| /* |
| * A JavaScript implementation of the Secure Hash Algorithm, SHA-1, as defined |
| * in FIPS 180-1 |
| * Version 2.2 Copyright Paul Johnston 2000 - 2009. |
| * Other contributors: Greg Holt, Andrew Kepert, Ydnar, Lostinet |
| * Distributed under the BSD License |
| * See http://pajhome.org.uk/crypt/md5 for details. |
| */ |
| |
| /* |
| * Configurable variables. You may need to tweak these to be compatible with |
| * the server-side, but the defaults work in most cases. |
| */ |
| var hexcase = 0; /* hex output format. 0 - lowercase; 1 - uppercase */ |
| var b64pad = ""; /* base-64 pad character. "=" for strict RFC compliance */ |
| |
| /** |
| * These are the functions you'll usually want to call |
| * They take string arguments and return either hex or base-64 encoded strings |
| */ |
| function hex_sha1(s) { return rstr2hex(rstr_sha1(str2rstr_utf8(s))); } |
| function b64_sha1(s) { return rstr2b64(rstr_sha1(str2rstr_utf8(s))); } |
| function any_sha1(s, e) { return rstr2any(rstr_sha1(str2rstr_utf8(s)), e); } |
| function hex_hmac_sha1(k, d) |
| { return rstr2hex(rstr_hmac_sha1(str2rstr_utf8(k), str2rstr_utf8(d))); } |
| function b64_hmac_sha1(k, d) |
| { return rstr2b64(rstr_hmac_sha1(str2rstr_utf8(k), str2rstr_utf8(d))); } |
| function any_hmac_sha1(k, d, e) |
| { return rstr2any(rstr_hmac_sha1(str2rstr_utf8(k), str2rstr_utf8(d)), e); } |
| |
| /** |
| * Perform a simple self-test to see if the VM is working |
| */ |
| function sha1_vm_test() |
| { |
| return hex_sha1("abc").toLowerCase() == "a9993e364706816aba3e25717850c26c9cd0d89d"; |
| } |
| |
| /** |
| * Calculate the SHA1 of a raw string |
| */ |
| function rstr_sha1(s) |
| { |
| return binb2rstr(binb_sha1(rstr2binb(s), s.length * 8)); |
| } |
| |
| /** |
| * Calculate the HMAC-SHA1 of a key and some data (raw strings) |
| */ |
| function rstr_hmac_sha1(key, data) |
| { |
| var bkey = rstr2binb(key); |
| if(bkey.length > 16) bkey = binb_sha1(bkey, key.length * 8); |
| |
| var ipad = Array(16), opad = Array(16); |
| for(var i = 0; i < 16; i++) |
| { |
| ipad[i] = bkey[i] ^ 0x36363636; |
| opad[i] = bkey[i] ^ 0x5C5C5C5C; |
| } |
| |
| var hash = binb_sha1(ipad.concat(rstr2binb(data)), 512 + data.length * 8); |
| return binb2rstr(binb_sha1(opad.concat(hash), 512 + 160)); |
| } |
| |
| /** |
| * Convert a raw string to a hex string |
| */ |
| function rstr2hex(input) |
| { |
| try { hexcase } catch(e) { hexcase=0; } |
| var hex_tab = hexcase ? "0123456789ABCDEF" : "0123456789abcdef"; |
| var output = ""; |
| var x; |
| for(var i = 0; i < input.length; i++) |
| { |
| x = input.charCodeAt(i); |
| output += hex_tab.charAt((x >>> 4) & 0x0F) |
| + hex_tab.charAt( x & 0x0F); |
| } |
| return output; |
| } |
| |
| /** |
| * Convert a raw string to a base-64 string |
| */ |
| function rstr2b64(input) |
| { |
| try { b64pad } catch(e) { b64pad=''; } |
| var tab = "ABCDEFGHIJKLMNOPQRSTUVWXYZabcdefghijklmnopqrstuvwxyz0123456789+/"; |
| var output = ""; |
| var len = input.length; |
| for(var i = 0; i < len; i += 3) |
| { |
| var triplet = (input.charCodeAt(i) << 16) |
| | (i + 1 < len ? input.charCodeAt(i+1) << 8 : 0) |
