/* | |
* A JavaScript implementation of the Secure Hash Algorithm, SHA-512, as defined | |
* in FIPS 180-2 | |
* Version 2.2 Copyright Anonymous Contributor, Paul Johnston 2000 - 2009. | |
* Other contributors: Greg Holt, Andrew Kepert, Ydnar, Lostinet | |
* Distributed under the BSD License | |
* See http://pajhome.org.uk/crypt/md5 for details. | |
*/ | |
/* | |
* Configurable variables. You may need to tweak these to be compatible with | |
* the server-side, but the defaults work in most cases. | |
*/ | |
var hexcase = 0; /* hex output format. 0 - lowercase; 1 - uppercase */ | |
var b64pad = ""; /* base-64 pad character. "=" for strict RFC compliance */ | |
/* | |
* These are the functions you'll usually want to call | |
* They take string arguments and return either hex or base-64 encoded strings | |
*/ | |
function hex_sha512(s) { return rstr2hex(rstr_sha512(str2rstr_utf8(s))); } | |
function b64_sha512(s) { return rstr2b64(rstr_sha512(str2rstr_utf8(s))); } | |
function any_sha512(s, e) { return rstr2any(rstr_sha512(str2rstr_utf8(s)), e);} | |
function hex_hmac_sha512(k, d) | |
{ return rstr2hex(rstr_hmac_sha512(str2rstr_utf8(k), str2rstr_utf8(d))); } | |
function b64_hmac_sha512(k, d) | |
{ return rstr2b64(rstr_hmac_sha512(str2rstr_utf8(k), str2rstr_utf8(d))); } | |
function any_hmac_sha512(k, d, e) | |
{ return rstr2any(rstr_hmac_sha512(str2rstr_utf8(k), str2rstr_utf8(d)), e);} | |
/* | |
* Perform a simple self-test to see if the VM is working | |
*/ | |
function sha512_vm_test() | |
{ | |
return hex_sha512("abc").toLowerCase() == | |
"ddaf35a193617abacc417349ae20413112e6fa4e89a97ea20a9eeee64b55d39a" + | |
"2192992a274fc1a836ba3c23a3feebbd454d4423643ce80e2a9ac94fa54ca49f"; | |
} | |
/* | |
* Calculate the SHA-512 of a raw string | |
*/ | |
function rstr_sha512(s) | |
{ | |
return binb2rstr(binb_sha512(rstr2binb(s), s.length * 8)); | |
} | |
/* | |
* Calculate the HMAC-SHA-512 of a key and some data (raw strings) | |
*/ | |
function rstr_hmac_sha512(key, data) | |
{ | |
var bkey = rstr2binb(key); | |
if(bkey.length > 32) bkey = binb_sha512(bkey, key.length * 8); | |
var ipad = Array(32), opad = Array(32); | |
for(var i = 0; i < 32; i++) | |
{ | |
ipad[i] = bkey[i] ^ 0x36363636; | |
opad[i] = bkey[i] ^ 0x5C5C5C5C; | |
} | |
var hash = binb_sha512(ipad.concat(rstr2binb(data)), 1024 + data.length * 8); | |
return binb2rstr(binb_sha512(opad.concat(hash), 1024 + 512)); | |
} | |
/* | |
* Convert a raw string to a hex string | |
*/ | |
function rstr2hex(input) | |
{ | |
try { hexcase } catch(e) { hexcase=0; } | |
var hex_tab = hexcase ? "0123456789ABCDEF" : "0123456789abcdef"; | |
var output = ""; | |
var x; | |
for(var i = 0; i < input.length; i++) | |
{ | |
x = input.charCodeAt(i); | |
output += hex_tab.charAt((x >>> 4) & 0x0F) | |
+ hex_tab.charAt( x & 0x0F); | |
} | |
return output; | |
} | |
/* | |
* Convert a raw string to a base-64 string | |
*/ | |
function rstr2b64(input) | |
{ | |
try { b64pad } catch(e) { b64pad=''; } | |
var tab = "ABCDEFGHIJKLMNOPQRSTUVWXYZabcdefghijklmnopqrstuvwxyz0123456789+/"; | |
var output = ""; | |
var len = input.length; | |
for(var i = 0; i < len; i += 3) | |
{ | |
var triplet = (input.charCodeAt(i) << 16) | |
| (i + 1 < len ? input.charCodeAt(i+1) << 8 : 0) | |
