| /* |
| * A JavaScript implementation of the Secure Hash Algorithm, SHA-512, as defined |
| * in FIPS 180-2 |
| * Version 2.2 Copyright Anonymous Contributor, Paul Johnston 2000 - 2009. |
| * Other contributors: Greg Holt, Andrew Kepert, Ydnar, Lostinet |
| * Distributed under the BSD License |
| * See http://pajhome.org.uk/crypt/md5 for details. |
| */ |
| |
| /* |
| * Configurable variables. You may need to tweak these to be compatible with |
| * the server-side, but the defaults work in most cases. |
| */ |
| var hexcase = 0; /* hex output format. 0 - lowercase; 1 - uppercase */ |
| var b64pad = ""; /* base-64 pad character. "=" for strict RFC compliance */ |
| |
| /* |
| * These are the functions you'll usually want to call |
| * They take string arguments and return either hex or base-64 encoded strings |
| */ |
| function hex_sha512(s) { return rstr2hex(rstr_sha512(str2rstr_utf8(s))); } |
| function b64_sha512(s) { return rstr2b64(rstr_sha512(str2rstr_utf8(s))); } |
| function any_sha512(s, e) { return rstr2any(rstr_sha512(str2rstr_utf8(s)), e);} |
| function hex_hmac_sha512(k, d) |
| { return rstr2hex(rstr_hmac_sha512(str2rstr_utf8(k), str2rstr_utf8(d))); } |
| function b64_hmac_sha512(k, d) |
| { return rstr2b64(rstr_hmac_sha512(str2rstr_utf8(k), str2rstr_utf8(d))); } |
| function any_hmac_sha512(k, d, e) |
| { return rstr2any(rstr_hmac_sha512(str2rstr_utf8(k), str2rstr_utf8(d)), e);} |
| |
| /* |
| * Perform a simple self-test to see if the VM is working |
| */ |
| function sha512_vm_test() |
| { |
| return hex_sha512("abc").toLowerCase() == |
| "ddaf35a193617abacc417349ae20413112e6fa4e89a97ea20a9eeee64b55d39a" + |
| "2192992a274fc1a836ba3c23a3feebbd454d4423643ce80e2a9ac94fa54ca49f"; |
| } |
| |
| /* |
| * Calculate the SHA-512 of a raw string |
| */ |
| function rstr_sha512(s) |
| { |
| return binb2rstr(binb_sha512(rstr2binb(s), s.length * 8)); |
| } |
| |
| /* |
| * Calculate the HMAC-SHA-512 of a key and some data (raw strings) |
| */ |
| function rstr_hmac_sha512(key, data) |
| { |
| var bkey = rstr2binb(key); |
| if(bkey.length > 32) bkey = binb_sha512(bkey, key.length * 8); |
| |
| var ipad = Array(32), opad = Array(32); |
| for(var i = 0; i < 32; i++) |
| { |
| ipad[i] = bkey[i] ^ 0x36363636; |
| opad[i] = bkey[i] ^ 0x5C5C5C5C; |
| } |
| |
| var hash = binb_sha512(ipad.concat(rstr2binb(data)), 1024 + data.length * 8); |
| return binb2rstr(binb_sha512(opad.concat(hash), 1024 + 512)); |
| } |
| |
| /* |
| * Convert a raw string to a hex string |
| */ |
| function rstr2hex(input) |
| { |
| try { hexcase } catch(e) { hexcase=0; } |
| var hex_tab = hexcase ? "0123456789ABCDEF" : "0123456789abcdef"; |
| var output = ""; |
| var x; |
| for(var i = 0; i < input.length; i++) |
| { |
| x = input.charCodeAt(i); |
| output += hex_tab.charAt((x >>> 4) & 0x0F) |
| + hex_tab.charAt( x & 0x0F); |
| } |
| return output; |
| } |
| |
| /* |
| * Convert a raw string to a base-64 string |
| */ |
| function rstr2b64(input) |
| { |
| try { b64pad } catch(e) { b64pad=''; } |
| var tab = "ABCDEFGHIJKLMNOPQRSTUVWXYZabcdefghijklmnopqrstuvwxyz0123456789+/"; |
| var output = ""; |
| var len = input.length; |
| for(var i = 0; i < len; i += 3) |
| { |
| var triplet = (input.charCodeAt(i) << 16) |
| | (i + 1 < len ? input.charCodeAt(i+1) << 8 : 0) |
