/* | |
* A JavaScript implementation of the Secure Hash Algorithm, SHA-1, as defined | |
* in FIPS 180-1 | |
* Version 2.2 Copyright Paul Johnston 2000 - 2009. | |
* Other contributors: Greg Holt, Andrew Kepert, Ydnar, Lostinet | |
* Distributed under the BSD License | |
* See http://pajhome.org.uk/crypt/md5 for details. | |
*/ | |
/* | |
* Configurable variables. You may need to tweak these to be compatible with | |
* the server-side, but the defaults work in most cases. | |
*/ | |
var hexcase = 0; /* hex output format. 0 - lowercase; 1 - uppercase */ | |
var b64pad = ""; /* base-64 pad character. "=" for strict RFC compliance */ | |
/** | |
* These are the functions you'll usually want to call | |
* They take string arguments and return either hex or base-64 encoded strings | |
*/ | |
function hex_sha1(s) { return rstr2hex(rstr_sha1(str2rstr_utf8(s))); } | |
function b64_sha1(s) { return rstr2b64(rstr_sha1(str2rstr_utf8(s))); } | |
function any_sha1(s, e) { return rstr2any(rstr_sha1(str2rstr_utf8(s)), e); } | |
function hex_hmac_sha1(k, d) | |
{ return rstr2hex(rstr_hmac_sha1(str2rstr_utf8(k), str2rstr_utf8(d))); } | |
function b64_hmac_sha1(k, d) | |
{ return rstr2b64(rstr_hmac_sha1(str2rstr_utf8(k), str2rstr_utf8(d))); } | |
function any_hmac_sha1(k, d, e) | |
{ return rstr2any(rstr_hmac_sha1(str2rstr_utf8(k), str2rstr_utf8(d)), e); } | |
/** | |
* Perform a simple self-test to see if the VM is working | |
*/ | |
function sha1_vm_test() | |
{ | |
return hex_sha1("abc").toLowerCase() == "a9993e364706816aba3e25717850c26c9cd0d89d"; | |
} | |
/** | |
* Calculate the SHA1 of a raw string | |
*/ | |
function rstr_sha1(s) | |
{ | |
return binb2rstr(binb_sha1(rstr2binb(s), s.length * 8)); | |
} | |
/** | |
* Calculate the HMAC-SHA1 of a key and some data (raw strings) | |
*/ | |
function rstr_hmac_sha1(key, data) | |
{ | |
var bkey = rstr2binb(key); | |
if(bkey.length > 16) bkey = binb_sha1(bkey, key.length * 8); | |
var ipad = Array(16), opad = Array(16); | |
for(var i = 0; i < 16; i++) | |
{ | |
ipad[i] = bkey[i] ^ 0x36363636; | |
opad[i] = bkey[i] ^ 0x5C5C5C5C; | |
} | |
var hash = binb_sha1(ipad.concat(rstr2binb(data)), 512 + data.length * 8); | |
return binb2rstr(binb_sha1(opad.concat(hash), 512 + 160)); | |
} | |
/** | |
* Convert a raw string to a hex string | |
*/ | |
function rstr2hex(input) | |
{ | |
try { hexcase } catch(e) { hexcase=0; } | |
var hex_tab = hexcase ? "0123456789ABCDEF" : "0123456789abcdef"; | |
var output = ""; | |
var x; | |
for(var i = 0; i < input.length; i++) | |
{ | |
x = input.charCodeAt(i); | |
output += hex_tab.charAt((x >>> 4) & 0x0F) | |
+ hex_tab.charAt( x & 0x0F); | |
} | |
return output; | |
} | |
/** | |
* Convert a raw string to a base-64 string | |
*/ | |
function rstr2b64(input) | |
{ | |
try { b64pad } catch(e) { b64pad=''; } | |
var tab = "ABCDEFGHIJKLMNOPQRSTUVWXYZabcdefghijklmnopqrstuvwxyz0123456789+/"; | |
var output = ""; | |
var len = input.length; | |
for(var i = 0; i < len; i += 3) | |
{ | |
var triplet = (input.charCodeAt(i) << 16) | |
