
NLSR Developer’s Guide

Vince Lehman, Muktadir Chowdhury, Nicholas Gordon1

1University of Memphis

January 30, 2017

Abstract

The Named Data Link-State Routing Protocol (NLSR) is a Named Data Networking (NDN) routing protocol that
populates NDN Forwarding Daemon’s (NFD) Routing Information Base (RIB). The main design goal of NLSR is to provide
a routing protocol to populate NFD’s RIB and Forwarding Information Base (FIB). NLSR calculates the routing table
using link-state or hyperbolic routing and produces multiple faces for each reachable name prefix in a single authoritative
domain. NLSR will continue to evolve alongside the NDN protocol, NFD, and ndn-cxx. This document is meant to
explain the design of NLSR including major module and data structures descriptions and the interactions between those
components.

Contents

1 Introduction 3
1.1 NLSR Modules and Data Structures . 3
1.2 Protocol Overview . 3

1.2.1 Discovering Neighbors . 3
1.2.2 Disseminating Routing Information . 3
1.2.3 Calculating the Routing Table and Populating NFD’s FIB . 4

2 Hello Protocol 5
2.1 Determining Neighbor’s Status . 5
2.2 Responding to Hello Interests . 5
2.3 Failure and Recovery Detection . 6

3 Sync Logic Handler 7
3.1 On Sync Update . 7
3.2 Publish Routing Update . 7

4 Link-State Advertisements 8
4.1 LSA Base Class . 8
4.2 Adjacency LSAs . 8
4.3 Coordinate LSAs . 8
4.4 Name LSAs . 8

5 Link-State Database 9
5.1 Retrieving an LSA . 9
5.2 Building LSAs . 9
5.3 LSA Installation and Updates . 9

5.3.1 Lsdb::installAdjLsa() . 10
5.3.2 Lsdb::installCoordinateLsa() . 10
5.3.3 Lsdb::installNameLsa() . 10

5.4 LSA Expiration . 10
5.5 LSA Refresh . 11

1

CONTENTS CONTENTS

6 Routing Table 12
6.1 Routing Table Calculators . 12

6.1.1 Link-State Routing Table Calculator . 12
6.1.2 Hyperbolic Routing Table Calculator . 12

6.2 Notifications for Newly Calculated Next Hops . 12

7 Name Prefix Table 13
7.1 Adding an NPT Entry . 13
7.2 Removing an NPT Entry . 13
7.3 Updating an NPT Entry with New Routing Table Entries . 14
7.4 Adding routing table pool entries to the pool . 14
7.5 Removing routing table pool entries from the pool . 14

8 FIB Interaction 15
8.1 Updating the FIB . 15

9 Security 16
9.1 Creating Keys and Certificates . 16
9.2 Certificate Publishing . 17

10 Configuration File 18
10.1 General Section . 18
10.2 Neighbors Section . 18
10.3 Hyperbolic Section . 19
10.4 FIB Section . 19
10.5 Advertising Section . 19
10.6 Security Section . 19

References 20

2

1 INTRODUCTION

1 Introduction

The Named-data Link State Routing protocol (NLSR) is an intra-domain routing protocol for Named Data Networking
(NDN). It is an application level protocol similar to many IP routing protocols, but NLSR uses NDN’s Interest/Data packets
to disseminate routing updates. Although NLSR is designed in the context of a single domain, its design patterns may offer
a useful reference for future development of inter-domain routing protocols.

NLSR supports name-based routing in NDN, computes routing ranks for all policy-compliant next-hops which provides
a name-based multi-path routing table for NDN’s forwarding strategy, and ensures that routers can originate only their own
routing updates using a hierarchical trust model.

1.1 NLSR Modules and Data Structures

NLSR contains multiple modules that each contribute to the total realization of the protocol. Many of the modules interact
with one another to trigger some behavior or to modify information in data structures. NLSR uses the following modules:

• Hello Protocol (Section 2) - determines the status of neighboring routers using periodic Hello Interests and notifies
other modules when neighbors’ statuses change.

• NSync - provides LSDB synchronization by extending the ChronoSync protocol [1].

• Sync Logic Handler (Section 3) - handles sync update notifications from NSync by retrieving updated LSAs.

• LSAs (Section 4) - represent routing information published by the router.

• LSDB (Section 5) - stores the LSA information distributed by other routers in the network.

• Routing Table (Section 6) - calculates and maintains a list of next hops for each router in the network.

• Name Prefix Table (Section 7) - stores all advertised name prefixes and their next hops.

• FIB (Section 8) - maintains a shadow FIB which represents the intended state of NFD’s FIB [2].

• Prefix Update Processor - listens for dynamic prefix announcements to advertise or withdraw name prefixes.