| | (i + 2 < len ? input.charCodeAt(i+2) : 0); |
| for(var j = 0; j < 4; j++) |
| { |
| if(i * 8 + j * 6 > input.length * 8) output += b64pad; |
| else output += tab.charAt((triplet >>> 6*(3-j)) & 0x3F); |
| } |
| } |
| return output; |
| } |
| |
| /* |
| * Convert a raw string to an arbitrary string encoding |
| */ |
| function rstr2any(input, encoding) |
| { |
| var divisor = encoding.length; |
| var i, j, q, x, quotient; |
| |
| /* Convert to an array of 16-bit big-endian values, forming the dividend */ |
| var dividend = Array(Math.ceil(input.length / 2)); |
| for(i = 0; i < dividend.length; i++) |
| { |
| dividend[i] = (input.charCodeAt(i * 2) << 8) | input.charCodeAt(i * 2 + 1); |
| } |
| |
| /* |
| * Repeatedly perform a long division. The binary array forms the dividend, |
| * the length of the encoding is the divisor. Once computed, the quotient |
| * forms the dividend for the next step. All remainders are stored for later |
| * use. |
| */ |
| var full_length = Math.ceil(input.length * 8 / |
| (Math.log(encoding.length) / Math.log(2))); |
| var remainders = Array(full_length); |
| for(j = 0; j < full_length; j++) |
| { |
| quotient = Array(); |
| x = 0; |
| for(i = 0; i < dividend.length; i++) |
| { |
| x = (x << 16) + dividend[i]; |
| q = Math.floor(x / divisor); |
| x -= q * divisor; |
| if(quotient.length > 0 || q > 0) |
| quotient[quotient.length] = q; |
| } |
| remainders[j] = x; |
| dividend = quotient; |
| } |
| |
| /* Convert the remainders to the output string */ |
| var output = ""; |
| for(i = remainders.length - 1; i >= 0; i--) |
| output += encoding.charAt(remainders[i]); |
| |
| return output; |
| } |
| |
| /* |
| * Encode a string as utf-8. |
| * For efficiency, this assumes the input is valid utf-16. |
| */ |
| function str2rstr_utf8(input) |
| { |
| var output = ""; |
| var i = -1; |
| var x, y; |
| |
| while(++i < input.length) |
| { |
| /* Decode utf-16 surrogate pairs */ |
| x = input.charCodeAt(i); |
| y = i + 1 < input.length ? input.charCodeAt(i + 1) : 0; |
| if(0xD800 <= x && x <= 0xDBFF && 0xDC00 <= y && y <= 0xDFFF) |
| { |
| x = 0x10000 + ((x & 0x03FF) << 10) + (y & 0x03FF); |
| i++; |
| } |
| |
| /* Encode output as utf-8 */ |
| if(x <= 0x7F) |
| output += String.fromCharCode(x); |
| else if(x <= 0x7FF) |
| output += String.fromCharCode(0xC0 | ((x >>> 6 ) & 0x1F), |
| 0x80 | ( x & 0x3F)); |
| else if(x <= 0xFFFF) |
| output += String.fromCharCode(0xE0 | ((x >>> 12) & 0x0F), |
| 0x80 | ((x >>> 6 ) & 0x3F), |
| 0x80 | ( x & 0x3F)); |
| else if(x <= 0x1FFFFF) |
| output += String.fromCharCode(0xF0 | ((x >>> 18) & 0x07), |
| 0x80 | ((x >>> 12) & 0x3F), |
| 0x80 | ((x >>> 6 ) & 0x3F), |
| 0x80 | ( x & 0x3F)); |
| } |
| return output; |
| } |
| |
| /* |
| * Encode a string as utf-16 |
| */ |
| function str2rstr_utf16le(input) |
| { |
| var output = ""; |
| for(var i = 0; i < input.length; i++) |
| output += String.fromCharCode( input.charCodeAt(i) & 0xFF, |
| (input.charCodeAt(i) >>> 8) & 0xFF); |
| return output; |
| } |
| |
| function str2rstr_utf16be(input) |
| { |
| var output = ""; |
| for(var i = 0; i < input.length; i++) |
| output += String.fromCharCode((input.charCodeAt(i) >>> 8) & 0xFF, |
| input.charCodeAt(i) & 0xFF); |
| return output; |
| } |
| |
