| /* |
| * A JavaScript implementation of the RIPEMD-160 Algorithm |
| * Version 2.2 Copyright Jeremy Lin, Paul Johnston 2000 - 2009. |
| * Other contributors: Greg Holt, Andrew Kepert, Ydnar, Lostinet |
| * Distributed under the BSD License |
| * See http://pajhome.org.uk/crypt/md5 for details. |
| * Also http://www.ocf.berkeley.edu/~jjlin/jsotp/ |
| */ |
| |
| /* |
| * Configurable variables. You may need to tweak these to be compatible with |
| * the server-side, but the defaults work in most cases. |
| */ |
| var hexcase = 0; /* hex output format. 0 - lowercase; 1 - uppercase */ |
| var b64pad = ""; /* base-64 pad character. "=" for strict RFC compliance */ |
| |
| /* |
| * These are the functions you'll usually want to call |
| * They take string arguments and return either hex or base-64 encoded strings |
| */ |
| function hex_rmd160(s) { return rstr2hex(rstr_rmd160(str2rstr_utf8(s))); } |
| function b64_rmd160(s) { return rstr2b64(rstr_rmd160(str2rstr_utf8(s))); } |
| function any_rmd160(s, e) { return rstr2any(rstr_rmd160(str2rstr_utf8(s)), e); } |
| function hex_hmac_rmd160(k, d) |
| { return rstr2hex(rstr_hmac_rmd160(str2rstr_utf8(k), str2rstr_utf8(d))); } |
| function b64_hmac_rmd160(k, d) |
| { return rstr2b64(rstr_hmac_rmd160(str2rstr_utf8(k), str2rstr_utf8(d))); } |
| function any_hmac_rmd160(k, d, e) |
| { return rstr2any(rstr_hmac_rmd160(str2rstr_utf8(k), str2rstr_utf8(d)), e); } |
| |
| /* |
| * Perform a simple self-test to see if the VM is working |
| */ |
| function rmd160_vm_test() |
| { |
| return hex_rmd160("abc").toLowerCase() == "8eb208f7e05d987a9b044a8e98c6b087f15a0bfc"; |
| } |
| |
| /* |
| * Calculate the rmd160 of a raw string |
| */ |
| function rstr_rmd160(s) |
| { |
| return binl2rstr(binl_rmd160(rstr2binl(s), s.length * 8)); |
| } |
| |
| /* |
| * Calculate the HMAC-rmd160 of a key and some data (raw strings) |
| */ |
| function rstr_hmac_rmd160(key, data) |
| { |
| var bkey = rstr2binl(key); |
| if(bkey.length > 16) bkey = binl_rmd160(bkey, key.length * 8); |
| |
| var ipad = Array(16), opad = Array(16); |
| for(var i = 0; i < 16; i++) |
| { |
| ipad[i] = bkey[i] ^ 0x36363636; |
| opad[i] = bkey[i] ^ 0x5C5C5C5C; |
| } |
| |
| var hash = binl_rmd160(ipad.concat(rstr2binl(data)), 512 + data.length * 8); |
| return binl2rstr(binl_rmd160(opad.concat(hash), 512 + 160)); |
| } |
| |
| /* |
| * Convert a raw string to a hex string |
| */ |
| function rstr2hex(input) |
| { |
| try { hexcase } catch(e) { hexcase=0; } |
| var hex_tab = hexcase ? "0123456789ABCDEF" : "0123456789abcdef"; |
| var output = ""; |
| var x; |
| for(var i = 0; i < input.length; i++) |
| { |
| x = input.charCodeAt(i); |
| output += hex_tab.charAt((x >>> 4) & 0x0F) |
| + hex_tab.charAt( x & 0x0F); |
| } |
| return output; |
| } |
| |
| /* |
| * Convert a raw string to a base-64 string |
