// Copyright (c) 2005-2009 Tom Wu | |
// All Rights Reserved. | |
// See "LICENSE" for details. | |
// Extended JavaScript BN functions, required for RSA private ops. | |
// Version 1.1: new BigInteger("0", 10) returns "proper" zero | |
// (public) | |
function bnClone() { var r = nbi(); this.copyTo(r); return r; } | |
// (public) return value as integer | |
function bnIntValue() { | |
if(this.s < 0) { | |
if(this.t == 1) return this[0]-this.DV; | |
else if(this.t == 0) return -1; | |
} | |
else if(this.t == 1) return this[0]; | |
else if(this.t == 0) return 0; | |
// assumes 16 < DB < 32 | |
return ((this[1]&((1<<(32-this.DB))-1))<<this.DB)|this[0]; | |
} | |
// (public) return value as byte | |
function bnByteValue() { return (this.t==0)?this.s:(this[0]<<24)>>24; } | |
// (public) return value as short (assumes DB>=16) | |
function bnShortValue() { return (this.t==0)?this.s:(this[0]<<16)>>16; } | |
// (protected) return x s.t. r^x < DV | |
function bnpChunkSize(r) { return Math.floor(Math.LN2*this.DB/Math.log(r)); } | |
// (public) 0 if this == 0, 1 if this > 0 | |
function bnSigNum() { | |
if(this.s < 0) return -1; | |
else if(this.t <= 0 || (this.t == 1 && this[0] <= 0)) return 0; | |
else return 1; | |
} | |
// (protected) convert to radix string | |
function bnpToRadix(b) { | |
if(b == null) b = 10; | |
if(this.signum() == 0 || b < 2 || b > 36) return "0"; | |
var cs = this.chunkSize(b); | |
var a = Math.pow(b,cs); | |
var d = nbv(a), y = nbi(), z = nbi(), r = ""; | |
this.divRemTo(d,y,z); | |
while(y.signum() > 0) { | |
r = (a+z.intValue()).toString(b).substr(1) + r; | |
y.divRemTo(d,y,z); | |
} | |
return z.intValue().toString(b) + r; | |
} | |
// (protected) convert from radix string | |
function bnpFromRadix(s,b) { | |
this.fromInt(0); | |
if(b == null) b = 10; | |
var cs = this.chunkSize(b); | |
var d = Math.pow(b,cs), mi = false, j = 0, w = 0; | |
for(var i = 0; i < s.length; ++i) { | |
var x = intAt(s,i); | |
if(x < 0) { | |
if(s.charAt(i) == "-" && this.signum() == 0) mi = true; | |
continue; | |
} | |
w = b*w+x; | |
if(++j >= cs) { | |
this.dMultiply(d); | |
this.dAddOffset(w,0); | |
j = 0; | |
w = 0; | |
} | |
} | |
if(j > 0) { | |
this.dMultiply(Math.pow(b,j)); | |
this.dAddOffset(w,0); | |
} | |
if(mi) BigInteger.ZERO.subTo(this,this); | |
} | |
// (protected) alternate constructor | |
function bnpFromNumber(a,b,c) { | |
if("number" == typeof b) { | |
// new BigInteger(int,int,RNG) | |
if(a < 2) this.fromInt(1); | |
else { | |
this.fromNumber(a,c); | |
if(!this.testBit(a-1)) // force MSB set | |
this.bitwiseTo(BigInteger.ONE.shiftLeft(a-1),op_or,this); | |
if(this.isEven()) this.dAddOffset(1,0); // force odd | |
while(!this.isProbablePrime(b)) { | |
this.dAddOffset(2,0); | |
if(this.bitLength() > a) this.subTo(BigInteger.ONE.shiftLeft(a-1),this); | |
} | |
} | |
} | |
else { | |
// new BigInteger(int,RNG) | |
var x = new Array(), t = a&7; | |
x.length = (a>>3)+1; | |
b.nextBytes(x); | |
if(t > 0) x[0] &= ((1<<t)-1); else x[0] = 0; | |
this.fromString(x,256); | |
} | |
} | |
// (public) convert to bigendian byte array | |
function bnToByteArray() { | |
var i = this.t, r = new Array(); | |
