// Copyright (c) 2005 Tom Wu | |
// All Rights Reserved. | |
// See "LICENSE" for details. | |
// Basic JavaScript BN library - subset useful for RSA encryption. | |
// Bits per digit | |
var dbits; | |
// JavaScript engine analysis | |
var canary = 0xdeadbeefcafe; | |
var j_lm = ((canary&0xffffff)==0xefcafe); | |
// (public) Constructor | |
function BigInteger(a,b,c) { | |
if(a != null) | |
if("number" == typeof a) this.fromNumber(a,b,c); | |
else if(b == null && "string" != typeof a) this.fromString(a,256); | |
else this.fromString(a,b); | |
} | |
// return new, unset BigInteger | |
function nbi() { return new BigInteger(null); } | |
// am: Compute w_j += (x*this_i), propagate carries, | |
// c is initial carry, returns final carry. | |
// c < 3*dvalue, x < 2*dvalue, this_i < dvalue | |
// We need to select the fastest one that works in this environment. | |
// am1: use a single mult and divide to get the high bits, | |
// max digit bits should be 26 because | |
// max internal value = 2*dvalue^2-2*dvalue (< 2^53) | |
function am1(i,x,w,j,c,n) { | |
while(--n >= 0) { | |
var v = x*this[i++]+w[j]+c; | |
c = Math.floor(v/0x4000000); | |
w[j++] = v&0x3ffffff; | |
} | |
return c; | |
} | |
// am2 avoids a big mult-and-extract completely. | |
// Max digit bits should be <= 30 because we do bitwise ops | |
// on values up to 2*hdvalue^2-hdvalue-1 (< 2^31) | |
function am2(i,x,w,j,c,n) { | |
var xl = x&0x7fff, xh = x>>15; | |
while(--n >= 0) { | |
var l = this[i]&0x7fff; | |
var h = this[i++]>>15; | |
var m = xh*l+h*xl; | |
l = xl*l+((m&0x7fff)<<15)+w[j]+(c&0x3fffffff); | |
c = (l>>>30)+(m>>>15)+xh*h+(c>>>30); | |
w[j++] = l&0x3fffffff; | |
} | |
return c; | |
} | |
// Alternately, set max digit bits to 28 since some | |
// browsers slow down when dealing with 32-bit numbers. | |
function am3(i,x,w,j,c,n) { | |
var xl = x&0x3fff, xh = x>>14; | |
while(--n >= 0) { | |
var l = this[i]&0x3fff; | |
var h = this[i++]>>14; | |
var m = xh*l+h*xl; | |
l = xl*l+((m&0x3fff)<<14)+w[j]+c; | |
c = (l>>28)+(m>>14)+xh*h; | |
w[j++] = l&0xfffffff; | |
} | |
return c; | |
} | |
if(j_lm && (navigator.appName == "Microsoft Internet Explorer")) { | |
BigInteger.prototype.am = am2; | |
dbits = 30; | |
} | |
else if(j_lm && (navigator.appName != "Netscape")) { | |
BigInteger.prototype.am = am1; | |
dbits = 26; | |
} | |
else { // Mozilla/Netscape seems to prefer am3 | |
BigInteger.prototype.am = am3; | |
dbits = 28; | |
} | |
BigInteger.prototype.DB = dbits; | |
BigInteger.prototype.DM = ((1<<dbits)-1); | |
BigInteger.prototype.DV = (1<<dbits); | |
var BI_FP = 52; | |
BigInteger.prototype.FV = Math.pow(2,BI_FP); | |
BigInteger.prototype.F1 = BI_FP-dbits; | |
BigInteger.prototype.F2 = 2*dbits-BI_FP; | |