1.2 Protocol Overview

NLSR is designed to accomplish three main tasks: (1) discover adjacent neighbors; (2) disseminate and synchronize topology,
name prefix, and hyperbolic routing information; and (3) calculate a consistent routing table and populate NFD’s FIB. The
entire protocol is described in detail in the NLSR paper [3].

1.2.1 Discovering Neighbors

NLSR determines the adjacency status of neighboring routers using the Hello Protocol module (Section 2). When the Hello
Protocol detects a status change for a neighbor, it will ask the LSDB module (Section 5) to update the router’s advertised
adjacency information.

1.2.2 Disseminating Routing Information

When one of a router’s LSAs (Section 4) changes, the information of this change should be distributed to every other router
in the network. The Sync Logic Handler module (Section 3) is used to notify the synchronization protocol of changes to the
router’s own LSAs as well as to learn of LSA changes from other routers in the network; the Sync Logic Handler module
interfaces with NSync to perform the two tasks.

When the Sync Logic Handler module learns of a new LSA, it will inform the LSDB module. The LSDB module will
attempt to fetch the new LSA and will store it in the LSDB module’s database if it can be retrieved. If the newly fetched
LSA informs the router of previously unknown routing information, the LSDB module will inform other modules depending
on the type of routing information:

• Change in network topology - the LSDB module will inform the Routing Table module (Section 6), so the Routing
Table module can calculate an up-to-date routing table.

• Change in name prefix advertisement - the LSDB module will inform the Name Prefix Table module (Section 7),
which will in turn notify the FIB module (Section 8) in order to add or remove the changed name prefixes.

• Change in hyperbolic coordinates - the LSDB module will inform the Routing Table module (Section 6), so the
Routing Table module can calculate an up-to-date routing table.

3

1.2 Protocol Overview 1 INTRODUCTION

FibNamePrefixTableRoutingTableLsdbSyncLogicHandler

8: Register names and nexthops

7: Fib::update()

13: Register names and nexthops

12: Fib::update()

11: updateWithNewRoute()

10: Calculate Table

9: Schedule calculation

6: Add NPT entries for origin router's name

5: Install LSA

4: Validate LSA Data

3: Receive LSA Data

2: Lsdb::expressInterest()

1: onNsyncUpdate()

Figure 1: Simplified Diagram of the Actions of NLSR’s Modules

1.2.3 Calculating the Routing Table and Populating NFD’s FIB

When the routing table is calculated by the Routing Table module, the computed next hops are passed to the Name Prefix
Table module. The Name Prefix Table module will then further pass the next hops to the FIB module to update NLSR’s
expected state of NFD’s FIB. The FIB module will then perform the registrations or unregistrations with NFD’s FIB.

A simplified diagram of NLSR’s actions when receiving new routing information is shown in Figure 1. The remainder of
this documentation will describe the purpose of and interaction between each module in more detail.

4

2 HELLO PROTOCOL

Figure 2: Router A determines the initial status of Router B

2 Hello Protocol

The Hello Protocol module periodically sends Hello Interests to learn the activity status of the router’s neighbors. Hello
Interests’ names are constructed in the form: /<neighbor’s-router-prefix>/NLSR/INFO/<this-router’s-prefix>. If a
neighbor responds to a Hello Interest, the neighbor is considered to be up and ACTIVE. A Hello Data’s name is constructed
using the following convention: /<neighbor’s-router-prefix>/NLSR/INFO/<this-router’s-prefix>/<version>. If a
neighbor fails to respond to a configurable number of Hello Interests (hello-retries), the neighbors is considered to be
down and INACTIVE. The Hello Protocol continues to send these periodic Hello Interests to each of its neighbors every
hello-interval seconds. If the Hello Protocol detects a change in a neighbors status (i.e. a router that was previously
ACTIVE is not responding to Hello Interests or a router that was previously INACTIVE responds to a Hello Interest), it will
notify the LSDB (Section 5) to schedule a new Adjacency LSA build to include the updated neighbor information.

2.1 Determining Neighbor’s Status

The Hello Protocol begins by scheduling Hello Interests to be sent to each neighbor of the router after first-hello-interval
seconds. When the scheduled event is triggered, the Hello Protocol iterates through the list of neighbors first checking if
there is already a Face to the neighbor. If there is a Face that has already been created, the Hello Protocol will construct
and send a Hello Interest to the neighbor. If a Face has not been created for the neighbor, the Hello Protocol will attempt to
create a Face to the neighbor and register the neighbor’s router prefix. If the Face is created successfully, the Hello Protocol
registers the Sync prefix, LSA prefix, and Key prefix using the Face ID returned by the Face creation command and sends
out the Hello Interest. If the Face cannot be created, the Hello Protocol considers the failure as a Hello Interest timeout.

If the Hello Protocol receives Data in response to the Hello Interest, it will first verify that the Data is signed by the
correct entity. If the Data is valid, the corresponding neighbor is set as ACTIVE and its timeout count is reset to zero. If the
neighbor was previously INACTIVE, an Adjacency LSA build is scheduled to include the newly ACTIVE neighbor. If the Data
is not valid, the packet is dropped.

