[i] < --qd) r.subTo(t,r);

+    }

+  }

+  if(q != null) {

+    r.drShiftTo(ys,q);

+    if(ts != ms) BigInteger.ZERO.subTo(q,q);

+  }

+  r.t = ys;

+  r.clamp();

+  if(nsh > 0) r.rShiftTo(nsh,r);	// Denormalize remainder

+  if(ts < 0) BigInteger.ZERO.subTo(r,r);

+}

+

+// (public) this mod a

+function bnMod(a) {

+  var r = nbi();

+  this.abs().divRemTo(a,null,r);

+  if(this.s < 0 && r.compareTo(BigInteger.ZERO) > 0) a.subTo(r,r);

+  return r;

+}

+

+// Modular reduction using "classic" algorithm

+function Classic(m) { this.m = m; }

+function cConvert(x) {

+  if(x.s < 0 || x.compareTo(this.m) >= 0) return x.mod(this.m);

+  else return x;

+}

+function cRevert(x) { return x; }

+function cReduce(x) { x.divRemTo(this.m,null,x); }

+function cMulTo(x,y,r) { x.multiplyTo(y,r); this.reduce(r); }

+function cSqrTo(x,r) { x.squareTo(r); this.reduce(r); }

+

+Classic.prototype.convert = cConvert;

+Classic.prototype.revert = cRevert;

+Classic.prototype.reduce = cReduce;

+Classic.prototype.mulTo = cMulTo;

+Classic.prototype.sqrTo = cSqrTo;

+

+// (protected) return "-1/this % 2^DB"; useful for Mont. reduction

+// justification:

+//         xy == 1 (mod m)

+//         xy =  1+km

+//   xy(2-xy) = (1+km)(1-km)

+// x[y(2-xy)] = 1-k^2m^2

+// x[y(2-xy)] == 1 (mod m^2)

+// if y is 1/x mod m, then y(2-xy) is 1/x mod m^2

+// should reduce x and y(2-xy) by m^2 at each step to keep size bounded.

+// JS multiply "overflows" differently from C/C++, so care is needed here.

+function bnpInvDigit() {

+  if(this.t < 1) return 0;

+  var x = this[0];

+  if((x&1) == 0) return 0;

+  var y = x&3;		// y == 1/x mod 2^2

+  y = (y*(2-(x&0xf)*y))&0xf;	// y == 1/x mod 2^4

+  y = (y*(2-(x&0xff)*y))&0xff;	// y == 1/x mod 2^8

+  y = (y*(2-(((x&0xffff)*y)&0xffff)))&0xffff;	// y == 1/x mod 2^16

+  // last step - calculate inverse mod DV directly;

+  // assumes 16 < DB <= 32 and assumes ability to handle 48-bit ints

+  y = (y*(2-x*y%this.DV))%this.DV;		// y == 1/x mod 2^dbits

+  // we really want the negative inverse, and -DV < y < DV

+  return (y>0)?this.DV-y:-y;

+}

+

+// Montgomery reduction

+function Montgomery(m) {

+  this.m = m;

+  this.mp = m.invDigit();

+  this.mpl = this.mp&0x7fff;

+  this.mph = this.mp>>15;

+  this.um = (1<<(m.DB-15))-1;

+  this.mt2 = 2*m.t;

+}

+

+// xR mod m

+function montConvert(x) {

+  var r = nbi();

+  x.abs().dlShiftTo(this.m.t,r);

+  r.divRemTo(this.m,null,r);

+  if(x.s < 0 && r.compareTo(BigInteger.ZERO) > 0) this.m.subTo(r,r);

+  return r;

+}

+

+// x/R mod m

+function montRevert(x) {

+  var r = nbi();

+  x.copyTo(r);

+  this.reduce(r);

+  return r;

+}

+

+// x = x/R mod m (HAC 14.32)

+function montReduce(x) {

+  while(x.t <= this.mt2)	// pad x so am has enough room later

+    x[x.t++] = 0;