| */ |
| function rstr2b64(input) |
| { |
| try { b64pad } catch(e) { b64pad=''; } |
| var tab = "ABCDEFGHIJKLMNOPQRSTUVWXYZabcdefghijklmnopqrstuvwxyz0123456789+/"; |
| var output = ""; |
| var len = input.length; |
| for(var i = 0; i < len; i += 3) |
| { |
| var triplet = (input.charCodeAt(i) << 16) |
| | (i + 1 < len ? input.charCodeAt(i+1) << 8 : 0) |
| | (i + 2 < len ? input.charCodeAt(i+2) : 0); |
| for(var j = 0; j < 4; j++) |
| { |
| if(i * 8 + j * 6 > input.length * 8) output += b64pad; |
| else output += tab.charAt((triplet >>> 6*(3-j)) & 0x3F); |
| } |
| } |
| return output; |
| } |
| |
| /* |
| * Convert a raw string to an arbitrary string encoding |
| */ |
| function rstr2any(input, encoding) |
| { |
| var divisor = encoding.length; |
| var remainders = Array(); |
| var i, q, x, quotient; |
| |
| /* Convert to an array of 16-bit big-endian values, forming the dividend */ |
| var dividend = Array(Math.ceil(input.length / 2)); |
| for(i = 0; i < dividend.length; i++) |
| { |
| dividend[i] = (input.charCodeAt(i * 2) << 8) | input.charCodeAt(i * 2 + 1); |
| } |
| |
| /* |
| * Repeatedly perform a long division. The binary array forms the dividend, |
| * the length of the encoding is the divisor. Once computed, the quotient |
| * forms the dividend for the next step. We stop when the dividend is zero. |
| * All remainders are stored for later use. |
| */ |
| while(dividend.length > 0) |
| { |
| quotient = Array(); |
| x = 0; |
| for(i = 0; i < dividend.length; i++) |
| { |
| x = (x << 16) + dividend[i]; |
| q = Math.floor(x / divisor); |
| x -= q * divisor; |
| if(quotient.length > 0 || q > 0) |
| quotient[quotient.length] = q; |
| } |
| remainders[remainders.length] = x; |
| dividend = quotient; |
| } |
| |
| /* Convert the remainders to the output string */ |
| var output = ""; |
| for(i = remainders.length - 1; i >= 0; i--) |
| output += encoding.charAt(remainders[i]); |
| |
| /* Append leading zero equivalents */ |
| var full_length = Math.ceil(input.length * 8 / |
| (Math.log(encoding.length) / Math.log(2))) |
| for(i = output.length; i < full_length; i++) |
| output = encoding[0] + output; |
| |
| return output; |
| } |
| |
| /* |
| * Encode a string as utf-8. |
| * For efficiency, this assumes the input is valid utf-16. |
| */ |
| function str2rstr_utf8(input) |
| { |
| var output = ""; |
| var i = -1; |
| var x, y; |
| |
| while(++i < input.length) |
| { |
| /* Decode utf-16 surrogate pairs */ |
| x = input.charCodeAt(i); |
| y = i + 1 < input.length ? input.charCodeAt(i + 1) : 0; |
| if(0xD800 <= x && x <= 0xDBFF && 0xDC00 <= y && y <= 0xDFFF) |
| { |
| x = 0x10000 + ((x & 0x03FF) << 10) + (y & 0x03FF); |
| i++; |
| } |
| |
| /* Encode output as utf-8 */ |
| if(x <= 0x7F) |
| output += String.fromCharCode(x); |
| else if(x <= 0x7FF) |
