| /* |
| * A JavaScript implementation of the Secure Hash Algorithm, SHA-256, as defined |
| * in FIPS 180-2 |
| * Version 2.2 Copyright Angel Marin, Paul Johnston 2000 - 2009. |
| * Other contributors: Greg Holt, Andrew Kepert, Ydnar, Lostinet |
| * Distributed under the BSD License |
| * See http://pajhome.org.uk/crypt/md5 for details. |
| * Also http://anmar.eu.org/projects/jssha2/ |
| */ |
| |
| /* |
| * Configurable variables. You may need to tweak these to be compatible with |
| * the server-side, but the defaults work in most cases. |
| */ |
| var hexcase = 0; /* hex output format. 0 - lowercase; 1 - uppercase */ |
| var b64pad = ""; /* base-64 pad character. "=" for strict RFC compliance */ |
| |
| /* |
| * These are the functions you'll usually want to call |
| * They take string arguments and return either hex or base-64 encoded strings |
| */ |
| |
| //@author axelcdv |
| /** |
| * Computes the Sha-256 hash of the given byte array |
| * @param {byte[]} |
| * @return the hex string corresponding to the Sha-256 hash of the byte array |
| */ |
| function hex_sha256_from_bytes(byteArray){ |
| return rstr2hex(binb2rstr(binb_sha256( byteArray2binb(byteArray), byteArray.length * 8))); |
| } |
| |
| function hex_sha256(s) { return rstr2hex(rstr_sha256(str2rstr_utf8(s))); } |
| function b64_sha256(s) { return rstr2b64(rstr_sha256(str2rstr_utf8(s))); } |
| function any_sha256(s, e) { return rstr2any(rstr_sha256(str2rstr_utf8(s)), e); } |
| function hex_hmac_sha256(k, d) |
| { return rstr2hex(rstr_hmac_sha256(str2rstr_utf8(k), str2rstr_utf8(d))); } |
| function b64_hmac_sha256(k, d) |
| { return rstr2b64(rstr_hmac_sha256(str2rstr_utf8(k), str2rstr_utf8(d))); } |
| function any_hmac_sha256(k, d, e) |
| { return rstr2any(rstr_hmac_sha256(str2rstr_utf8(k), str2rstr_utf8(d)), e); } |
| |
| |
| /* |
| function hex_sha256(s) { return rstr2hex(rstr_sha256(s)); } |
| function b64_sha256(s) { return rstr2b64(rstr_sha256(s)); } |
| function any_sha256(s, e) { return rstr2any(rstr_sha256(s), e); } |
| function hex_hmac_sha256(k, d) |
| { return rstr2hex(rstr_hmac_sha256(str2rstr_utf8(k), d)); } |
| function b64_hmac_sha256(k, d) |
| { return rstr2b64(rstr_hmac_sha256(str2rstr_utf8(k), d)); } |
| function any_hmac_sha256(k, d, e) |
| { return rstr2any(rstr_hmac_sha256(str2rstr_utf8(k), d), e); } |
| */ |
| |
| /* |
| * Perform a simple self-test to see if the VM is working |
| */ |
| function sha256_vm_test() |
| { |
| return hex_sha256("abc").toLowerCase() == |
| "ba7816bf8f01cfea414140de5dae2223b00361a396177a9cb410ff61f20015ad"; |
| } |
| |
| /** |
| * Calculate the sha256 of a raw string |
| * @param s: the raw string |
| */ |
| function rstr_sha256(s) |
| { |
| return binb2rstr(binb_sha256(rstr2binb(s), s.length * 8)); |
| } |
| |
| /** |
| * Calculate the HMAC-sha256 of a key and some data (raw strings) |
| */ |
| function rstr_hmac_sha256(key, data) |
| { |
| var bkey = rstr2binb(key); |
| if(bkey.length > 16) bkey = binb_sha256(bkey, key.length * 8); |
| |
| var ipad = Array(16), opad = Array(16); |
| for(var i = 0; i < 16; i++) |