| | (i + 2 < len ? input.charCodeAt(i+2) : 0); |
| for(var j = 0; j < 4; j++) |
| { |
| if(i * 8 + j * 6 > input.length * 8) output += b64pad; |
| else output += tab.charAt((triplet >>> 6*(3-j)) & 0x3F); |
| } |
| } |
| return output; |
| } |
| |
| /** |
| * Convert a raw string to an arbitrary string encoding |
| */ |
| function rstr2any(input, encoding) |
| { |
| var divisor = encoding.length; |
| var remainders = Array(); |
| var i, q, x, quotient; |
| |
| /* Convert to an array of 16-bit big-endian values, forming the dividend */ |
| var dividend = Array(Math.ceil(input.length / 2)); |
| for(i = 0; i < dividend.length; i++) |
| { |
| dividend[i] = (input.charCodeAt(i * 2) << 8) | input.charCodeAt(i * 2 + 1); |
| } |
| |
| /* |
| * Repeatedly perform a long division. The binary array forms the dividend, |
| * the length of the encoding is the divisor. Once computed, the quotient |
| * forms the dividend for the next step. We stop when the dividend is zero. |
| * All remainders are stored for later use. |
| */ |
| while(dividend.length > 0) |
| { |
| quotient = Array(); |
| x = 0; |
| for(i = 0; i < dividend.length; i++) |
| { |
| x = (x << 16) + dividend[i]; |
| q = Math.floor(x / divisor); |
| x -= q * divisor; |
| if(quotient.length > 0 || q > 0) |
| quotient[quotient.length] = q; |
| } |
| remainders[remainders.length] = x; |
| dividend = quotient; |
| } |
| |
| /* Convert the remainders to the output string */ |
| var output = ""; |
| for(i = remainders.length - 1; i >= 0; i--) |
| output += encoding.charAt(remainders[i]); |
| |
| /* Append leading zero equivalents */ |
| var full_length = Math.ceil(input.length * 8 / |
| (Math.log(encoding.length) / Math.log(2))); |
| for(i = output.length; i < full_length; i++) |
| output = encoding[0] + output; |
| |
| return output; |
| } |
| |
| /** |
| * Encode a string as utf-8. |
| * For efficiency, this assumes the input is valid utf-16. |
| */ |
| function str2rstr_utf8(input) |
| { |
| var output = ""; |
| var i = -1; |
| var x, y; |
| |
| while(++i < input.length) |
| { |
| /* Decode utf-16 surrogate pairs */ |
| x = input.charCodeAt(i); |
| y = i + 1 < input.length ? input.charCodeAt(i + 1) : 0; |
| if(0xD800 <= x && x <= 0xDBFF && 0xDC00 <= y && y <= 0xDFFF) |
| { |
| x = 0x10000 + ((x & 0x03FF) << 10) + (y & 0x03FF); |
| i++; |
| } |
| |
| /* Encode output as utf-8 */ |
| if(x <= 0x7F) |
| output += String.fromCharCode(x); |
| else if(x <= 0x7FF) |
| output += String.fromCharCode(0xC0 | ((x >>> 6 ) & 0x1F), |
| 0x80 | ( x & 0x3F)); |
| else if(x <= 0xFFFF) |
| output += String.fromCharCode(0xE0 | ((x >>> 12) & 0x0F), |
| 0x80 | ((x >>> 6 ) & 0x3F), |
| 0x80 | ( x & 0x3F)); |
| else if(x <= 0x1FFFFF) |
| output += String.fromCharCode(0xF0 | ((x >>> 18) & 0x07), |
| 0x80 | ((x >>> 12) & 0x3F), |
| 0x80 | ((x >>> 6 ) & 0x3F), |
| 0x80 | ( x & 0x3F)); |
| } |
| return output; |
| } |
| |
| /** |
| * Encode a string as utf-16 |
| */ |
| function str2rstr_utf16le(input) |
| { |
| var output = ""; |
| for(var i = 0; i < input.length; i++) |
| output += String.fromCharCode( input.charCodeAt(i) & 0xFF, |