| output += String.fromCharCode(0xC0 | ((x >>> 6 ) & 0x1F), |
| 0x80 | ( x & 0x3F)); |
| else if(x <= 0xFFFF) |
| output += String.fromCharCode(0xE0 | ((x >>> 12) & 0x0F), |
| 0x80 | ((x >>> 6 ) & 0x3F), |
| 0x80 | ( x & 0x3F)); |
| else if(x <= 0x1FFFFF) |
| output += String.fromCharCode(0xF0 | ((x >>> 18) & 0x07), |
| 0x80 | ((x >>> 12) & 0x3F), |
| 0x80 | ((x >>> 6 ) & 0x3F), |
| 0x80 | ( x & 0x3F)); |
| } |
| return output; |
| } |
| |
| /* |
| * Encode a string as utf-16 |
| */ |
| function str2rstr_utf16le(input) |
| { |
| var output = ""; |
| for(var i = 0; i < input.length; i++) |
| output += String.fromCharCode( input.charCodeAt(i) & 0xFF, |
| (input.charCodeAt(i) >>> 8) & 0xFF); |
| return output; |
| } |
| |
| function str2rstr_utf16be(input) |
| { |
| var output = ""; |
| for(var i = 0; i < input.length; i++) |
| output += String.fromCharCode((input.charCodeAt(i) >>> 8) & 0xFF, |
| input.charCodeAt(i) & 0xFF); |
| return output; |
| } |
| |
| /* |
| * Convert a raw string to an array of little-endian words |
| * Characters >255 have their high-byte silently ignored. |
| */ |
| function rstr2binl(input) |
| { |
| var output = Array(input.length >> 2); |
| for(var i = 0; i < output.length; i++) |
| output[i] = 0; |
| for(var i = 0; i < input.length * 8; i += 8) |
| output[i>>5] |= (input.charCodeAt(i / 8) & 0xFF) << (i%32); |
| return output; |
| } |
| |
| /* |
| * Convert an array of little-endian words to a string |
| */ |
| function binl2rstr(input) |
| { |
| var output = ""; |
| for(var i = 0; i < input.length * 32; i += 8) |
| output += String.fromCharCode((input[i>>5] >>> (i % 32)) & 0xFF); |
| return output; |
| } |
| |
| /* |
| * Calculate the RIPE-MD160 of an array of little-endian words, and a bit length. |
| */ |
| function binl_rmd160(x, len) |
| { |
| /* append padding */ |
| x[len >> 5] |= 0x80 << (len % 32); |
| x[(((len + 64) >>> 9) << 4) + 14] = len; |
| |
| var h0 = 0x67452301; |
| var h1 = 0xefcdab89; |
| var h2 = 0x98badcfe; |
| var h3 = 0x10325476; |
| var h4 = 0xc3d2e1f0; |
| |
| for (var i = 0; i < x.length; i += 16) { |
| var T; |
| var A1 = h0, B1 = h1, C1 = h2, D1 = h3, E1 = h4; |
| var A2 = h0, B2 = h1, C2 = h2, D2 = h3, E2 = h4; |
| for (var j = 0; j <= 79; ++j) { |
| T = safe_add(A1, rmd160_f(j, B1, C1, D1)); |
| T = safe_add(T, x[i + rmd160_r1[j]]); |
| T = safe_add(T, rmd160_K1(j)); |
| T = safe_add(bit_rol(T, rmd160_s1[j]), E1); |
| A1 = E1; E1 = D1; D1 = bit_rol(C1, 10); C1 = B1; B1 = T; |
| T = safe_add(A2, rmd160_f(79-j, B2, C2, D2)); |
| T = safe_add(T, x[i + rmd160_r2[j]]); |
| T = safe_add(T, rmd160_K2(j)); |
| T = safe_add(bit_rol(T, rmd160_s2[j]), E2); |
| A2 = E2; E2 = D2; D2 = bit_rol(C2, 10); C2 = B2; B2 = T; |
| } |
| T = safe_add(h1, safe_add(C1, D2)); |
| h1 = safe_add(h2, safe_add(D1, E2)); |