| { |
| ipad[i] = bkey[i] ^ 0x36363636; |
| opad[i] = bkey[i] ^ 0x5C5C5C5C; |
| } |
| |
| var hash = binb_sha256(ipad.concat(rstr2binb(data)), 512 + data.length * 8); |
| return binb2rstr(binb_sha256(opad.concat(hash), 512 + 256)); |
| } |
| |
| /** |
| * Convert a raw string to a hex string |
| */ |
| function rstr2hex(input) |
| { |
| try { hexcase } catch(e) { hexcase=0; } |
| var hex_tab = hexcase ? "0123456789ABCDEF" : "0123456789abcdef"; |
| var output = ""; |
| var x; |
| for(var i = 0; i < input.length; i++) |
| { |
| x = input.charCodeAt(i); |
| output += hex_tab.charAt((x >>> 4) & 0x0F) |
| + hex_tab.charAt( x & 0x0F); |
| } |
| return output; |
| } |
| |
| /* |
| * Convert a raw string to a base-64 string |
| */ |
| function rstr2b64(input) |
| { |
| try { b64pad } catch(e) { b64pad=''; } |
| var tab = "ABCDEFGHIJKLMNOPQRSTUVWXYZabcdefghijklmnopqrstuvwxyz0123456789+/"; |
| var output = ""; |
| var len = input.length; |
| for(var i = 0; i < len; i += 3) |
| { |
| var triplet = (input.charCodeAt(i) << 16) |
| | (i + 1 < len ? input.charCodeAt(i+1) << 8 : 0) |
| | (i + 2 < len ? input.charCodeAt(i+2) : 0); |
| for(var j = 0; j < 4; j++) |
| { |
| if(i * 8 + j * 6 > input.length * 8) output += b64pad; |
| else output += tab.charAt((triplet >>> 6*(3-j)) & 0x3F); |
| } |
| } |
| return output; |
| } |
| |
| /* |
| * Convert a raw string to an arbitrary string encoding |
| */ |
| function rstr2any(input, encoding) |
| { |
| var divisor = encoding.length; |
| var remainders = Array(); |
| var i, q, x, quotient; |
| |
| /* Convert to an array of 16-bit big-endian values, forming the dividend */ |
| var dividend = Array(Math.ceil(input.length / 2)); |
| for(i = 0; i < dividend.length; i++) |
| { |
| dividend[i] = (input.charCodeAt(i * 2) << 8) | input.charCodeAt(i * 2 + 1); |
| } |
| |
| /* |
| * Repeatedly perform a long division. The binary array forms the dividend, |
| * the length of the encoding is the divisor. Once computed, the quotient |
| * forms the dividend for the next step. We stop when the dividend is zero. |
| * All remainders are stored for later use. |
| */ |
| while(dividend.length > 0) |
| { |
| quotient = Array(); |
| x = 0; |
| for(i = 0; i < dividend.length; i++) |
| { |
| x = (x << 16) + dividend[i]; |
| q = Math.floor(x / divisor); |
| x -= q * divisor; |
| if(quotient.length > 0 || q > 0) |
| quotient[quotient.length] = q; |
| } |
| remainders[remainders.length] = x; |
| dividend = quotient; |
| } |
| |
| /* Convert the remainders to the output string */ |
| var output = ""; |
| for(i = remainders.length - 1; i >= 0; i--) |
| output += encoding.charAt(remainders[i]); |
| |
| /* Append leading zero equivalents */ |
| var full_length = Math.ceil(input.length * 8 / |
| (Math.log(encoding.length) / Math.log(2))) |
| for(i = output.length; i < full_length; i++) |
| output = encoding[0] + output; |
| |
| return output; |
| } |
| |
| /* |
| * Encode a string as utf-8. |
| * For efficiency, this assumes the input is valid utf-16. |
| */ |
| function str2rstr_utf8(input) |
| { |