| /* |
| * Convert a raw string to an array of big-endian words |
| * Characters >255 have their high-byte silently ignored. |
| */ |
| function rstr2binb(input) |
| { |
| var output = Array(input.length >> 2); |
| for(var i = 0; i < output.length; i++) |
| output[i] = 0; |
| for(var i = 0; i < input.length * 8; i += 8) |
| output[i>>5] |= (input.charCodeAt(i / 8) & 0xFF) << (24 - i % 32); |
| return output; |
| } |
| |
| /* |
| * Convert an array of big-endian words to a string |
| */ |
| function binb2rstr(input) |
| { |
| var output = ""; |
| for(var i = 0; i < input.length * 32; i += 8) |
| output += String.fromCharCode((input[i>>5] >>> (24 - i % 32)) & 0xFF); |
| return output; |
| } |
| |
| /* |
| * Calculate the SHA-512 of an array of big-endian dwords, and a bit length |
| */ |
| var sha512_k; |
| function binb_sha512(x, len) |
| { |
| if(sha512_k == undefined) |
| { |
| //SHA512 constants |
| sha512_k = new Array( |
| new int64(0x428a2f98, -685199838), new int64(0x71374491, 0x23ef65cd), |
| new int64(-1245643825, -330482897), new int64(-373957723, -2121671748), |
| new int64(0x3956c25b, -213338824), new int64(0x59f111f1, -1241133031), |
| new int64(-1841331548, -1357295717), new int64(-1424204075, -630357736), |
| new int64(-670586216, -1560083902), new int64(0x12835b01, 0x45706fbe), |
| new int64(0x243185be, 0x4ee4b28c), new int64(0x550c7dc3, -704662302), |
| new int64(0x72be5d74, -226784913), new int64(-2132889090, 0x3b1696b1), |
| new int64(-1680079193, 0x25c71235), new int64(-1046744716, -815192428), |
| new int64(-459576895, -1628353838), new int64(-272742522, 0x384f25e3), |
| new int64(0xfc19dc6, -1953704523), new int64(0x240ca1cc, 0x77ac9c65), |
| new int64(0x2de92c6f, 0x592b0275), new int64(0x4a7484aa, 0x6ea6e483), |
| new int64(0x5cb0a9dc, -1119749164), new int64(0x76f988da, -2096016459), |
| new int64(-1740746414, -295247957), new int64(-1473132947, 0x2db43210), |
| new int64(-1341970488, -1728372417), new int64(-1084653625, -1091629340), |
| new int64(-958395405, 0x3da88fc2), new int64(-710438585, -1828018395), |
| new int64(0x6ca6351, -536640913), new int64(0x14292967, 0xa0e6e70), |
| new int64(0x27b70a85, 0x46d22ffc), new int64(0x2e1b2138, 0x5c26c926), |
| new int64(0x4d2c6dfc, 0x5ac42aed), new int64(0x53380d13, -1651133473), |
| new int64(0x650a7354, -1951439906), new int64(0x766a0abb, 0x3c77b2a8), |
| new int64(-2117940946, 0x47edaee6), new int64(-1838011259, 0x1482353b), |
| new int64(-1564481375, 0x4cf10364), new int64(-1474664885, -1136513023), |
| new int64(-1035236496, -789014639), new int64(-949202525, 0x654be30), |
| new int64(-778901479, -688958952), new int64(-694614492, 0x5565a910), |
| new int64(-200395387, 0x5771202a), new int64(0x106aa070, 0x32bbd1b8), |
| new int64(0x19a4c116, -1194143544), new int64(0x1e376c08, 0x5141ab53), |
| new int64(0x2748774c, -544281703), new int64(0x34b0bcb5, -509917016), |
| new int64(0x391c0cb3, -976659869), new int64(0x4ed8aa4a, -482243893), |
| new int64(0x5b9cca4f, 0x7763e373), new int64(0x682e6ff3, -692930397), |
| new int64(0x748f82ee, 0x5defb2fc), new int64(0x78a5636f, 0x43172f60), |
| new int64(-2067236844, -1578062990), new int64(-1933114872, 0x1a6439ec), |
| new int64(-1866530822, 0x23631e28), new int64(-1538233109, -561857047), |