// Digit conversions | |
var BI_RM = "0123456789abcdefghijklmnopqrstuvwxyz"; | |
var BI_RC = new Array(); | |
var rr,vv; | |
rr = "0".charCodeAt(0); | |
for(vv = 0; vv <= 9; ++vv) BI_RC[rr++] = vv; | |
rr = "a".charCodeAt(0); | |
for(vv = 10; vv < 36; ++vv) BI_RC[rr++] = vv; | |
rr = "A".charCodeAt(0); | |
for(vv = 10; vv < 36; ++vv) BI_RC[rr++] = vv; | |
function int2char(n) { return BI_RM.charAt(n); } | |
function intAt(s,i) { | |
var c = BI_RC[s.charCodeAt(i)]; | |
return (c==null)?-1:c; | |
} | |
// (protected) copy this to r | |
function bnpCopyTo(r) { | |
for(var i = this.t-1; i >= 0; --i) r[i] = this[i]; | |
r.t = this.t; | |
r.s = this.s; | |
} | |
// (protected) set from integer value x, -DV <= x < DV | |
function bnpFromInt(x) { | |
this.t = 1; | |
this.s = (x<0)?-1:0; | |
if(x > 0) this[0] = x; | |
else if(x < -1) this[0] = x+DV; | |
else this.t = 0; | |
} | |
// return bigint initialized to value | |
function nbv(i) { var r = nbi(); r.fromInt(i); return r; } | |
// (protected) set from string and radix | |
function bnpFromString(s,b) { | |
var k; | |
if(b == 16) k = 4; | |
else if(b == 8) k = 3; | |
else if(b == 256) k = 8; // byte array | |
else if(b == 2) k = 1; | |
else if(b == 32) k = 5; | |
else if(b == 4) k = 2; | |
else { this.fromRadix(s,b); return; } | |
this.t = 0; | |
this.s = 0; | |
var i = s.length, mi = false, sh = 0; | |
while(--i >= 0) { | |
var x = (k==8)?s[i]&0xff:intAt(s,i); | |
if(x < 0) { | |
if(s.charAt(i) == "-") mi = true; | |
continue; | |
} | |
mi = false; | |
if(sh == 0) | |
this[this.t++] = x; | |
else if(sh+k > this.DB) { | |
this[this.t-1] |= (x&((1<<(this.DB-sh))-1))<<sh; | |
this[this.t++] = (x>>(this.DB-sh)); | |
} | |
else | |
this[this.t-1] |= x<<sh; | |
sh += k; | |
if(sh >= this.DB) sh -= this.DB; | |
} | |
if(k == 8 && (s[0]&0x80) != 0) { | |
this.s = -1; | |
if(sh > 0) this[this.t-1] |= ((1<<(this.DB-sh))-1)<<sh; | |
} | |
this.clamp(); | |
if(mi) BigInteger.ZERO.subTo(this,this); | |
} | |
// (protected) clamp off excess high words | |
function bnpClamp() { | |
var c = this.s&this.DM; | |
while(this.t > 0 && this[this.t-1] == c) --this.t; | |
} | |
// (public) return string representation in given radix | |
function bnToString(b) { | |
if(this.s < 0) return "-"+this.negate().toString(b); | |
var k; | |
if(b == 16) k = 4; | |
else if(b == 8) k = 3; | |
else if(b == 2) k = 1; | |
else if(b == 32) k = 5; | |
else if(b == 4) k = 2; | |
else return this.toRadix(b); | |
var km = (1<<k)-1, d, m = false, r = "", i = this.t; | |
var p = this.DB-(i*this.DB)%k; | |
if(i-- > 0) { | |
if(p < this.DB && (d = this[i]>>p) > 0) { m = true; r = int2char(d); } | |
while(i >= 0) { | |
if(p < k) { | |