r[0] = this.s; | |
var p = this.DB-(i*this.DB)%8, d, k = 0; | |
if(i-- > 0) { | |
if(p < this.DB && (d = this[i]>>p) != (this.s&this.DM)>>p) | |
r[k++] = d|(this.s<<(this.DB-p)); | |
while(i >= 0) { | |
if(p < 8) { | |
d = (this[i]&((1<<p)-1))<<(8-p); | |
d |= this[--i]>>(p+=this.DB-8); | |
} | |
else { | |
d = (this[i]>>(p-=8))&0xff; | |
if(p <= 0) { p += this.DB; --i; } | |
} | |
if((d&0x80) != 0) d |= -256; | |
if(k == 0 && (this.s&0x80) != (d&0x80)) ++k; | |
if(k > 0 || d != this.s) r[k++] = d; | |
} | |
} | |
return r; | |
} | |
function bnEquals(a) { return(this.compareTo(a)==0); } | |
function bnMin(a) { return(this.compareTo(a)<0)?this:a; } | |
function bnMax(a) { return(this.compareTo(a)>0)?this:a; } | |
// (protected) r = this op a (bitwise) | |
function bnpBitwiseTo(a,op,r) { | |
var i, f, m = Math.min(a.t,this.t); | |
for(i = 0; i < m; ++i) r[i] = op(this[i],a[i]); | |
if(a.t < this.t) { | |
f = a.s&this.DM; | |
for(i = m; i < this.t; ++i) r[i] = op(this[i],f); | |
r.t = this.t; | |
} | |
else { | |
f = this.s&this.DM; | |
for(i = m; i < a.t; ++i) r[i] = op(f,a[i]); | |
r.t = a.t; | |
} | |
r.s = op(this.s,a.s); | |
r.clamp(); | |
} | |
// (public) this & a | |
function op_and(x,y) { return x&y; } | |
function bnAnd(a) { var r = nbi(); this.bitwiseTo(a,op_and,r); return r; } | |
// (public) this | a | |
function op_or(x,y) { return x|y; } | |
function bnOr(a) { var r = nbi(); this.bitwiseTo(a,op_or,r); return r; } | |
// (public) this ^ a | |
function op_xor(x,y) { return x^y; } | |
function bnXor(a) { var r = nbi(); this.bitwiseTo(a,op_xor,r); return r; } | |
// (public) this & ~a | |
function op_andnot(x,y) { return x&~y; } | |
function bnAndNot(a) { var r = nbi(); this.bitwiseTo(a,op_andnot,r); return r; } | |
// (public) ~this | |
function bnNot() { | |
var r = nbi(); | |
for(var i = 0; i < this.t; ++i) r[i] = this.DM&~this[i]; | |
r.t = this.t; | |
r.s = ~this.s; | |
return r; | |
} | |
// (public) this << n | |
function bnShiftLeft(n) { | |
var r = nbi(); | |
if(n < 0) this.rShiftTo(-n,r); else this.lShiftTo(n,r); | |
return r; | |
} | |
// (public) this >> n | |
function bnShiftRight(n) { | |
var r = nbi(); | |
if(n < 0) this.lShiftTo(-n,r); else this.rShiftTo(n,r); | |
return r; | |
} | |
// return index of lowest 1-bit in x, x < 2^31 | |
function lbit(x) { | |
if(x == 0) return -1; | |
var r = 0; | |
if((x&0xffff) == 0) { x >>= 16; r += 16; } | |
if((x&0xff) == 0) { x >>= 8; r += 8; } | |
if((x&0xf) == 0) { x >>= 4; r += 4; } | |
if((x&3) == 0) { x >>= 2; r += 2; } | |
if((x&1) == 0) ++r; | |
return r; | |
} | |
// (public) returns index of lowest 1-bit (or -1 if none) | |
function bnGetLowestSetBit() { | |
for(var i = 0; i < this.t; ++i) | |
if(this[i] != 0) return i*this.DB+lbit(this[i]); | |
if(this.s < 0) return this.t*this.DB; | |
return -1; | |
} | |
// return number of 1 bits in x | |
function cbit(x) { | |
var r = 0; | |
while(x != 0) { x &= x-1; ++r; } | |
return r; | |
} | |
// (public) return number of set bits | |
function bnBitCount() { | |
var r = 0, x = this.s&this.DM; | |
for(var i = 0; i < this.t; ++i) r += cbit(this[i]^x); | |
return r; | |
} | |
// (public) true iff nth bit is set | |