| var output = ""; |
| var i = -1; |
| var x, y; |
| |
| while(++i < input.length) |
| { |
| /* Decode utf-16 surrogate pairs */ |
| x = input.charCodeAt(i); |
| y = i + 1 < input.length ? input.charCodeAt(i + 1) : 0; |
| if(0xD800 <= x && x <= 0xDBFF && 0xDC00 <= y && y <= 0xDFFF) |
| { |
| x = 0x10000 + ((x & 0x03FF) << 10) + (y & 0x03FF); |
| i++; |
| } |
| |
| /* Encode output as utf-8 */ |
| if(x <= 0x7F) |
| output += String.fromCharCode(x); |
| else if(x <= 0x7FF) |
| output += String.fromCharCode(0xC0 | ((x >>> 6 ) & 0x1F), |
| 0x80 | ( x & 0x3F)); |
| else if(x <= 0xFFFF) |
| output += String.fromCharCode(0xE0 | ((x >>> 12) & 0x0F), |
| 0x80 | ((x >>> 6 ) & 0x3F), |
| 0x80 | ( x & 0x3F)); |
| else if(x <= 0x1FFFFF) |
| output += String.fromCharCode(0xF0 | ((x >>> 18) & 0x07), |
| 0x80 | ((x >>> 12) & 0x3F), |
| 0x80 | ((x >>> 6 ) & 0x3F), |
| 0x80 | ( x & 0x3F)); |
| } |
| return output; |
| } |
| |
| /* |
| * Encode a string as utf-16 |
| */ |
| function str2rstr_utf16le(input) |
| { |
| var output = ""; |
| for(var i = 0; i < input.length; i++) |
| output += String.fromCharCode( input.charCodeAt(i) & 0xFF, |
| (input.charCodeAt(i) >>> 8) & 0xFF); |
| return output; |
| } |
| |
| function str2rstr_utf16be(input) |
| { |
| var output = ""; |
| for(var i = 0; i < input.length; i++) |
| output += String.fromCharCode((input.charCodeAt(i) >>> 8) & 0xFF, |
| input.charCodeAt(i) & 0xFF); |
| return output; |
| } |
| |
| /** |
| * Convert a raw string to an array of big-endian words |
| * Characters >255 have their high-byte silently ignored. |
| */ |
| function rstr2binb(input) |
| { |
| //console.log('Raw string comming is '+input); |
| var output = Array(input.length >> 2); |
| /* JavaScript automatically zeroizes a new array. |
| for(var i = 0; i < output.length; i++) |
| output[i] = 0; |
| */ |
| for(var i = 0; i < input.length * 8; i += 8) |
| output[i>>5] |= (input.charCodeAt(i / 8) & 0xFF) << (24 - i % 32); |
| return output; |
| } |
| |
| /** |
| * @author axelcdv |
| * Convert a byte array to an array of big-endian words |
| * @param {byte[]} input |
| * @return the array of big-endian words |
| */ |
| function byteArray2binb(input){ |
| //console.log("Byte array coming is " + input); |
| var output = Array(input.length >> 2); |
| /* JavaScript automatically zeroizes a new array. |
| for(var i = 0; i < output.length; i++) |
| output[i] = 0; |
| */ |
| for(var i = 0; i < input.length * 8; i += 8) |
| output[i>>5] |= (input[i / 8] & 0xFF) << (24 - i % 32); |
| return output; |
| } |
| |
| /* |
| * Convert an array of big-endian words to a string |
| */ |
| function binb2rstr(input) |
| { |
| var output = ""; |
| for(var i = 0; i < input.length * 32; i += 8) |
| output += String.fromCharCode((input[i>>5] >>> (24 - i % 32)) & 0xFF); |
| return output; |
| } |
| |
| /* |
| * Main sha256 function, with its support functions |
| */ |
| function sha256_S (X, n) {return ( X >>> n ) | (X << (32 - n));} |
| function sha256_R (X, n) {return ( X >>> n );} |
| function sha256_Ch(x, y, z) {return ((x & y) ^ ((~x) & z));} |