d = (this[i]&((1<<p)-1))<<(k-p); | |
d |= this[--i]>>(p+=this.DB-k); | |
} | |
else { | |
d = (this[i]>>(p-=k))&km; | |
if(p <= 0) { p += this.DB; --i; } | |
} | |
if(d > 0) m = true; | |
if(m) r += int2char(d); | |
} | |
} | |
return m?r:"0"; | |
} | |
// (public) -this | |
function bnNegate() { var r = nbi(); BigInteger.ZERO.subTo(this,r); return r; } | |
// (public) |this| | |
function bnAbs() { return (this.s<0)?this.negate():this; } | |
// (public) return + if this > a, - if this < a, 0 if equal | |
function bnCompareTo(a) { | |
var r = this.s-a.s; | |
if(r != 0) return r; | |
var i = this.t; | |
r = i-a.t; | |
if(r != 0) return r; | |
while(--i >= 0) if((r=this[i]-a[i]) != 0) return r; | |
return 0; | |
} | |
// returns bit length of the integer x | |
function nbits(x) { | |
var r = 1, t; | |
if((t=x>>>16) != 0) { x = t; r += 16; } | |
if((t=x>>8) != 0) { x = t; r += 8; } | |
if((t=x>>4) != 0) { x = t; r += 4; } | |
if((t=x>>2) != 0) { x = t; r += 2; } | |
if((t=x>>1) != 0) { x = t; r += 1; } | |
return r; | |
} | |
// (public) return the number of bits in "this" | |
function bnBitLength() { | |
if(this.t <= 0) return 0; | |
return this.DB*(this.t-1)+nbits(this[this.t-1]^(this.s&this.DM)); | |
} | |
// (protected) r = this << n*DB | |
function bnpDLShiftTo(n,r) { | |
var i; | |
for(i = this.t-1; i >= 0; --i) r[i+n] = this[i]; | |
for(i = n-1; i >= 0; --i) r[i] = 0; | |
r.t = this.t+n; | |
r.s = this.s; | |
} | |
// (protected) r = this >> n*DB | |
function bnpDRShiftTo(n,r) { | |
for(var i = n; i < this.t; ++i) r[i-n] = this[i]; | |
r.t = Math.max(this.t-n,0); | |
r.s = this.s; | |
} | |
// (protected) r = this << n | |
function bnpLShiftTo(n,r) { | |
var bs = n%this.DB; | |
var cbs = this.DB-bs; | |
var bm = (1<<cbs)-1; | |
var ds = Math.floor(n/this.DB), c = (this.s<<bs)&this.DM, i; | |
for(i = this.t-1; i >= 0; --i) { | |
r[i+ds+1] = (this[i]>>cbs)|c; | |
c = (this[i]&bm)<<bs; | |
} | |
for(i = ds-1; i >= 0; --i) r[i] = 0; | |
r[ds] = c; | |
r.t = this.t+ds+1; | |
r.s = this.s; | |
r.clamp(); | |
} | |
// (protected) r = this >> n | |
function bnpRShiftTo(n,r) { | |
r.s = this.s; | |
var ds = Math.floor(n/this.DB); | |
if(ds >= this.t) { r.t = 0; return; } | |
var bs = n%this.DB; | |
var cbs = this.DB-bs; | |
var bm = (1<<bs)-1; | |
r[0] = this[ds]>>bs; | |
for(var i = ds+1; i < this.t; ++i) { | |
r[i-ds-1] |= (this[i]&bm)<<cbs; | |
r[i-ds] = this[i]>>bs; | |
} | |
if(bs > 0) r[this.t-ds-1] |= (this.s&bm)<<cbs; | |
r.t = this.t-ds; | |
r.clamp(); | |
} | |
// (protected) r = this - a | |
function bnpSubTo(a,r) { | |
var i = 0, c = 0, m = Math.min(a.t,this.t); | |
while(i < m) { | |
c += this[i]-a[i]; | |
r[i++] = c&this.DM; | |
c >>= this.DB; | |
} | |
