Initial reorganization
diff --git a/contrib/securityLib/sha1.js b/contrib/securityLib/sha1.js
new file mode 100644
index 0000000..697bce7
--- /dev/null
+++ b/contrib/securityLib/sha1.js
@@ -0,0 +1,330 @@
+/*
+ * A JavaScript implementation of the Secure Hash Algorithm, SHA-1, as defined
+ * in FIPS 180-1
+ * Version 2.2 Copyright Paul Johnston 2000 - 2009.
+ * Other contributors: Greg Holt, Andrew Kepert, Ydnar, Lostinet
+ * Distributed under the BSD License
+ * See http://pajhome.org.uk/crypt/md5 for details.
+ */
+
+/*
+ * Configurable variables. You may need to tweak these to be compatible with
+ * the server-side, but the defaults work in most cases.
+ */
+var hexcase = 0;  /* hex output format. 0 - lowercase; 1 - uppercase        */
+var b64pad  = ""; /* base-64 pad character. "=" for strict RFC compliance   */
+
+/**
+ * These are the functions you'll usually want to call
+ * They take string arguments and return either hex or base-64 encoded strings
+ */
+function hex_sha1(s)    { return rstr2hex(rstr_sha1(str2rstr_utf8(s))); }
+function b64_sha1(s)    { return rstr2b64(rstr_sha1(str2rstr_utf8(s))); }
+function any_sha1(s, e) { return rstr2any(rstr_sha1(str2rstr_utf8(s)), e); }
+function hex_hmac_sha1(k, d)
+  { return rstr2hex(rstr_hmac_sha1(str2rstr_utf8(k), str2rstr_utf8(d))); }
+function b64_hmac_sha1(k, d)
+  { return rstr2b64(rstr_hmac_sha1(str2rstr_utf8(k), str2rstr_utf8(d))); }
+function any_hmac_sha1(k, d, e)
+  { return rstr2any(rstr_hmac_sha1(str2rstr_utf8(k), str2rstr_utf8(d)), e); }
+
+/**
+ * Perform a simple self-test to see if the VM is working
+ */
+function sha1_vm_test()
+{
+  return hex_sha1("abc").toLowerCase() == "a9993e364706816aba3e25717850c26c9cd0d89d";
+}
+
+/**
+ * Calculate the SHA1 of a raw string
+ */
+function rstr_sha1(s)
+{
+  return binb2rstr(binb_sha1(rstr2binb(s), s.length * 8));
+}
+
+/**
+ * Calculate the HMAC-SHA1 of a key and some data (raw strings)
+ */
+function rstr_hmac_sha1(key, data)
+{
+  var bkey = rstr2binb(key);
+  if(bkey.length > 16) bkey = binb_sha1(bkey, key.length * 8);
+
+  var ipad = Array(16), opad = Array(16);
+  for(var i = 0; i < 16; i++)
+  {
+    ipad[i] = bkey[i] ^ 0x36363636;
+    opad[i] = bkey[i] ^ 0x5C5C5C5C;
+  }
+
+  var hash = binb_sha1(ipad.concat(rstr2binb(data)), 512 + data.length * 8);
+  return binb2rstr(binb_sha1(opad.concat(hash), 512 + 160));
+}
+
+/**
+ * Convert a raw string to a hex string
+ */
+function rstr2hex(input)
+{
+  try { hexcase } catch(e) { hexcase=0; }
+  var hex_tab = hexcase ? "0123456789ABCDEF" : "0123456789abcdef";
+  var output = "";
+  var x;
+  for(var i = 0; i < input.length; i++)
+  {
+    x = input.charCodeAt(i);
+    output += hex_tab.charAt((x >>> 4) & 0x0F)
+           +  hex_tab.charAt( x        & 0x0F);
+  }
+  return output;
+}
+
+/**
+ * Convert a raw string to a base-64 string
+ */
+function rstr2b64(input)
+{
+  try { b64pad } catch(e) { b64pad=''; }
+  var tab = "ABCDEFGHIJKLMNOPQRSTUVWXYZabcdefghijklmnopqrstuvwxyz0123456789+/";
+  var output = "";
+  var len = input.length;
+  for(var i = 0; i < len; i += 3)
+  {
+    var triplet = (input.charCodeAt(i) << 16)
+                | (i + 1 < len ? input.charCodeAt(i+1) << 8 : 0)
+                | (i + 2 < len ? input.charCodeAt(i+2)      : 0);
+    for(var j = 0; j < 4; j++)
+    {
+      if(i * 8 + j * 6 > input.length * 8) output += b64pad;
+      else output += tab.charAt((triplet >>> 6*(3-j)) & 0x3F);
+    }
+  }
+  return output;
+}
+
+/**
+ * Convert a raw string to an arbitrary string encoding