function bnTestBit(n) { | |
var j = Math.floor(n/this.DB); | |
if(j >= this.t) return(this.s!=0); | |
return((this[j]&(1<<(n%this.DB)))!=0); | |
} | |
// (protected) this op (1<<n) | |
function bnpChangeBit(n,op) { | |
var r = BigInteger.ONE.shiftLeft(n); | |
this.bitwiseTo(r,op,r); | |
return r; | |
} | |
// (public) this | (1<<n) | |
function bnSetBit(n) { return this.changeBit(n,op_or); } | |
// (public) this & ~(1<<n) | |
function bnClearBit(n) { return this.changeBit(n,op_andnot); } | |
// (public) this ^ (1<<n) | |
function bnFlipBit(n) { return this.changeBit(n,op_xor); } | |
// (protected) r = this + a | |
function bnpAddTo(a,r) { | |
var i = 0, c = 0, m = Math.min(a.t,this.t); | |
while(i < m) { | |
c += this[i]+a[i]; | |
r[i++] = c&this.DM; | |
c >>= this.DB; | |
} | |
if(a.t < this.t) { | |
c += a.s; | |
while(i < this.t) { | |
c += this[i]; | |
r[i++] = c&this.DM; | |
c >>= this.DB; | |
} | |
c += this.s; | |
} | |
else { | |
c += this.s; | |
while(i < a.t) { | |
c += a[i]; | |
r[i++] = c&this.DM; | |
c >>= this.DB; | |
} | |
c += a.s; | |
} | |
r.s = (c<0)?-1:0; | |
if(c > 0) r[i++] = c; | |
else if(c < -1) r[i++] = this.DV+c; | |
r.t = i; | |
r.clamp(); | |
} | |
// (public) this + a | |
function bnAdd(a) { var r = nbi(); this.addTo(a,r); return r; } | |
// (public) this - a | |
function bnSubtract(a) { var r = nbi(); this.subTo(a,r); return r; } | |
// (public) this * a | |
function bnMultiply(a) { var r = nbi(); this.multiplyTo(a,r); return r; } | |
// (public) this / a | |
function bnDivide(a) { var r = nbi(); this.divRemTo(a,r,null); return r; } | |
// (public) this % a | |
function bnRemainder(a) { var r = nbi(); this.divRemTo(a,null,r); return r; } | |
// (public) [this/a,this%a] | |
function bnDivideAndRemainder(a) { | |
var q = nbi(), r = nbi(); | |
this.divRemTo(a,q,r); | |
return new Array(q,r); | |
} | |
// (protected) this *= n, this >= 0, 1 < n < DV | |
function bnpDMultiply(n) { | |
this[this.t] = this.am(0,n-1,this,0,0,this.t); | |
++this.t; | |
this.clamp(); | |
} | |
// (protected) this += n << w words, this >= 0 | |
function bnpDAddOffset(n,w) { | |
if(n == 0) return; | |
while(this.t <= w) this[this.t++] = 0; | |
this[w] += n; | |
while(this[w] >= this.DV) { | |
this[w] -= this.DV; | |
if(++w >= this.t) this[this.t++] = 0; | |
++this[w]; | |
} | |
} | |
// A "null" reducer | |
function NullExp() {} | |
function nNop(x) { return x; } | |
function nMulTo(x,y,r) { x.multiplyTo(y,r); } | |
function nSqrTo(x,r) { x.squareTo(r); } | |
NullExp.prototype.convert = nNop; | |
NullExp.prototype.revert = nNop; | |
NullExp.prototype.mulTo = nMulTo; | |
NullExp.prototype.sqrTo = nSqrTo; | |
// (public) this^e | |
function bnPow(e) { return this.exp(e,new NullExp()); } | |
// (protected) r = lower n words of "this * a", a.t <= n | |
// "this" should be the larger one if appropriate. | |
function bnpMultiplyLowerTo(a,n,r) { | |
var i = Math.min(this.t+a.t,n); | |
r.s = 0; // assumes a,this >= 0 | |
r.t = i; | |
while(i > 0) r[--i] = 0; | |
var j; | |
for(j = r.t-this.t; i < j; ++i) r[i+this.t] = this.am(0,a[i],r,i,0,this.t); | |
for(j = Math.min(a.t,n); i < j; ++i) this.am(0,a[i],r,i,0,n-i); | |