| (i + 2 < len ? input.charCodeAt(i+2) : 0); | |
for(var j = 0; j < 4; j++) | |
{ | |
if(i * 8 + j * 6 > input.length * 8) output += b64pad; | |
else output += tab.charAt((triplet >>> 6*(3-j)) & 0x3F); | |
} | |
} | |
return output; | |
} | |
/* | |
* Convert a raw string to an arbitrary string encoding | |
*/ | |
function rstr2any(input, encoding) | |
{ | |
var divisor = encoding.length; | |
var i, j, q, x, quotient; | |
/* Convert to an array of 16-bit big-endian values, forming the dividend */ | |
var dividend = Array(Math.ceil(input.length / 2)); | |
for(i = 0; i < dividend.length; i++) | |
{ | |
dividend[i] = (input.charCodeAt(i * 2) << 8) | input.charCodeAt(i * 2 + 1); | |
} | |
/* | |
* Repeatedly perform a long division. The binary array forms the dividend, | |
* the length of the encoding is the divisor. Once computed, the quotient | |
* forms the dividend for the next step. All remainders are stored for later | |
* use. | |
*/ | |
var full_length = Math.ceil(input.length * 8 / | |
(Math.log(encoding.length) / Math.log(2))); | |
var remainders = Array(full_length); | |
for(j = 0; j < full_length; j++) | |
{ | |
quotient = Array(); | |
x = 0; | |
for(i = 0; i < dividend.length; i++) | |
{ | |
x = (x << 16) + dividend[i]; | |
q = Math.floor(x / divisor); | |
x -= q * divisor; | |
if(quotient.length > 0 || q > 0) | |
quotient[quotient.length] = q; | |
} | |
remainders[j] = x; | |
dividend = quotient; | |
} | |
/* Convert the remainders to the output string */ | |
var output = ""; | |
for(i = remainders.length - 1; i >= 0; i--) | |
output += encoding.charAt(remainders[i]); | |
return output; | |
} | |
/* | |
* Encode a string as utf-8. | |
* For efficiency, this assumes the input is valid utf-16. | |
*/ | |
function str2rstr_utf8(input) | |
{ | |
var output = ""; | |
var i = -1; | |
var x, y; | |
while(++i < input.length) | |
{ | |
/* Decode utf-16 surrogate pairs */ | |
x = input.charCodeAt(i); | |
y = i + 1 < input.length ? input.charCodeAt(i + 1) : 0; | |
if(0xD800 <= x && x <= 0xDBFF && 0xDC00 <= y && y <= 0xDFFF) | |
{ | |
x = 0x10000 + ((x & 0x03FF) << 10) + (y & 0x03FF); | |
i++; | |
} | |
/* Encode output as utf-8 */ | |
if(x <= 0x7F) | |
output += String.fromCharCode(x); | |
else if(x <= 0x7FF) | |
output += String.fromCharCode(0xC0 | ((x >>> 6 ) & 0x1F), | |
0x80 | ( x & 0x3F)); | |
else if(x <= 0xFFFF) | |
output += String.fromCharCode(0xE0 | ((x >>> 12) & 0x0F), | |
0x80 | ((x >>> 6 ) & 0x3F), | |
0x80 | ( x & 0x3F)); | |
else if(x <= 0x1FFFFF) | |
output += String.fromCharCode(0xF0 | ((x >>> 18) & 0x07), | |
0x80 | ((x >>> 12) & 0x3F), | |
0x80 | ((x >>> 6 ) & 0x3F), | |
0x80 | ( x & 0x3F)); | |
} | |
return output; | |
} | |
/* | |
* Encode a string as utf-16 | |
*/ | |
function str2rstr_utf16le(input) | |
{ | |
var output = ""; | |
for(var i = 0; i < input.length; i++) | |
output += String.fromCharCode( input.charCodeAt(i) & 0xFF, | |
(input.charCodeAt(i) >>> 8) & 0xFF); | |
return output; | |
} | |
function str2rstr_utf16be(input) | |
{ | |
var output = ""; | |
for(var i = 0; i < input.length; i++) | |
output += String.fromCharCode((input.charCodeAt(i) >>> 8) & 0xFF, | |
input.charCodeAt(i) & 0xFF); | |
return output; | |
} | |
/* | |