| function sha256_Maj(x, y, z) {return ((x & y) ^ (x & z) ^ (y & z));} |
| function sha256_Sigma0256(x) {return (sha256_S(x, 2) ^ sha256_S(x, 13) ^ sha256_S(x, 22));} |
| function sha256_Sigma1256(x) {return (sha256_S(x, 6) ^ sha256_S(x, 11) ^ sha256_S(x, 25));} |
| function sha256_Gamma0256(x) {return (sha256_S(x, 7) ^ sha256_S(x, 18) ^ sha256_R(x, 3));} |
| function sha256_Gamma1256(x) {return (sha256_S(x, 17) ^ sha256_S(x, 19) ^ sha256_R(x, 10));} |
| function sha256_Sigma0512(x) {return (sha256_S(x, 28) ^ sha256_S(x, 34) ^ sha256_S(x, 39));} |
| function sha256_Sigma1512(x) {return (sha256_S(x, 14) ^ sha256_S(x, 18) ^ sha256_S(x, 41));} |
| function sha256_Gamma0512(x) {return (sha256_S(x, 1) ^ sha256_S(x, 8) ^ sha256_R(x, 7));} |
| function sha256_Gamma1512(x) {return (sha256_S(x, 19) ^ sha256_S(x, 61) ^ sha256_R(x, 6));} |
| |
| var sha256_K = new Array |
| ( |
| 1116352408, 1899447441, -1245643825, -373957723, 961987163, 1508970993, |
| -1841331548, -1424204075, -670586216, 310598401, 607225278, 1426881987, |
| 1925078388, -2132889090, -1680079193, -1046744716, -459576895, -272742522, |
| 264347078, 604807628, 770255983, 1249150122, 1555081692, 1996064986, |
| -1740746414, -1473132947, -1341970488, -1084653625, -958395405, -710438585, |
| 113926993, 338241895, 666307205, 773529912, 1294757372, 1396182291, |
| 1695183700, 1986661051, -2117940946, -1838011259, -1564481375, -1474664885, |
| -1035236496, -949202525, -778901479, -694614492, -200395387, 275423344, |
| 430227734, 506948616, 659060556, 883997877, 958139571, 1322822218, |
| 1537002063, 1747873779, 1955562222, 2024104815, -2067236844, -1933114872, |
| -1866530822, -1538233109, -1090935817, -965641998 |
| ); |
| |
| function binb_sha256(m, l) |
| { |
| var HASH = new Array(1779033703, -1150833019, 1013904242, -1521486534, |
| 1359893119, -1694144372, 528734635, 1541459225); |
| var W = new Array(64); |
| |
| /* append padding */ |
| m[l >> 5] |= 0x80 << (24 - l % 32); |
| m[((l + 64 >> 9) << 4) + 15] = l; |
| |
| for(var offset = 0; offset < m.length; offset += 16) |
| processBlock_sha256(m, offset, HASH, W); |
| |
| return HASH; |
| } |
| |
| /* |
| * Process a block of 16 4-byte words in m starting at offset and update HASH. |
| * offset must be a multiple of 16 and less than m.length. W is a scratchpad Array(64). |
| */ |
| function processBlock_sha256(m, offset, HASH, W) { |
| var a, b, c, d, e, f, g, h; |
| var j, T1, T2; |
| |
| a = HASH[0]; |
| b = HASH[1]; |
| c = HASH[2]; |
| d = HASH[3]; |
| e = HASH[4]; |
| f = HASH[5]; |
| g = HASH[6]; |
| h = HASH[7]; |
| |
| for(j = 0; j < 64; j++) |
| { |
| if (j < 16) W[j] = m[j + offset]; |
| else W[j] = safe_add(safe_add(safe_add(sha256_Gamma1256(W[j - 2]), W[j - 7]), |
| sha256_Gamma0256(W[j - 15])), W[j - 16]); |
| |
| T1 = safe_add(safe_add(safe_add(safe_add(h, sha256_Sigma1256(e)), sha256_Ch(e, f, g)), |
| sha256_K[j]), W[j]); |
| T2 = safe_add(sha256_Sigma0256(a), sha256_Maj(a, b, c)); |
| h = g; |
| g = f; |
| f = e; |
| e = safe_add(d, T1); |
| d = c; |
| c = b; |
| b = a; |
| a = safe_add(T1, T2); |