| (i + 1 < len ? input.charCodeAt(i+1) << 8 : 0) | |
| (i + 2 < len ? input.charCodeAt(i+2) : 0); | |
for(var j = 0; j < 4; j++) | |
{ | |
if(i * 8 + j * 6 > input.length * 8) output += b64pad; | |
else output += tab.charAt((triplet >>> 6*(3-j)) & 0x3F); | |
} | |
} | |
return output; | |
} | |
/** | |
* Convert a raw string to an arbitrary string encoding | |
*/ | |
function rstr2any(input, encoding) | |
{ | |
var divisor = encoding.length; | |
var remainders = Array(); | |
var i, q, x, quotient; | |
/* Convert to an array of 16-bit big-endian values, forming the dividend */ | |
var dividend = Array(Math.ceil(input.length / 2)); | |
for(i = 0; i < dividend.length; i++) | |
{ | |
dividend[i] = (input.charCodeAt(i * 2) << 8) | input.charCodeAt(i * 2 + 1); | |
} | |
/* | |
* Repeatedly perform a long division. The binary array forms the dividend, | |
* the length of the encoding is the divisor. Once computed, the quotient | |
* forms the dividend for the next step. We stop when the dividend is zero. | |
* All remainders are stored for later use. | |
*/ | |
while(dividend.length > 0) | |
{ | |
quotient = Array(); | |
x = 0; | |
for(i = 0; i < dividend.length; i++) | |
{ | |
x = (x << 16) + dividend[i]; | |
q = Math.floor(x / divisor); | |
x -= q * divisor; | |
if(quotient.length > 0 || q > 0) | |
quotient[quotient.length] = q; | |
} | |
remainders[remainders.length] = x; | |
dividend = quotient; | |
} | |
/* Convert the remainders to the output string */ | |
var output = ""; | |
for(i = remainders.length - 1; i >= 0; i--) | |
output += encoding.charAt(remainders[i]); | |
/* Append leading zero equivalents */ | |
var full_length = Math.ceil(input.length * 8 / | |
(Math.log(encoding.length) / Math.log(2))); | |
for(i = output.length; i < full_length; i++) | |
output = encoding[0] + output; | |
return output; | |
} | |
/** | |
* Encode a string as utf-8. | |
* For efficiency, this assumes the input is valid utf-16. | |
*/ | |
function str2rstr_utf8(input) | |
{ | |
var output = ""; | |
var i = -1; | |
var x, y; | |
while(++i < input.length) | |
{ | |
/* Decode utf-16 surrogate pairs */ | |
x = input.charCodeAt(i); | |
y = i + 1 < input.length ? input.charCodeAt(i + 1) : 0; | |
if(0xD800 <= x && x <= 0xDBFF && 0xDC00 <= y && y <= 0xDFFF) | |
{ | |
x = 0x10000 + ((x & 0x03FF) << 10) + (y & 0x03FF); | |
i++; | |
} | |
/* Encode output as utf-8 */ | |
if(x <= 0x7F) | |
output += String.fromCharCode(x); | |
else if(x <= 0x7FF) | |
output += String.fromCharCode(0xC0 | ((x >>> 6 ) & 0x1F), | |
0x80 | ( x & 0x3F)); | |
else if(x <= 0xFFFF) | |
output += String.fromCharCode(0xE0 | ((x >>> 12) & 0x0F), | |
0x80 | ((x >>> 6 ) & 0x3F), | |
0x80 | ( x & 0x3F)); | |
else if(x <= 0x1FFFFF) | |
output += String.fromCharCode(0xF0 | ((x >>> 18) & 0x07), | |
0x80 | ((x >>> 12) & 0x3F), | |
0x80 | ((x >>> 6 ) & 0x3F), | |
0x80 | ( x & 0x3F)); | |
} | |
return output; | |
} | |
/** | |
* Encode a string as utf-16 | |
*/ | |
function str2rstr_utf16le(input) | |
{ | |
var output = ""; | |
for(var i = 0; i < input.length; i++) | |