* Convert a raw string to an array of big-endian words | |
* Characters >255 have their high-byte silently ignored. | |
*/ | |
function rstr2binb(input) | |
{ | |
var output = Array(input.length >> 2); | |
for(var i = 0; i < output.length; i++) | |
output[i] = 0; | |
for(var i = 0; i < input.length * 8; i += 8) | |
output[i>>5] |= (input.charCodeAt(i / 8) & 0xFF) << (24 - i % 32); | |
return output; | |
} | |
/* | |
* Convert an array of big-endian words to a string | |
*/ | |
function binb2rstr(input) | |
{ | |
var output = ""; | |
for(var i = 0; i < input.length * 32; i += 8) | |
output += String.fromCharCode((input[i>>5] >>> (24 - i % 32)) & 0xFF); | |
return output; | |
} | |
/* | |
* Calculate the SHA-512 of an array of big-endian dwords, and a bit length | |
*/ | |
var sha512_k; | |
function binb_sha512(x, len) | |
{ | |
if(sha512_k == undefined) | |
{ | |
//SHA512 constants | |
sha512_k = new Array( | |
new int64(0x428a2f98, -685199838), new int64(0x71374491, 0x23ef65cd), | |
new int64(-1245643825, -330482897), new int64(-373957723, -2121671748), | |
new int64(0x3956c25b, -213338824), new int64(0x59f111f1, -1241133031), | |
new int64(-1841331548, -1357295717), new int64(-1424204075, -630357736), | |
new int64(-670586216, -1560083902), new int64(0x12835b01, 0x45706fbe), | |
new int64(0x243185be, 0x4ee4b28c), new int64(0x550c7dc3, -704662302), | |
new int64(0x72be5d74, -226784913), new int64(-2132889090, 0x3b1696b1), | |
new int64(-1680079193, 0x25c71235), new int64(-1046744716, -815192428), | |
new int64(-459576895, -1628353838), new int64(-272742522, 0x384f25e3), | |
new int64(0xfc19dc6, -1953704523), new int64(0x240ca1cc, 0x77ac9c65), | |
new int64(0x2de92c6f, 0x592b0275), new int64(0x4a7484aa, 0x6ea6e483), | |
new int64(0x5cb0a9dc, -1119749164), new int64(0x76f988da, -2096016459), | |
new int64(-1740746414, -295247957), new int64(-1473132947, 0x2db43210), | |
new int64(-1341970488, -1728372417), new int64(-1084653625, -1091629340), | |
new int64(-958395405, 0x3da88fc2), new int64(-710438585, -1828018395), | |
new int64(0x6ca6351, -536640913), new int64(0x14292967, 0xa0e6e70), | |
new int64(0x27b70a85, 0x46d22ffc), new int64(0x2e1b2138, 0x5c26c926), | |
new int64(0x4d2c6dfc, 0x5ac42aed), new int64(0x53380d13, -1651133473), | |
new int64(0x650a7354, -1951439906), new int64(0x766a0abb, 0x3c77b2a8), | |
new int64(-2117940946, 0x47edaee6), new int64(-1838011259, 0x1482353b), | |
new int64(-1564481375, 0x4cf10364), new int64(-1474664885, -1136513023), | |
new int64(-1035236496, -789014639), new int64(-949202525, 0x654be30), | |
new int64(-778901479, -688958952), new int64(-694614492, 0x5565a910), | |
new int64(-200395387, 0x5771202a), new int64(0x106aa070, 0x32bbd1b8), | |
new int64(0x19a4c116, -1194143544), new int64(0x1e376c08, 0x5141ab53), | |
new int64(0x2748774c, -544281703), new int64(0x34b0bcb5, -509917016), | |
new int64(0x391c0cb3, -976659869), new int64(0x4ed8aa4a, -482243893), | |
new int64(0x5b9cca4f, 0x7763e373), new int64(0x682e6ff3, -692930397), | |
new int64(0x748f82ee, 0x5defb2fc), new int64(0x78a5636f, 0x43172f60), | |
new int64(-2067236844, -1578062990), new int64(-1933114872, 0x1a6439ec), | |
new int64(-1866530822, 0x23631e28), new int64(-1538233109, -561857047), | |