| (input.charCodeAt(i) >>> 8) & 0xFF); |
| return output; |
| } |
| |
| function str2rstr_utf16be(input) |
| { |
| var output = ""; |
| for(var i = 0; i < input.length; i++) |
| output += String.fromCharCode((input.charCodeAt(i) >>> 8) & 0xFF, |
| input.charCodeAt(i) & 0xFF); |
| return output; |
| } |
| |
| /** |
| * Convert a raw string to an array of big-endian words |
| * Characters >255 have their high-byte silently ignored. |
| */ |
| function rstr2binb(input) |
| { |
| var output = Array(input.length >> 2); |
| for(var i = 0; i < output.length; i++) |
| output[i] = 0; |
| for(var i = 0; i < input.length * 8; i += 8) |
| output[i>>5] |= (input.charCodeAt(i / 8) & 0xFF) << (24 - i % 32); |
| return output; |
| } |
| |
| /** |
| * Convert an array of big-endian words to a string |
| */ |
| function binb2rstr(input) |
| { |
| var output = ""; |
| for(var i = 0; i < input.length * 32; i += 8) |
| output += String.fromCharCode((input[i>>5] >>> (24 - i % 32)) & 0xFF); |
| return output; |
| } |
| |
| /** |
| * Calculate the SHA-1 of an array of big-endian words, and a bit length |
| */ |
| function binb_sha1(x, len) |
| { |
| /* append padding */ |
| x[len >> 5] |= 0x80 << (24 - len % 32); |
| x[((len + 64 >> 9) << 4) + 15] = len; |
| |
| var w = Array(80); |
| var a = 1732584193; |
| var b = -271733879; |
| var c = -1732584194; |
| var d = 271733878; |
| var e = -1009589776; |
| |
| for(var i = 0; i < x.length; i += 16) |
| { |
| var olda = a; |
| var oldb = b; |
| var oldc = c; |
| var oldd = d; |
| var olde = e; |
| |
| for(var j = 0; j < 80; j++) |
| { |
| if(j < 16) w[j] = x[i + j]; |
| else w[j] = bit_rol(w[j-3] ^ w[j-8] ^ w[j-14] ^ w[j-16], 1); |
| var t = safe_add(safe_add(bit_rol(a, 5), sha1_ft(j, b, c, d)), |
| safe_add(safe_add(e, w[j]), sha1_kt(j))); |
| e = d; |
| d = c; |
| c = bit_rol(b, 30); |
| b = a; |
| a = t; |
| } |
| |
| a = safe_add(a, olda); |
| b = safe_add(b, oldb); |
| c = safe_add(c, oldc); |
| d = safe_add(d, oldd); |
| e = safe_add(e, olde); |
| } |
| return Array(a, b, c, d, e); |
| |
| } |
| |
| /** |
| * Perform the appropriate triplet combination function for the current |
| * iteration |
| */ |
| function sha1_ft(t, b, c, d) |
| { |
| if(t < 20) return (b & c) | ((~b) & d); |
| if(t < 40) return b ^ c ^ d; |
| if(t < 60) return (b & c) | (b & d) | (c & d); |
| return b ^ c ^ d; |
| } |
| |
| /** |
| * Determine the appropriate additive constant for the current iteration |
| */ |
| function sha1_kt(t) |
| { |
| return (t < 20) ? 1518500249 : (t < 40) ? 1859775393 : |
| (t < 60) ? -1894007588 : -899497514; |
| } |
| |
| /** |
| * Add integers, wrapping at 2^32. This uses 16-bit operations internally |
| * to work around bugs in some JS interpreters. |
| */ |
| function safe_add(x, y) |
| { |
| var lsw = (x & 0xFFFF) + (y & 0xFFFF); |
| var msw = (x >> 16) + (y >> 16) + (lsw >> 16); |
| return (msw << 16) | (lsw & 0xFFFF); |
| } |
| |
| /** |
| * Bitwise rotate a 32-bit number to the left. |
| */ |
| function bit_rol(num, cnt) |
| { |
| return (num << cnt) | (num >>> (32 - cnt)); |
| } |