output += String.fromCharCode( input.charCodeAt(i) & 0xFF, | |
(input.charCodeAt(i) >>> 8) & 0xFF); | |
return output; | |
} | |
function str2rstr_utf16be(input) | |
{ | |
var output = ""; | |
for(var i = 0; i < input.length; i++) | |
output += String.fromCharCode((input.charCodeAt(i) >>> 8) & 0xFF, | |
input.charCodeAt(i) & 0xFF); | |
return output; | |
} | |
/** | |
* Convert a raw string to an array of big-endian words | |
* Characters >255 have their high-byte silently ignored. | |
*/ | |
function rstr2binb(input) | |
{ | |
var output = Array(input.length >> 2); | |
for(var i = 0; i < output.length; i++) | |
output[i] = 0; | |
for(var i = 0; i < input.length * 8; i += 8) | |
output[i>>5] |= (input.charCodeAt(i / 8) & 0xFF) << (24 - i % 32); | |
return output; | |
} | |
/** | |
* Convert an array of big-endian words to a string | |
*/ | |
function binb2rstr(input) | |
{ | |
var output = ""; | |
for(var i = 0; i < input.length * 32; i += 8) | |
output += String.fromCharCode((input[i>>5] >>> (24 - i % 32)) & 0xFF); | |
return output; | |
} | |
/** | |
* Calculate the SHA-1 of an array of big-endian words, and a bit length | |
*/ | |
function binb_sha1(x, len) | |
{ | |
/* append padding */ | |
x[len >> 5] |= 0x80 << (24 - len % 32); | |
x[((len + 64 >> 9) << 4) + 15] = len; | |
var w = Array(80); | |
var a = 1732584193; | |
var b = -271733879; | |
var c = -1732584194; | |
var d = 271733878; | |
var e = -1009589776; | |
for(var i = 0; i < x.length; i += 16) | |
{ | |
var olda = a; | |
var oldb = b; | |
var oldc = c; | |
var oldd = d; | |
var olde = e; | |
for(var j = 0; j < 80; j++) | |
{ | |
if(j < 16) w[j] = x[i + j]; | |
else w[j] = bit_rol(w[j-3] ^ w[j-8] ^ w[j-14] ^ w[j-16], 1); | |
var t = safe_add(safe_add(bit_rol(a, 5), sha1_ft(j, b, c, d)), | |
safe_add(safe_add(e, w[j]), sha1_kt(j))); | |
e = d; | |
d = c; | |
c = bit_rol(b, 30); | |
b = a; | |
a = t; | |
} | |
a = safe_add(a, olda); | |
b = safe_add(b, oldb); | |
c = safe_add(c, oldc); | |
d = safe_add(d, oldd); | |
e = safe_add(e, olde); | |
} | |
return Array(a, b, c, d, e); | |
} | |
/** | |
* Perform the appropriate triplet combination function for the current | |
* iteration | |
*/ | |
function sha1_ft(t, b, c, d) | |
{ | |
if(t < 20) return (b & c) | ((~b) & d); | |
if(t < 40) return b ^ c ^ d; | |
if(t < 60) return (b & c) | (b & d) | (c & d); | |
return b ^ c ^ d; | |
} | |
/** | |
* Determine the appropriate additive constant for the current iteration | |
*/ | |
function sha1_kt(t) | |
{ | |
return (t < 20) ? 1518500249 : (t < 40) ? 1859775393 : | |
(t < 60) ? -1894007588 : -899497514; | |
} | |
/** | |
* Add integers, wrapping at 2^32. This uses 16-bit operations internally | |
* to work around bugs in some JS interpreters. | |
*/ | |
function safe_add(x, y) | |
{ | |
var lsw = (x & 0xFFFF) + (y & 0xFFFF); | |
var msw = (x >> 16) + (y >> 16) + (lsw >> 16); | |
return (msw << 16) | (lsw & 0xFFFF); | |
} | |
/** | |
* Bitwise rotate a 32-bit number to the left. | |
*/ | |
function bit_rol(num, cnt) | |
{ | |
return (num << cnt) | (num >>> (32 - cnt)); | |
} |