| h2 = safe_add(h3, safe_add(E1, A2)); |
| h3 = safe_add(h4, safe_add(A1, B2)); |
| h4 = safe_add(h0, safe_add(B1, C2)); |
| h0 = T; |
| } |
| return [h0, h1, h2, h3, h4]; |
| } |
| |
| function rmd160_f(j, x, y, z) |
| { |
| return ( 0 <= j && j <= 15) ? (x ^ y ^ z) : |
| (16 <= j && j <= 31) ? (x & y) | (~x & z) : |
| (32 <= j && j <= 47) ? (x | ~y) ^ z : |
| (48 <= j && j <= 63) ? (x & z) | (y & ~z) : |
| (64 <= j && j <= 79) ? x ^ (y | ~z) : |
| "rmd160_f: j out of range"; |
| } |
| function rmd160_K1(j) |
| { |
| return ( 0 <= j && j <= 15) ? 0x00000000 : |
| (16 <= j && j <= 31) ? 0x5a827999 : |
| (32 <= j && j <= 47) ? 0x6ed9eba1 : |
| (48 <= j && j <= 63) ? 0x8f1bbcdc : |
| (64 <= j && j <= 79) ? 0xa953fd4e : |
| "rmd160_K1: j out of range"; |
| } |
| function rmd160_K2(j) |
| { |
| return ( 0 <= j && j <= 15) ? 0x50a28be6 : |
| (16 <= j && j <= 31) ? 0x5c4dd124 : |
| (32 <= j && j <= 47) ? 0x6d703ef3 : |
| (48 <= j && j <= 63) ? 0x7a6d76e9 : |
| (64 <= j && j <= 79) ? 0x00000000 : |
| "rmd160_K2: j out of range"; |
| } |
| var rmd160_r1 = [ |
| 0, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, |
| 7, 4, 13, 1, 10, 6, 15, 3, 12, 0, 9, 5, 2, 14, 11, 8, |
| 3, 10, 14, 4, 9, 15, 8, 1, 2, 7, 0, 6, 13, 11, 5, 12, |
| 1, 9, 11, 10, 0, 8, 12, 4, 13, 3, 7, 15, 14, 5, 6, 2, |
| 4, 0, 5, 9, 7, 12, 2, 10, 14, 1, 3, 8, 11, 6, 15, 13 |
| ]; |
| var rmd160_r2 = [ |
| 5, 14, 7, 0, 9, 2, 11, 4, 13, 6, 15, 8, 1, 10, 3, 12, |
| 6, 11, 3, 7, 0, 13, 5, 10, 14, 15, 8, 12, 4, 9, 1, 2, |
| 15, 5, 1, 3, 7, 14, 6, 9, 11, 8, 12, 2, 10, 0, 4, 13, |
| 8, 6, 4, 1, 3, 11, 15, 0, 5, 12, 2, 13, 9, 7, 10, 14, |
| 12, 15, 10, 4, 1, 5, 8, 7, 6, 2, 13, 14, 0, 3, 9, 11 |
| ]; |
| var rmd160_s1 = [ |
| 11, 14, 15, 12, 5, 8, 7, 9, 11, 13, 14, 15, 6, 7, 9, 8, |
| 7, 6, 8, 13, 11, 9, 7, 15, 7, 12, 15, 9, 11, 7, 13, 12, |
| 11, 13, 6, 7, 14, 9, 13, 15, 14, 8, 13, 6, 5, 12, 7, 5, |
| 11, 12, 14, 15, 14, 15, 9, 8, 9, 14, 5, 6, 8, 6, 5, 12, |
| 9, 15, 5, 11, 6, 8, 13, 12, 5, 12, 13, 14, 11, 8, 5, 6 |
| ]; |
| var rmd160_s2 = [ |
| 8, 9, 9, 11, 13, 15, 15, 5, 7, 7, 8, 11, 14, 14, 12, 6, |
| 9, 13, 15, 7, 12, 8, 9, 11, 7, 7, 12, 7, 6, 15, 13, 11, |
| 9, 7, 15, 11, 8, 6, 6, 14, 12, 13, 5, 14, 13, 13, 7, 5, |
| 15, 5, 8, 11, 14, 14, 6, 14, 6, 9, 12, 9, 12, 5, 15, 8, |
| 8, 5, 12, 9, 12, 5, 14, 6, 8, 13, 6, 5, 15, 13, 11, 11 |
| ]; |
| |
| /* |
| * Add integers, wrapping at 2^32. This uses 16-bit operations internally |
| * to work around bugs in some JS interpreters. |
| */ |
| function safe_add(x, y) |
| { |
| var lsw = (x & 0xFFFF) + (y & 0xFFFF); |
| var msw = (x >> 16) + (y >> 16) + (lsw >> 16); |
| return (msw << 16) | (lsw & 0xFFFF); |
| } |
| |
| /* |
| * Bitwise rotate a 32-bit number to the left. |
| */ |
| function bit_rol(num, cnt) |
| { |
| return (num << cnt) | (num >>> (32 - cnt)); |
| } |