+ */
+function rstr2any(input, encoding)
+{
+  var divisor = encoding.length;
+  var remainders = Array();
+  var i, q, x, quotient;
+
+  /* Convert to an array of 16-bit big-endian values, forming the dividend */
+  var dividend = Array(Math.ceil(input.length / 2));
+  for(i = 0; i < dividend.length; i++)
+  {
+    dividend[i] = (input.charCodeAt(i * 2) << 8) | input.charCodeAt(i * 2 + 1);
+  }
+
+  /*
+   * Repeatedly perform a long division. The binary array forms the dividend,
+   * the length of the encoding is the divisor. Once computed, the quotient
+   * forms the dividend for the next step. We stop when the dividend is zero.
+   * All remainders are stored for later use.
+   */
+  while(dividend.length > 0)
+  {
+    quotient = Array();
+    x = 0;
+    for(i = 0; i < dividend.length; i++)
+    {
+      x = (x << 16) + dividend[i];
+      q = Math.floor(x / divisor);
+      x -= q * divisor;
+      if(quotient.length > 0 || q > 0)
+        quotient[quotient.length] = q;
+    }
+    remainders[remainders.length] = x;
+    dividend = quotient;
+  }
+
+  /* Convert the remainders to the output string */
+  var output = "";
+  for(i = remainders.length - 1; i >= 0; i--)
+    output += encoding.charAt(remainders[i]);
+
+  /* Append leading zero equivalents */
+  var full_length = Math.ceil(input.length * 8 /
+                                    (Math.log(encoding.length) / Math.log(2)));
+  for(i = output.length; i < full_length; i++)
+    output = encoding[0] + output;
+
+  return output;
+}
+
+/**
+ * Encode a string as utf-8.
+ * For efficiency, this assumes the input is valid utf-16.
+ */
+function str2rstr_utf8(input)
+{
+  var output = "";
+  var i = -1;
+  var x, y;
+
+  while(++i < input.length)
+  {
+    /* Decode utf-16 surrogate pairs */
+    x = input.charCodeAt(i);
+    y = i + 1 < input.length ? input.charCodeAt(i + 1) : 0;
+    if(0xD800 <= x && x <= 0xDBFF && 0xDC00 <= y && y <= 0xDFFF)
+    {
+      x = 0x10000 + ((x & 0x03FF) << 10) + (y & 0x03FF);
+      i++;
+    }
+
+    /* Encode output as utf-8 */
+    if(x <= 0x7F)
+      output += String.fromCharCode(x);
+    else if(x <= 0x7FF)
+      output += String.fromCharCode(0xC0 | ((x >>> 6 ) & 0x1F),
+                                    0x80 | ( x         & 0x3F));
+    else if(x <= 0xFFFF)
+      output += String.fromCharCode(0xE0 | ((x >>> 12) & 0x0F),
+                                    0x80 | ((x >>> 6 ) & 0x3F),
+                                    0x80 | ( x         & 0x3F));
+    else if(x <= 0x1FFFFF)
+      output += String.fromCharCode(0xF0 | ((x >>> 18) & 0x07),
+                                    0x80 | ((x >>> 12) & 0x3F),
+                                    0x80 | ((x >>> 6 ) & 0x3F),
+                                    0x80 | ( x         & 0x3F));
+  }
+  return output;
+}
+
+/**
+ * Encode a string as utf-16
+ */
+function str2rstr_utf16le(input)
+{
+  var output = "";
+  for(var i = 0; i < input.length; i++)
+    output += String.fromCharCode( input.charCodeAt(i)        & 0xFF,
+                                  (input.charCodeAt(i) >>> 8) & 0xFF);
+  return output;
+}
+
+function str2rstr_utf16be(input)
+{
+  var output = "";
+  for(var i = 0; i < input.length; i++)
+    output += String.fromCharCode((input.charCodeAt(i) >>> 8) & 0xFF,
+                                   input.charCodeAt(i)        & 0xFF);
+  return output;
+}
+
+/**
+ * Convert a raw string to an array of big-endian words
+ * Characters >255 have their high-byte silently ignored.