r.clamp(); | |
} | |
// (protected) r = "this * a" without lower n words, n > 0 | |
// "this" should be the larger one if appropriate. | |
function bnpMultiplyUpperTo(a,n,r) { | |
--n; | |
var i = r.t = this.t+a.t-n; | |
r.s = 0; // assumes a,this >= 0 | |
while(--i >= 0) r[i] = 0; | |
for(i = Math.max(n-this.t,0); i < a.t; ++i) | |
r[this.t+i-n] = this.am(n-i,a[i],r,0,0,this.t+i-n); | |
r.clamp(); | |
r.drShiftTo(1,r); | |
} | |
// Barrett modular reduction | |
function Barrett(m) { | |
// setup Barrett | |
this.r2 = nbi(); | |
this.q3 = nbi(); | |
BigInteger.ONE.dlShiftTo(2*m.t,this.r2); | |
this.mu = this.r2.divide(m); | |
this.m = m; | |
} | |
function barrettConvert(x) { | |
if(x.s < 0 || x.t > 2*this.m.t) return x.mod(this.m); | |
else if(x.compareTo(this.m) < 0) return x; | |
else { var r = nbi(); x.copyTo(r); this.reduce(r); return r; } | |
} | |
function barrettRevert(x) { return x; } | |
// x = x mod m (HAC 14.42) | |
function barrettReduce(x) { | |
x.drShiftTo(this.m.t-1,this.r2); | |
if(x.t > this.m.t+1) { x.t = this.m.t+1; x.clamp(); } | |
this.mu.multiplyUpperTo(this.r2,this.m.t+1,this.q3); | |
this.m.multiplyLowerTo(this.q3,this.m.t+1,this.r2); | |
while(x.compareTo(this.r2) < 0) x.dAddOffset(1,this.m.t+1); | |
x.subTo(this.r2,x); | |
while(x.compareTo(this.m) >= 0) x.subTo(this.m,x); | |
} | |
// r = x^2 mod m; x != r | |
function barrettSqrTo(x,r) { x.squareTo(r); this.reduce(r); } | |
// r = x*y mod m; x,y != r | |
function barrettMulTo(x,y,r) { x.multiplyTo(y,r); this.reduce(r); } | |
Barrett.prototype.convert = barrettConvert; | |
Barrett.prototype.revert = barrettRevert; | |
Barrett.prototype.reduce = barrettReduce; | |
Barrett.prototype.mulTo = barrettMulTo; | |
Barrett.prototype.sqrTo = barrettSqrTo; | |
// (public) this^e % m (HAC 14.85) | |
function bnModPow(e,m) { | |
var i = e.bitLength(), k, r = nbv(1), z; | |
if(i <= 0) return r; | |
else if(i < 18) k = 1; | |
else if(i < 48) k = 3; | |
else if(i < 144) k = 4; | |
else if(i < 768) k = 5; | |
else k = 6; | |
if(i < 8) | |
z = new Classic(m); | |
else if(m.isEven()) | |
z = new Barrett(m); | |
else | |
z = new Montgomery(m); | |
// precomputation | |
var g = new Array(), n = 3, k1 = k-1, km = (1<<k)-1; | |
g[1] = z.convert(this); | |
if(k > 1) { | |
var g2 = nbi(); | |
z.sqrTo(g[1],g2); | |
while(n <= km) { | |
g[n] = nbi(); | |
z.mulTo(g2,g[n-2],g[n]); | |
n += 2; | |
} | |
} | |
var j = e.t-1, w, is1 = true, r2 = nbi(), t; | |
i = nbits(e[j])-1; | |
while(j >= 0) { | |
if(i >= k1) w = (e[j]>>(i-k1))&km; | |
else { | |
w = (e[j]&((1<<(i+1))-1))<<(k1-i); | |
if(j > 0) w |= e[j-1]>>(this.DB+i-k1); | |
} | |
n = k; | |
while((w&1) == 0) { w >>= 1; --n; } | |
if((i -= n) < 0) { i += this.DB; --j; } | |
if(is1) { // ret == 1, don't bother squaring or multiplying it | |
g[w].copyTo(r); | |
is1 = false; | |
} | |
else { | |
while(n > 1) { z.sqrTo(r,r2); z.sqrTo(r2,r); n -= 2; } | |
if(n > 0) z.sqrTo(r,r2); else { t = r; r = r2; r2 = t; } | |
z.mulTo(r2,g[w],r); | |
} | |
while(j >= 0 && (e[j]&(1<<i)) == 0) { | |
z.sqrTo(r,r2); t = r; r = r2; r2 = t; | |
if(--i < 0) { i = this.DB-1; --j; } | |
} | |
} | |
return z.revert(r); | |
} | |