+  for(var i = 0; i < this.m.t; ++i) {

+    // faster way of calculating u0 = x[i]*mp mod DV

+    var j = x[i]&0x7fff;

+    var u0 = (j*this.mpl+(((j*this.mph+(x[i]>>15)*this.mpl)&this.um)<<15))&x.DM;

+    // use am to combine the multiply-shift-add into one call

+    j = i+this.m.t;

+    x[j] += this.m.am(0,u0,x,i,0,this.m.t);

+    // propagate carry

+    while(x[j] >= x.DV) { x[j] -= x.DV; x[++j]++; }

+  }

+  x.clamp();

+  x.drShiftTo(this.m.t,x);

+  if(x.compareTo(this.m) >= 0) x.subTo(this.m,x);

+}

+

+// r = "x^2/R mod m"; x != r

+function montSqrTo(x,r) { x.squareTo(r); this.reduce(r); }

+

+// r = "xy/R mod m"; x,y != r

+function montMulTo(x,y,r) { x.multiplyTo(y,r); this.reduce(r); }

+

+Montgomery.prototype.convert = montConvert;

+Montgomery.prototype.revert = montRevert;

+Montgomery.prototype.reduce = montReduce;

+Montgomery.prototype.mulTo = montMulTo;

+Montgomery.prototype.sqrTo = montSqrTo;

+

+// (protected) true iff this is even

+function bnpIsEven() { return ((this.t>0)?(this[0]&1):this.s) == 0; }

+

+// (protected) this^e, e < 2^32, doing sqr and mul with "r" (HAC 14.79)

+function bnpExp(e,z) {

+  if(e > 0xffffffff || e < 1) return BigInteger.ONE;

+  var r = nbi(), r2 = nbi(), g = z.convert(this), i = nbits(e)-1;

+  g.copyTo(r);

+  while(--i >= 0) {

+    z.sqrTo(r,r2);

+    if((e&(1<<i)) > 0) z.mulTo(r2,g,r);

+    else { var t = r; r = r2; r2 = t; }

+  }

+  return z.revert(r);

+}

+

+// (public) this^e % m, 0 <= e < 2^32

+function bnModPowInt(e,m) {

+  var z;

+  if(e < 256 || m.isEven()) z = new Classic(m); else z = new Montgomery(m);

+  return this.exp(e,z);

+}

+

+// protected

+BigInteger.prototype.copyTo = bnpCopyTo;

+BigInteger.prototype.fromInt = bnpFromInt;

+BigInteger.prototype.fromString = bnpFromString;

+BigInteger.prototype.clamp = bnpClamp;

+BigInteger.prototype.dlShiftTo = bnpDLShiftTo;

+BigInteger.prototype.drShiftTo = bnpDRShiftTo;

+BigInteger.prototype.lShiftTo = bnpLShiftTo;

+BigInteger.prototype.rShiftTo = bnpRShiftTo;

+BigInteger.prototype.subTo = bnpSubTo;

+BigInteger.prototype.multiplyTo = bnpMultiplyTo;

+BigInteger.prototype.squareTo = bnpSquareTo;

+BigInteger.prototype.divRemTo = bnpDivRemTo;

+BigInteger.prototype.invDigit = bnpInvDigit;

+BigInteger.prototype.isEven = bnpIsEven;

+BigInteger.prototype.exp = bnpExp;

+

+// public

+BigInteger.prototype.toString = bnToString;

+BigInteger.prototype.negate = bnNegate;

+BigInteger.prototype.abs = bnAbs;

+BigInteger.prototype.compareTo = bnCompareTo;

+BigInteger.prototype.bitLength = bnBitLength;

+BigInteger.prototype.mod = bnMod;

+BigInteger.prototype.modPowInt = bnModPowInt;

+

+// "constants"

+BigInteger.ZERO = nbv(0);

+BigInteger.ONE = nbv(1);