| new int64(-1090935817, -1295615723), new int64(-965641998, -479046869), |
| new int64(-903397682, -366583396), new int64(-779700025, 0x21c0c207), |
| new int64(-354779690, -840897762), new int64(-176337025, -294727304), |
| new int64(0x6f067aa, 0x72176fba), new int64(0xa637dc5, -1563912026), |
| new int64(0x113f9804, -1090974290), new int64(0x1b710b35, 0x131c471b), |
| new int64(0x28db77f5, 0x23047d84), new int64(0x32caab7b, 0x40c72493), |
| new int64(0x3c9ebe0a, 0x15c9bebc), new int64(0x431d67c4, -1676669620), |
| new int64(0x4cc5d4be, -885112138), new int64(0x597f299c, -60457430), |
| new int64(0x5fcb6fab, 0x3ad6faec), new int64(0x6c44198c, 0x4a475817)); |
| } |
| |
| //Initial hash values |
| var H = new Array( |
| new int64(0x6a09e667, -205731576), |
| new int64(-1150833019, -2067093701), |
| new int64(0x3c6ef372, -23791573), |
| new int64(-1521486534, 0x5f1d36f1), |
| new int64(0x510e527f, -1377402159), |
| new int64(-1694144372, 0x2b3e6c1f), |
| new int64(0x1f83d9ab, -79577749), |
| new int64(0x5be0cd19, 0x137e2179)); |
| |
| var T1 = new int64(0, 0), |
| T2 = new int64(0, 0), |
| a = new int64(0,0), |
| b = new int64(0,0), |
| c = new int64(0,0), |
| d = new int64(0,0), |
| e = new int64(0,0), |
| f = new int64(0,0), |
| g = new int64(0,0), |
| h = new int64(0,0), |
| //Temporary variables not specified by the document |
| s0 = new int64(0, 0), |
| s1 = new int64(0, 0), |
| Ch = new int64(0, 0), |
| Maj = new int64(0, 0), |
| r1 = new int64(0, 0), |
| r2 = new int64(0, 0), |
| r3 = new int64(0, 0); |
| var j, i; |
| var W = new Array(80); |
| for(i=0; i<80; i++) |
| W[i] = new int64(0, 0); |
| |
| // append padding to the source string. The format is described in the FIPS. |
| x[len >> 5] |= 0x80 << (24 - (len & 0x1f)); |
| x[((len + 128 >> 10)<< 5) + 31] = len; |
| |
| for(i = 0; i<x.length; i+=32) //32 dwords is the block size |
| { |
| int64copy(a, H[0]); |
| int64copy(b, H[1]); |
| int64copy(c, H[2]); |
| int64copy(d, H[3]); |
| int64copy(e, H[4]); |
| int64copy(f, H[5]); |
| int64copy(g, H[6]); |
| int64copy(h, H[7]); |
| |
| for(j=0; j<16; j++) |
| { |
| W[j].h = x[i + 2*j]; |
| W[j].l = x[i + 2*j + 1]; |
| } |
| |
| for(j=16; j<80; j++) |
| { |
| //sigma1 |
| int64rrot(r1, W[j-2], 19); |
| int64revrrot(r2, W[j-2], 29); |
| int64shr(r3, W[j-2], 6); |
| s1.l = r1.l ^ r2.l ^ r3.l; |
| s1.h = r1.h ^ r2.h ^ r3.h; |
| //sigma0 |
| int64rrot(r1, W[j-15], 1); |
| int64rrot(r2, W[j-15], 8); |
| int64shr(r3, W[j-15], 7); |
| s0.l = r1.l ^ r2.l ^ r3.l; |
| s0.h = r1.h ^ r2.h ^ r3.h; |
| |
| int64add4(W[j], s1, W[j-7], s0, W[j-16]); |
| } |
| |
| for(j = 0; j < 80; j++) |
| { |
| //Ch |
| Ch.l = (e.l & f.l) ^ (~e.l & g.l); |
| Ch.h = (e.h & f.h) ^ (~e.h & g.h); |
| |
| //Sigma1 |
| int64rrot(r1, e, 14); |
| int64rrot(r2, e, 18); |
| int64revrrot(r3, e, 9); |
| s1.l = r1.l ^ r2.l ^ r3.l; |
| s1.h = r1.h ^ r2.h ^ r3.h; |
| |
| //Sigma0 |
| int64rrot(r1, a, 28); |
| int64revrrot(r2, a, 2); |
| int64revrrot(r3, a, 7); |
| s0.l = r1.l ^ r2.l ^ r3.l; |
| s0.h = r1.h ^ r2.h ^ r3.h; |
| |
| //Maj |
| Maj.l = (a.l & b.l) ^ (a.l & c.l) ^ (b.l & c.l); |
| Maj.h = (a.h & b.h) ^ (a.h & c.h) ^ (b.h & c.h); |
| |
| int64add5(T1, h, s1, Ch, sha512_k[j], W[j]); |
| int64add(T2, s0, Maj); |
| |
| int64copy(h, g); |
| int64copy(g, f); |