new int64(-1090935817, -1295615723), new int64(-965641998, -479046869), | |
new int64(-903397682, -366583396), new int64(-779700025, 0x21c0c207), | |
new int64(-354779690, -840897762), new int64(-176337025, -294727304), | |
new int64(0x6f067aa, 0x72176fba), new int64(0xa637dc5, -1563912026), | |
new int64(0x113f9804, -1090974290), new int64(0x1b710b35, 0x131c471b), | |
new int64(0x28db77f5, 0x23047d84), new int64(0x32caab7b, 0x40c72493), | |
new int64(0x3c9ebe0a, 0x15c9bebc), new int64(0x431d67c4, -1676669620), | |
new int64(0x4cc5d4be, -885112138), new int64(0x597f299c, -60457430), | |
new int64(0x5fcb6fab, 0x3ad6faec), new int64(0x6c44198c, 0x4a475817)); | |
} | |
//Initial hash values | |
var H = new Array( | |
new int64(0x6a09e667, -205731576), | |
new int64(-1150833019, -2067093701), | |
new int64(0x3c6ef372, -23791573), | |
new int64(-1521486534, 0x5f1d36f1), | |
new int64(0x510e527f, -1377402159), | |
new int64(-1694144372, 0x2b3e6c1f), | |
new int64(0x1f83d9ab, -79577749), | |
new int64(0x5be0cd19, 0x137e2179)); | |
var T1 = new int64(0, 0), | |
T2 = new int64(0, 0), | |
a = new int64(0,0), | |
b = new int64(0,0), | |
c = new int64(0,0), | |
d = new int64(0,0), | |
e = new int64(0,0), | |
f = new int64(0,0), | |
g = new int64(0,0), | |
h = new int64(0,0), | |
//Temporary variables not specified by the document | |
s0 = new int64(0, 0), | |
s1 = new int64(0, 0), | |
Ch = new int64(0, 0), | |
Maj = new int64(0, 0), | |
r1 = new int64(0, 0), | |
r2 = new int64(0, 0), | |
r3 = new int64(0, 0); | |
var j, i; | |
var W = new Array(80); | |
for(i=0; i<80; i++) | |
W[i] = new int64(0, 0); | |
// append padding to the source string. The format is described in the FIPS. | |
x[len >> 5] |= 0x80 << (24 - (len & 0x1f)); | |
x[((len + 128 >> 10)<< 5) + 31] = len; | |
for(i = 0; i<x.length; i+=32) //32 dwords is the block size | |
{ | |
int64copy(a, H[0]); | |
int64copy(b, H[1]); | |
int64copy(c, H[2]); | |
int64copy(d, H[3]); | |
int64copy(e, H[4]); | |
int64copy(f, H[5]); | |
int64copy(g, H[6]); | |
int64copy(h, H[7]); | |
for(j=0; j<16; j++) | |
{ | |
W[j].h = x[i + 2*j]; | |
W[j].l = x[i + 2*j + 1]; | |
} | |
for(j=16; j<80; j++) | |
{ | |
//sigma1 | |
int64rrot(r1, W[j-2], 19); | |
int64revrrot(r2, W[j-2], 29); | |
int64shr(r3, W[j-2], 6); | |
s1.l = r1.l ^ r2.l ^ r3.l; | |
s1.h = r1.h ^ r2.h ^ r3.h; | |
//sigma0 | |
int64rrot(r1, W[j-15], 1); | |
int64rrot(r2, W[j-15], 8); | |
int64shr(r3, W[j-15], 7); | |
s0.l = r1.l ^ r2.l ^ r3.l; | |
s0.h = r1.h ^ r2.h ^ r3.h; | |
int64add4(W[j], s1, W[j-7], s0, W[j-16]); | |
} | |
for(j = 0; j < 80; j++) | |
{ | |
//Ch | |
Ch.l = (e.l & f.l) ^ (~e.l & g.l); | |
Ch.h = (e.h & f.h) ^ (~e.h & g.h); | |
//Sigma1 | |
int64rrot(r1, e, 14); | |
int64rrot(r2, e, 18); | |
int64revrrot(r3, e, 9); | |
s1.l = r1.l ^ r2.l ^ r3.l; | |
s1.h = r1.h ^ r2.h ^ r3.h; | |
//Sigma0 | |
int64rrot(r1, a, 28); | |
int64revrrot(r2, a, 2); | |
int64revrrot(r3, a, 7); | |
s0.l = r1.l ^ r2.l ^ r3.l; | |
s0.h = r1.h ^ r2.h ^ r3.h; | |
//Maj | |
Maj.l = (a.l & b.l) ^ (a.l & c.l) ^ (b.l & c.l); | |
Maj.h = (a.h & b.h) ^ (a.h & c.h) ^ (b.h & c.h); | |
int64add5(T1, h, s1, Ch, sha512_k[j], W[j]); | |
int64add(T2, s0, Maj); | |
int64copy(h, g); | |
int64copy(g, f); | |