if(a.t < this.t) { | |
c -= a.s; | |
while(i < this.t) { | |
c += this[i]; | |
r[i++] = c&this.DM; | |
c >>= this.DB; | |
} | |
c += this.s; | |
} | |
else { | |
c += this.s; | |
while(i < a.t) { | |
c -= a[i]; | |
r[i++] = c&this.DM; | |
c >>= this.DB; | |
} | |
c -= a.s; | |
} | |
r.s = (c<0)?-1:0; | |
if(c < -1) r[i++] = this.DV+c; | |
else if(c > 0) r[i++] = c; | |
r.t = i; | |
r.clamp(); | |
} | |
// (protected) r = this * a, r != this,a (HAC 14.12) | |
// "this" should be the larger one if appropriate. | |
function bnpMultiplyTo(a,r) { | |
var x = this.abs(), y = a.abs(); | |
var i = x.t; | |
r.t = i+y.t; | |
while(--i >= 0) r[i] = 0; | |
for(i = 0; i < y.t; ++i) r[i+x.t] = x.am(0,y[i],r,i,0,x.t); | |
r.s = 0; | |
r.clamp(); | |
if(this.s != a.s) BigInteger.ZERO.subTo(r,r); | |
} | |
// (protected) r = this^2, r != this (HAC 14.16) | |
function bnpSquareTo(r) { | |
var x = this.abs(); | |
var i = r.t = 2*x.t; | |
while(--i >= 0) r[i] = 0; | |
for(i = 0; i < x.t-1; ++i) { | |
var c = x.am(i,x[i],r,2*i,0,1); | |
if((r[i+x.t]+=x.am(i+1,2*x[i],r,2*i+1,c,x.t-i-1)) >= x.DV) { | |
r[i+x.t] -= x.DV; | |
r[i+x.t+1] = 1; | |
} | |
} | |
if(r.t > 0) r[r.t-1] += x.am(i,x[i],r,2*i,0,1); | |
r.s = 0; | |
r.clamp(); | |
} | |
// (protected) divide this by m, quotient and remainder to q, r (HAC 14.20) | |
// r != q, this != m. q or r may be null. | |
function bnpDivRemTo(m,q,r) { | |
var pm = m.abs(); | |
if(pm.t <= 0) return; | |
var pt = this.abs(); | |
if(pt.t < pm.t) { | |
if(q != null) q.fromInt(0); | |
if(r != null) this.copyTo(r); | |
return; | |
} | |
if(r == null) r = nbi(); | |
var y = nbi(), ts = this.s, ms = m.s; | |
var nsh = this.DB-nbits(pm[pm.t-1]); // normalize modulus | |
if(nsh > 0) { pm.lShiftTo(nsh,y); pt.lShiftTo(nsh,r); } | |
else { pm.copyTo(y); pt.copyTo(r); } | |
var ys = y.t; | |
var y0 = y[ys-1]; | |
if(y0 == 0) return; | |
var yt = y0*(1<<this.F1)+((ys>1)?y[ys-2]>>this.F2:0); | |
var d1 = this.FV/yt, d2 = (1<<this.F1)/yt, e = 1<<this.F2; | |
var i = r.t, j = i-ys, t = (q==null)?nbi():q; | |
y.dlShiftTo(j,t); | |
if(r.compareTo(t) >= 0) { | |
r[r.t++] = 1; | |
r.subTo(t,r); | |
} | |
BigInteger.ONE.dlShiftTo(ys,t); | |
t.subTo(y,y); // "negative" y so we can replace sub with am later | |
while(y.t < ys) y[y.t++] = 0; | |
while(--j >= 0) { | |
// Estimate quotient digit | |
var qd = (r[--i]==y0)?this.DM:Math.floor(r[i]*d1+(r[i-1]+e)*d2); | |
if((r[i]+=y.am(0,qd,r,j,0,ys)) < qd) { // Try it out | |
y.dlShiftTo(j,t); | |
r.subTo(t,r); | |
while(r[i] < --qd) r.subTo(t,r); | |
} | |
} | |
if(q != null) { | |
r.drShiftTo(ys,q); | |
if(ts != ms) BigInteger.ZERO.subTo(q,q); | |
} | |
r.t = ys; | |
r.clamp(); | |
if(nsh > 0) r.rShiftTo(nsh,r); // Denormalize remainder | |