| } |
| |
| HASH[0] = safe_add(a, HASH[0]); |
| HASH[1] = safe_add(b, HASH[1]); |
| HASH[2] = safe_add(c, HASH[2]); |
| HASH[3] = safe_add(d, HASH[3]); |
| HASH[4] = safe_add(e, HASH[4]); |
| HASH[5] = safe_add(f, HASH[5]); |
| HASH[6] = safe_add(g, HASH[6]); |
| HASH[7] = safe_add(h, HASH[7]); |
| } |
| |
| function safe_add (x, y) |
| { |
| var lsw = (x & 0xFFFF) + (y & 0xFFFF); |
| var msw = (x >> 16) + (y >> 16) + (lsw >> 16); |
| return (msw << 16) | (lsw & 0xFFFF); |
| } |
| |
| /* |
| * Create a Sha256, call update(data) multiple times, then call finalize(). |
| */ |
| var Sha256 = function Sha256() { |
| this.W = new Array(64); |
| this.hash = new Array(1779033703, -1150833019, 1013904242, -1521486534, |
| 1359893119, -1694144372, 528734635, 1541459225); |
| this.nTotalBytes = 0; |
| this.buffer = new Uint8Array(16 * 4); |
| this.nBufferBytes = 0; |
| } |
| |
| /* |
| * Update the hash with data, which is Uint8Array. |
| */ |
| Sha256.prototype.update = function(data) { |
| this.nTotalBytes += data.length; |
| |
| if (this.nBufferBytes > 0) { |
| // Fill up the buffer and process it first. |
| var bytesNeeded = this.buffer.length - this.nBufferBytes; |
| if (data.length < bytesNeeded) { |
| this.buffer.set(data, this.nBufferBytes); |
| this.nBufferBytes += data.length; |
| return; |
| } |
| else { |
| this.buffer.set(data.subarray(0, bytesNeeded), this.nBufferBytes); |
| processBlock_sha256(byteArray2binb(this.buffer), 0, this.hash, this.W); |
| this.nBufferBytes = 0; |
| // Consume the bytes from data. |
| data = data.subarray(bytesNeeded, data.length); |
| if (data.length == 0) |
| return; |
| } |
| } |
| |
| // 2^6 is 16 * 4. |
| var nBlocks = data.length >> 6; |
| if (nBlocks > 0) { |
| var nBytes = nBlocks * 16 * 4; |
| var m = byteArray2binb(data.subarray(0, nBytes)); |
| for(var offset = 0; offset < m.length; offset += 16) |
| processBlock_sha256(m, offset, this.hash, this.W); |
| |
| data = data.subarray(nBytes, data.length); |
| } |
| |
| if (data.length > 0) { |
| // Save the remainder in the buffer. |
| this.buffer.set(data); |
| this.nBufferBytes = data.length; |
| } |
| } |
| |
| /* |
| * Finalize the hash and return the result as Uint8Array. |
| * Only call this once. Return values on subsequent calls are undefined. |
| */ |
| Sha256.prototype.finalize = function() { |
| var m = byteArray2binb(this.buffer.subarray(0, this.nBufferBytes)); |
| /* append padding */ |
| var l = this.nBufferBytes * 8; |
| m[l >> 5] |= 0x80 << (24 - l % 32); |
| m[((l + 64 >> 9) << 4) + 15] = this.nTotalBytes * 8; |
| |
| for(var offset = 0; offset < m.length; offset += 16) |
| processBlock_sha256(m, offset, this.hash, this.W); |
| |
| return Sha256.binb2Uint8Array(this.hash); |
| } |
| |
| /* |
| * Convert an array of big-endian words to Uint8Array. |
| */ |
| Sha256.binb2Uint8Array = function(input) |
| { |
| var output = new Uint8Array(input.length * 4); |
| var iOutput = 0; |
| for (var i = 0; i < input.length * 32; i += 8) |
| output[iOutput++] = (input[i>>5] >>> (24 - i % 32)) & 0xFF; |
| return output; |
| } |