int64copy(f, e); | |
int64add(e, d, T1); | |
int64copy(d, c); | |
int64copy(c, b); | |
int64copy(b, a); | |
int64add(a, T1, T2); | |
} | |
int64add(H[0], H[0], a); | |
int64add(H[1], H[1], b); | |
int64add(H[2], H[2], c); | |
int64add(H[3], H[3], d); | |
int64add(H[4], H[4], e); | |
int64add(H[5], H[5], f); | |
int64add(H[6], H[6], g); | |
int64add(H[7], H[7], h); | |
} | |
//represent the hash as an array of 32-bit dwords | |
var hash = new Array(16); | |
for(i=0; i<8; i++) | |
{ | |
hash[2*i] = H[i].h; | |
hash[2*i + 1] = H[i].l; | |
} | |
return hash; | |
} | |
//A constructor for 64-bit numbers | |
function int64(h, l) | |
{ | |
this.h = h; | |
this.l = l; | |
//this.toString = int64toString; | |
} | |
//Copies src into dst, assuming both are 64-bit numbers | |
function int64copy(dst, src) | |
{ | |
dst.h = src.h; | |
dst.l = src.l; | |
} | |
//Right-rotates a 64-bit number by shift | |
//Won't handle cases of shift>=32 | |
//The function revrrot() is for that | |
function int64rrot(dst, x, shift) | |
{ | |
dst.l = (x.l >>> shift) | (x.h << (32-shift)); | |
dst.h = (x.h >>> shift) | (x.l << (32-shift)); | |
} | |
//Reverses the dwords of the source and then rotates right by shift. | |
//This is equivalent to rotation by 32+shift | |
function int64revrrot(dst, x, shift) | |
{ | |
dst.l = (x.h >>> shift) | (x.l << (32-shift)); | |
dst.h = (x.l >>> shift) | (x.h << (32-shift)); | |
} | |
//Bitwise-shifts right a 64-bit number by shift | |
//Won't handle shift>=32, but it's never needed in SHA512 | |
function int64shr(dst, x, shift) | |
{ | |
dst.l = (x.l >>> shift) | (x.h << (32-shift)); | |
dst.h = (x.h >>> shift); | |
} | |
//Adds two 64-bit numbers | |
//Like the original implementation, does not rely on 32-bit operations | |
function int64add(dst, x, y) | |
{ | |
var w0 = (x.l & 0xffff) + (y.l & 0xffff); | |
var w1 = (x.l >>> 16) + (y.l >>> 16) + (w0 >>> 16); | |
var w2 = (x.h & 0xffff) + (y.h & 0xffff) + (w1 >>> 16); | |
var w3 = (x.h >>> 16) + (y.h >>> 16) + (w2 >>> 16); | |
dst.l = (w0 & 0xffff) | (w1 << 16); | |
dst.h = (w2 & 0xffff) | (w3 << 16); | |
} | |
//Same, except with 4 addends. Works faster than adding them one by one. | |
function int64add4(dst, a, b, c, d) | |
{ | |
var w0 = (a.l & 0xffff) + (b.l & 0xffff) + (c.l & 0xffff) + (d.l & 0xffff); | |
var w1 = (a.l >>> 16) + (b.l >>> 16) + (c.l >>> 16) + (d.l >>> 16) + (w0 >>> 16); | |
var w2 = (a.h & 0xffff) + (b.h & 0xffff) + (c.h & 0xffff) + (d.h & 0xffff) + (w1 >>> 16); | |
var w3 = (a.h >>> 16) + (b.h >>> 16) + (c.h >>> 16) + (d.h >>> 16) + (w2 >>> 16); | |
dst.l = (w0 & 0xffff) | (w1 << 16); | |
dst.h = (w2 & 0xffff) | (w3 << 16); | |
} | |
//Same, except with 5 addends | |
function int64add5(dst, a, b, c, d, e) | |
{ | |
var w0 = (a.l & 0xffff) + (b.l & 0xffff) + (c.l & 0xffff) + (d.l & 0xffff) + (e.l & 0xffff); | |
var w1 = (a.l >>> 16) + (b.l >>> 16) + (c.l >>> 16) + (d.l >>> 16) + (e.l >>> 16) + (w0 >>> 16); | |
var w2 = (a.h & 0xffff) + (b.h & 0xffff) + (c.h & 0xffff) + (d.h & 0xffff) + (e.h & 0xffff) + (w1 >>> 16); | |
var w3 = (a.h >>> 16) + (b.h >>> 16) + (c.h >>> 16) + (d.h >>> 16) + (e.h >>> 16) + (w2 >>> 16); | |
dst.l = (w0 & 0xffff) | (w1 << 16); | |
dst.h = (w2 & 0xffff) | (w3 << 16); | |
} |