if(ts < 0) BigInteger.ZERO.subTo(r,r); | |
} | |
// (public) this mod a | |
function bnMod(a) { | |
var r = nbi(); | |
this.abs().divRemTo(a,null,r); | |
if(this.s < 0 && r.compareTo(BigInteger.ZERO) > 0) a.subTo(r,r); | |
return r; | |
} | |
// Modular reduction using "classic" algorithm | |
function Classic(m) { this.m = m; } | |
function cConvert(x) { | |
if(x.s < 0 || x.compareTo(this.m) >= 0) return x.mod(this.m); | |
else return x; | |
} | |
function cRevert(x) { return x; } | |
function cReduce(x) { x.divRemTo(this.m,null,x); } | |
function cMulTo(x,y,r) { x.multiplyTo(y,r); this.reduce(r); } | |
function cSqrTo(x,r) { x.squareTo(r); this.reduce(r); } | |
Classic.prototype.convert = cConvert; | |
Classic.prototype.revert = cRevert; | |
Classic.prototype.reduce = cReduce; | |
Classic.prototype.mulTo = cMulTo; | |
Classic.prototype.sqrTo = cSqrTo; | |
// (protected) return "-1/this % 2^DB"; useful for Mont. reduction | |
// justification: | |
// xy == 1 (mod m) | |
// xy = 1+km | |
// xy(2-xy) = (1+km)(1-km) | |
// x[y(2-xy)] = 1-k^2m^2 | |
// x[y(2-xy)] == 1 (mod m^2) | |
// if y is 1/x mod m, then y(2-xy) is 1/x mod m^2 | |
// should reduce x and y(2-xy) by m^2 at each step to keep size bounded. | |
// JS multiply "overflows" differently from C/C++, so care is needed here. | |
function bnpInvDigit() { | |
if(this.t < 1) return 0; | |
var x = this[0]; | |
if((x&1) == 0) return 0; | |
var y = x&3; // y == 1/x mod 2^2 | |
y = (y*(2-(x&0xf)*y))&0xf; // y == 1/x mod 2^4 | |
y = (y*(2-(x&0xff)*y))&0xff; // y == 1/x mod 2^8 | |
y = (y*(2-(((x&0xffff)*y)&0xffff)))&0xffff; // y == 1/x mod 2^16 | |
// last step - calculate inverse mod DV directly; | |
// assumes 16 < DB <= 32 and assumes ability to handle 48-bit ints | |
y = (y*(2-x*y%this.DV))%this.DV; // y == 1/x mod 2^dbits | |
// we really want the negative inverse, and -DV < y < DV | |
return (y>0)?this.DV-y:-y; | |
} | |
// Montgomery reduction | |
function Montgomery(m) { | |
this.m = m; | |
this.mp = m.invDigit(); | |
this.mpl = this.mp&0x7fff; | |
this.mph = this.mp>>15; | |
this.um = (1<<(m.DB-15))-1; | |
this.mt2 = 2*m.t; | |
} | |
// xR mod m | |
function montConvert(x) { | |
var r = nbi(); | |
x.abs().dlShiftTo(this.m.t,r); | |
r.divRemTo(this.m,null,r); | |
if(x.s < 0 && r.compareTo(BigInteger.ZERO) > 0) this.m.subTo(r,r); | |
return r; | |
} | |
// x/R mod m | |
function montRevert(x) { | |
var r = nbi(); | |
x.copyTo(r); | |
this.reduce(r); | |
return r; | |
} | |
// x = x/R mod m (HAC 14.32) | |
function montReduce(x) { | |
while(x.t <= this.mt2) // pad x so am has enough room later | |
x[x.t++] = 0; | |
for(var i = 0; i < this.m.t; ++i) { | |
// faster way of calculating u0 = x[i]*mp mod DV | |