| int64copy(f, e); |
| int64add(e, d, T1); |
| int64copy(d, c); |
| int64copy(c, b); |
| int64copy(b, a); |
| int64add(a, T1, T2); |
| } |
| int64add(H[0], H[0], a); |
| int64add(H[1], H[1], b); |
| int64add(H[2], H[2], c); |
| int64add(H[3], H[3], d); |
| int64add(H[4], H[4], e); |
| int64add(H[5], H[5], f); |
| int64add(H[6], H[6], g); |
| int64add(H[7], H[7], h); |
| } |
| |
| //represent the hash as an array of 32-bit dwords |
| var hash = new Array(16); |
| for(i=0; i<8; i++) |
| { |
| hash[2*i] = H[i].h; |
| hash[2*i + 1] = H[i].l; |
| } |
| return hash; |
| } |
| |
| //A constructor for 64-bit numbers |
| function int64(h, l) |
| { |
| this.h = h; |
| this.l = l; |
| //this.toString = int64toString; |
| } |
| |
| //Copies src into dst, assuming both are 64-bit numbers |
| function int64copy(dst, src) |
| { |
| dst.h = src.h; |
| dst.l = src.l; |
| } |
| |
| //Right-rotates a 64-bit number by shift |
| //Won't handle cases of shift>=32 |
| //The function revrrot() is for that |
| function int64rrot(dst, x, shift) |
| { |
| dst.l = (x.l >>> shift) | (x.h << (32-shift)); |
| dst.h = (x.h >>> shift) | (x.l << (32-shift)); |
| } |
| |
| //Reverses the dwords of the source and then rotates right by shift. |
| //This is equivalent to rotation by 32+shift |
| function int64revrrot(dst, x, shift) |
| { |
| dst.l = (x.h >>> shift) | (x.l << (32-shift)); |
| dst.h = (x.l >>> shift) | (x.h << (32-shift)); |
| } |
| |
| //Bitwise-shifts right a 64-bit number by shift |
| //Won't handle shift>=32, but it's never needed in SHA512 |
| function int64shr(dst, x, shift) |
| { |
| dst.l = (x.l >>> shift) | (x.h << (32-shift)); |
| dst.h = (x.h >>> shift); |
| } |
| |
| //Adds two 64-bit numbers |
| //Like the original implementation, does not rely on 32-bit operations |
| function int64add(dst, x, y) |
| { |
| var w0 = (x.l & 0xffff) + (y.l & 0xffff); |
| var w1 = (x.l >>> 16) + (y.l >>> 16) + (w0 >>> 16); |
| var w2 = (x.h & 0xffff) + (y.h & 0xffff) + (w1 >>> 16); |
| var w3 = (x.h >>> 16) + (y.h >>> 16) + (w2 >>> 16); |
| dst.l = (w0 & 0xffff) | (w1 << 16); |
| dst.h = (w2 & 0xffff) | (w3 << 16); |
| } |
| |
| //Same, except with 4 addends. Works faster than adding them one by one. |
| function int64add4(dst, a, b, c, d) |
| { |
| var w0 = (a.l & 0xffff) + (b.l & 0xffff) + (c.l & 0xffff) + (d.l & 0xffff); |
| var w1 = (a.l >>> 16) + (b.l >>> 16) + (c.l >>> 16) + (d.l >>> 16) + (w0 >>> 16); |
| var w2 = (a.h & 0xffff) + (b.h & 0xffff) + (c.h & 0xffff) + (d.h & 0xffff) + (w1 >>> 16); |
| var w3 = (a.h >>> 16) + (b.h >>> 16) + (c.h >>> 16) + (d.h >>> 16) + (w2 >>> 16); |
| dst.l = (w0 & 0xffff) | (w1 << 16); |
| dst.h = (w2 & 0xffff) | (w3 << 16); |
| } |
| |
| //Same, except with 5 addends |
| function int64add5(dst, a, b, c, d, e) |
| { |
| var w0 = (a.l & 0xffff) + (b.l & 0xffff) + (c.l & 0xffff) + (d.l & 0xffff) + (e.l & 0xffff); |
| var w1 = (a.l >>> 16) + (b.l >>> 16) + (c.l >>> 16) + (d.l >>> 16) + (e.l >>> 16) + (w0 >>> 16); |
| var w2 = (a.h & 0xffff) + (b.h & 0xffff) + (c.h & 0xffff) + (d.h & 0xffff) + (e.h & 0xffff) + (w1 >>> 16); |
| var w3 = (a.h >>> 16) + (b.h >>> 16) + (c.h >>> 16) + (d.h >>> 16) + (e.h >>> 16) + (w2 >>> 16); |
| dst.l = (w0 & 0xffff) | (w1 << 16); |
| dst.h = (w2 & 0xffff) | (w3 << 16); |
| } |