// (public) gcd(this,a) (HAC 14.54) | |
function bnGCD(a) { | |
var x = (this.s<0)?this.negate():this.clone(); | |
var y = (a.s<0)?a.negate():a.clone(); | |
if(x.compareTo(y) < 0) { var t = x; x = y; y = t; } | |
var i = x.getLowestSetBit(), g = y.getLowestSetBit(); | |
if(g < 0) return x; | |
if(i < g) g = i; | |
if(g > 0) { | |
x.rShiftTo(g,x); | |
y.rShiftTo(g,y); | |
} | |
while(x.signum() > 0) { | |
if((i = x.getLowestSetBit()) > 0) x.rShiftTo(i,x); | |
if((i = y.getLowestSetBit()) > 0) y.rShiftTo(i,y); | |
if(x.compareTo(y) >= 0) { | |
x.subTo(y,x); | |
x.rShiftTo(1,x); | |
} | |
else { | |
y.subTo(x,y); | |
y.rShiftTo(1,y); | |
} | |
} | |
if(g > 0) y.lShiftTo(g,y); | |
return y; | |
} | |
// (protected) this % n, n < 2^26 | |
function bnpModInt(n) { | |
if(n <= 0) return 0; | |
var d = this.DV%n, r = (this.s<0)?n-1:0; | |
if(this.t > 0) | |
if(d == 0) r = this[0]%n; | |
else for(var i = this.t-1; i >= 0; --i) r = (d*r+this[i])%n; | |
return r; | |
} | |
// (public) 1/this % m (HAC 14.61) | |
function bnModInverse(m) { | |
var ac = m.isEven(); | |
if((this.isEven() && ac) || m.signum() == 0) return BigInteger.ZERO; | |
var u = m.clone(), v = this.clone(); | |
var a = nbv(1), b = nbv(0), c = nbv(0), d = nbv(1); | |
while(u.signum() != 0) { | |
while(u.isEven()) { | |
u.rShiftTo(1,u); | |
if(ac) { | |
if(!a.isEven() || !b.isEven()) { a.addTo(this,a); b.subTo(m,b); } | |
a.rShiftTo(1,a); | |
} | |
else if(!b.isEven()) b.subTo(m,b); | |
b.rShiftTo(1,b); | |
} | |
while(v.isEven()) { | |
v.rShiftTo(1,v); | |
if(ac) { | |
if(!c.isEven() || !d.isEven()) { c.addTo(this,c); d.subTo(m,d); } | |
c.rShiftTo(1,c); | |
} | |
else if(!d.isEven()) d.subTo(m,d); | |
d.rShiftTo(1,d); | |
} | |
if(u.compareTo(v) >= 0) { | |
u.subTo(v,u); | |
if(ac) a.subTo(c,a); | |
b.subTo(d,b); | |
} | |
else { | |
v.subTo(u,v); | |
if(ac) c.subTo(a,c); | |
d.subTo(b,d); | |
} | |
} | |
if(v.compareTo(BigInteger.ONE) != 0) return BigInteger.ZERO; | |
if(d.compareTo(m) >= 0) return d.subtract(m); | |
if(d.signum() < 0) d.addTo(m,d); else return d; | |
if(d.signum() < 0) return d.add(m); else return d; | |
} | |
var lowprimes = [2,3,5,7,11,13,17,19,23,29,31,37,41,43,47,53,59,61,67,71,73,79,83,89,97,101,103,107,109,113,127,131,137,139,149,151,157,163,167,173,179,181,191,193,197,199,211,223,227,229,233,239,241,251,257,263,269,271,277,281,283,293,307,311,313,317,331,337,347,349,353,359,367,373,379,383,389,397,401,409,419,421,431,433,439,443,449,457,461,463,467,479,487,491,499,503,509]; | |
var lplim = (1<<26)/lowprimes[lowprimes.length-1]; | |
// (public) test primality with certainty >= 1-.5^t | |
function bnIsProbablePrime(t) { | |
var i, x = this.abs(); | |
if(x.t == 1 && x[0] <= lowprimes[lowprimes.length-1]) { | |
for(i = 0; i < lowprimes.length; ++i) | |
if(x[0] == lowprimes[i]) return true; | |
return false; | |
} | |
if(x.isEven()) return false; | |
i = 1; | |
while(i < lowprimes.length) { | |
var m = lowprimes[i], j = i+1; | |
while(j < lowprimes.length && m < lplim) m *= lowprimes[j++]; | |
m = x.modInt(m); | |
while(i < j) if(m%lowprimes[i++] == 0) return false; | |
} | |
return x.millerRabin(t); | |
} | |