+ */
+function rstr2binb(input)
+{
+  var output = Array(input.length >> 2);
+  for(var i = 0; i < output.length; i++)
+    output[i] = 0;
+  for(var i = 0; i < input.length * 8; i += 8)
+    output[i>>5] |= (input.charCodeAt(i / 8) & 0xFF) << (24 - i % 32);
+  return output;
+}
+
+/**
+ * Convert an array of big-endian words to a string
+ */
+function binb2rstr(input)
+{
+  var output = "";
+  for(var i = 0; i < input.length * 32; i += 8)
+    output += String.fromCharCode((input[i>>5] >>> (24 - i % 32)) & 0xFF);
+  return output;
+}
+
+/**
+ * Calculate the SHA-1 of an array of big-endian words, and a bit length
+ */
+function binb_sha1(x, len)
+{
+  /* append padding */
+  x[len >> 5] |= 0x80 << (24 - len % 32);
+  x[((len + 64 >> 9) << 4) + 15] = len;
+
+  var w = Array(80);
+  var a =  1732584193;
+  var b = -271733879;
+  var c = -1732584194;
+  var d =  271733878;
+  var e = -1009589776;
+
+  for(var i = 0; i < x.length; i += 16)
+  {
+    var olda = a;
+    var oldb = b;
+    var oldc = c;
+    var oldd = d;
+    var olde = e;
+
+    for(var j = 0; j < 80; j++)
+    {
+      if(j < 16) w[j] = x[i + j];
+      else w[j] = bit_rol(w[j-3] ^ w[j-8] ^ w[j-14] ^ w[j-16], 1);
+      var t = safe_add(safe_add(bit_rol(a, 5), sha1_ft(j, b, c, d)),
+                       safe_add(safe_add(e, w[j]), sha1_kt(j)));
+      e = d;
+      d = c;
+      c = bit_rol(b, 30);
+      b = a;
+      a = t;
+    }
+
+    a = safe_add(a, olda);
+    b = safe_add(b, oldb);
+    c = safe_add(c, oldc);
+    d = safe_add(d, oldd);
+    e = safe_add(e, olde);
+  }
+  return Array(a, b, c, d, e);
+
+}
+
+/**
+ * Perform the appropriate triplet combination function for the current
+ * iteration
+ */
+function sha1_ft(t, b, c, d)
+{
+  if(t < 20) return (b & c) | ((~b) & d);
+  if(t < 40) return b ^ c ^ d;
+  if(t < 60) return (b & c) | (b & d) | (c & d);
+  return b ^ c ^ d;
+}
+
+/**
+ * Determine the appropriate additive constant for the current iteration
+ */
+function sha1_kt(t)
+{
+  return (t < 20) ?  1518500249 : (t < 40) ?  1859775393 :
+         (t < 60) ? -1894007588 : -899497514;
+}
+
+/**
+ * Add integers, wrapping at 2^32. This uses 16-bit operations internally
+ * to work around bugs in some JS interpreters.
+ */
+function safe_add(x, y)
+{
+  var lsw = (x & 0xFFFF) + (y & 0xFFFF);
+  var msw = (x >> 16) + (y >> 16) + (lsw >> 16);
+  return (msw << 16) | (lsw & 0xFFFF);
+}
+
+/**
+ * Bitwise rotate a 32-bit number to the left.
+ */
+function bit_rol(num, cnt)
+{
+  return (num << cnt) | (num >>> (32 - cnt));
+}