var j = x[i]&0x7fff; | |
var u0 = (j*this.mpl+(((j*this.mph+(x[i]>>15)*this.mpl)&this.um)<<15))&x.DM; | |
// use am to combine the multiply-shift-add into one call | |
j = i+this.m.t; | |
x[j] += this.m.am(0,u0,x,i,0,this.m.t); | |
// propagate carry | |
while(x[j] >= x.DV) { x[j] -= x.DV; x[++j]++; } | |
} | |
x.clamp(); | |
x.drShiftTo(this.m.t,x); | |
if(x.compareTo(this.m) >= 0) x.subTo(this.m,x); | |
} | |
// r = "x^2/R mod m"; x != r | |
function montSqrTo(x,r) { x.squareTo(r); this.reduce(r); } | |
// r = "xy/R mod m"; x,y != r | |
function montMulTo(x,y,r) { x.multiplyTo(y,r); this.reduce(r); } | |
Montgomery.prototype.convert = montConvert; | |
Montgomery.prototype.revert = montRevert; | |
Montgomery.prototype.reduce = montReduce; | |
Montgomery.prototype.mulTo = montMulTo; | |
Montgomery.prototype.sqrTo = montSqrTo; | |
// (protected) true iff this is even | |
function bnpIsEven() { return ((this.t>0)?(this[0]&1):this.s) == 0; } | |
// (protected) this^e, e < 2^32, doing sqr and mul with "r" (HAC 14.79) | |
function bnpExp(e,z) { | |
if(e > 0xffffffff || e < 1) return BigInteger.ONE; | |
var r = nbi(), r2 = nbi(), g = z.convert(this), i = nbits(e)-1; | |
g.copyTo(r); | |
while(--i >= 0) { | |
z.sqrTo(r,r2); | |
if((e&(1<<i)) > 0) z.mulTo(r2,g,r); | |
else { var t = r; r = r2; r2 = t; } | |
} | |
return z.revert(r); | |
} | |
// (public) this^e % m, 0 <= e < 2^32 | |
function bnModPowInt(e,m) { | |
var z; | |
if(e < 256 || m.isEven()) z = new Classic(m); else z = new Montgomery(m); | |
return this.exp(e,z); | |
} | |
// protected | |
BigInteger.prototype.copyTo = bnpCopyTo; | |
BigInteger.prototype.fromInt = bnpFromInt; | |
BigInteger.prototype.fromString = bnpFromString; | |
BigInteger.prototype.clamp = bnpClamp; | |
BigInteger.prototype.dlShiftTo = bnpDLShiftTo; | |
BigInteger.prototype.drShiftTo = bnpDRShiftTo; | |
BigInteger.prototype.lShiftTo = bnpLShiftTo; | |
BigInteger.prototype.rShiftTo = bnpRShiftTo; | |
BigInteger.prototype.subTo = bnpSubTo; | |
BigInteger.prototype.multiplyTo = bnpMultiplyTo; | |
BigInteger.prototype.squareTo = bnpSquareTo; | |
BigInteger.prototype.divRemTo = bnpDivRemTo; | |
BigInteger.prototype.invDigit = bnpInvDigit; | |
BigInteger.prototype.isEven = bnpIsEven; | |
BigInteger.prototype.exp = bnpExp; | |
// public | |
BigInteger.prototype.toString = bnToString; | |
BigInteger.prototype.negate = bnNegate; | |
BigInteger.prototype.abs = bnAbs; | |
BigInteger.prototype.compareTo = bnCompareTo; | |
BigInteger.prototype.bitLength = bnBitLength; | |
BigInteger.prototype.mod = bnMod; | |
BigInteger.prototype.modPowInt = bnModPowInt; | |
// "constants" | |
BigInteger.ZERO = nbv(0); | |
BigInteger.ONE = nbv(1); |