// (protected) true if probably prime (HAC 4.24, Miller-Rabin) | |
function bnpMillerRabin(t) { | |
var n1 = this.subtract(BigInteger.ONE); | |
var k = n1.getLowestSetBit(); | |
if(k <= 0) return false; | |
var r = n1.shiftRight(k); | |
t = (t+1)>>1; | |
if(t > lowprimes.length) t = lowprimes.length; | |
var a = nbi(); | |
for(var i = 0; i < t; ++i) { | |
a.fromInt(lowprimes[i]); | |
var y = a.modPow(r,this); | |
if(y.compareTo(BigInteger.ONE) != 0 && y.compareTo(n1) != 0) { | |
var j = 1; | |
while(j++ < k && y.compareTo(n1) != 0) { | |
y = y.modPowInt(2,this); | |
if(y.compareTo(BigInteger.ONE) == 0) return false; | |
} | |
if(y.compareTo(n1) != 0) return false; | |
} | |
} | |
return true; | |
} | |
// protected | |
BigInteger.prototype.chunkSize = bnpChunkSize; | |
BigInteger.prototype.toRadix = bnpToRadix; | |
BigInteger.prototype.fromRadix = bnpFromRadix; | |
BigInteger.prototype.fromNumber = bnpFromNumber; | |
BigInteger.prototype.bitwiseTo = bnpBitwiseTo; | |
BigInteger.prototype.changeBit = bnpChangeBit; | |
BigInteger.prototype.addTo = bnpAddTo; | |
BigInteger.prototype.dMultiply = bnpDMultiply; | |
BigInteger.prototype.dAddOffset = bnpDAddOffset; | |
BigInteger.prototype.multiplyLowerTo = bnpMultiplyLowerTo; | |
BigInteger.prototype.multiplyUpperTo = bnpMultiplyUpperTo; | |
BigInteger.prototype.modInt = bnpModInt; | |
BigInteger.prototype.millerRabin = bnpMillerRabin; | |
// public | |
BigInteger.prototype.clone = bnClone; | |
BigInteger.prototype.intValue = bnIntValue; | |
BigInteger.prototype.byteValue = bnByteValue; | |
BigInteger.prototype.shortValue = bnShortValue; | |
BigInteger.prototype.signum = bnSigNum; | |
BigInteger.prototype.toByteArray = bnToByteArray; | |
BigInteger.prototype.equals = bnEquals; | |
BigInteger.prototype.min = bnMin; | |
BigInteger.prototype.max = bnMax; | |
BigInteger.prototype.and = bnAnd; | |
BigInteger.prototype.or = bnOr; | |
BigInteger.prototype.xor = bnXor; | |
BigInteger.prototype.andNot = bnAndNot; | |
BigInteger.prototype.not = bnNot; | |
BigInteger.prototype.shiftLeft = bnShiftLeft; | |
BigInteger.prototype.shiftRight = bnShiftRight; | |
BigInteger.prototype.getLowestSetBit = bnGetLowestSetBit; | |
BigInteger.prototype.bitCount = bnBitCount; | |
BigInteger.prototype.testBit = bnTestBit; | |
BigInteger.prototype.setBit = bnSetBit; | |
BigInteger.prototype.clearBit = bnClearBit; | |
BigInteger.prototype.flipBit = bnFlipBit; | |
BigInteger.prototype.add = bnAdd; | |
BigInteger.prototype.subtract = bnSubtract; | |
BigInteger.prototype.multiply = bnMultiply; | |
BigInteger.prototype.divide = bnDivide; | |
BigInteger.prototype.remainder = bnRemainder; | |
BigInteger.prototype.divideAndRemainder = bnDivideAndRemainder; | |
BigInteger.prototype.modPow = bnModPow; | |
BigInteger.prototype.modInverse = bnModInverse; | |
BigInteger.prototype.pow = bnPow; | |
BigInteger.prototype.gcd = bnGCD; | |
BigInteger.prototype.isProbablePrime = bnIsProbablePrime; | |
// BigInteger interfaces not implemented in jsbn: | |
// BigInteger(int signum, byte[] magnitude) | |
// double doubleValue() | |
// float floatValue() | |
// int hashCode() | |
// long longValue() | |
// static BigInteger valueOf(long val) |