If the Hello Interest sent to the neighbor times out, the corresponding neighbor’s timed-out count is incremented. If the
neighbor’s timed-out count is less than hello-retries in the configuration file, the Hello Protocol will send another Hello
Interest after hello-timeout seconds. If the neighbor’s timed-out count equals the hello-retries value and the neighbor
is currently marked as ACTIVE, the neighbor’s status is set to INACTIVE and an Adjacency LSA build is scheduled.

2.2 Responding to Hello Interests

If the Hello Protocol receives a Hello Interest from another router, it will first verify that the Hello Interest came from one of
its configured neighbors. If so, the Hello Protocol responds to the Interest with Hello Data. To optimize the time to respond
to link recoveries, the Hello Protocol will then immediately send a Hello Interest to the neighbor if the neighbor is currently
marked as INACTIVE.

5

2.3 Failure and Recovery Detection 2 HELLO PROTOCOL

Figure 3: Router A determines that Router B has failed

2.3 Failure and Recovery Detection

The Hello Protocol will consider a neighbor as failed if the neighbor is currently ACTIVE, but Hello Interests sent to the
neighbor have timed-out hello-retries number of times. A failure can also be detected if a FaceEventNotification is
received with the information that a Face to the neighbor has been destroyed. The event is handled by the Nlsr class, but
the triggered events simulate the actions of the Hello Protocol. If the neighbor was currently ACTIVE, the neighbor will be set
to INACTIVE, the neighbor’s timed-out count will be set to hello-retries, and an Adjacency LSA build will be scheduled.

The Hello Protocol will consider a neighbor as recovered if the neighbor is currently INACTIVE, but the Hello Protocol
has received valid Data in response to a Hello Interest sent to the neighbor.

6

3 SYNC LOGIC HANDLER

3 Sync Logic Handler

The Sync Logic Handler acts as the interface between the synchronization protocol and the NLSR application. The Sync
Logic Handler receives notifications from the synchronization protocol when an sync update is detected, and the Sync Logic
Handler then determines if the updated LSA should be retrieved. The Sync Logic Handler also notifies the synchronization
protocol when the router’s LSAs are modified or refreshed, so the synchronization protocol can update its internal digest and
synchronize the updated information.

3.1 On Sync Update

When the synchronization protocol receives a sync update, the updated names and sequence numbers will be passed to
SyncLogicHandler::onNsyncUpdate(). The Sync Logic Handler will process each updated name individually first by veri-
fying that the update is not for one of the router’s own LSAs. The Sync Logic Handler will then check the updated sequence
number to see which LSAs were updated. If the sequence number for the LS in the update is greater than the sequence
number of the existing LSA in the LSDB or there is no LSA for the updated Name, the Sync Logic Handler will use the
Lsdb::expressInterest() interface to retrieve the LSA. The module will not try to retrive Coordinate LSA if link-state
routing is on, or Adjacency LSA is hyperbolic routing is on. The logic used to express an LSA Interest and handle an LSA
Data response is handled by the LSDB module (Section 5).

3.2 Publish Routing Update

When any of a router’s LSAs are updated or refreshed by the LSDB, the LSDB will use the
SyncLogicHandler::publishRoutingUpdate() interface to notify the synchronization protocol that the sequence number
for the router’s LSA prefix has changed. The Sync Logic Handler will also write the updated sequence number to file, so
that a restarting router can begin publishing routing updates with sequence numbers larger than the sequence numbers it
had published previously.

7

4 LINK-STATE ADVERTISEMENTS

4 Link-State Advertisements

Link-State Advertisements (LSAs) represent pieces of routing information distributed by routers. NLSR uses three types of
LSAs to distribute routing information: Adjacency LSAs which include neighboring node and link information, Coordinate
LSAs which include a router’s hyperbolic coordinates, and Name LSAs which include advertised name prefixes reachable
through the router. All of the LSAs received by the router are maintained by the LSDB module (Section 5).

4.1 LSA Base Class

All three LSA implementations inherit from an LSA Base class, Lsa, which maintains information that is included in each
LSA. The LSA class contains the following member variables:

• Origin Router - the router that advertised the LSA.

• Sequence Number - a number used to indicate the LSAs version as well as its ordering compared to other LSAs
received from the same router.

• Expiration Time Point - a time point indicating when the LSA is no longer valid.

4.2 Adjacency LSAs

Adjacency LSAs maintain an AdjacencyList which contains all the currently ACTIVE neighbors of the origin router.

4.3 Coordinate LSAs

Coordinate LSAs maintains the hyperbolic angle and hyperbolic radius of the origin router.

4.4 Name LSAs

Name LSAs maintain a NamePrefixList which contains advertised name prefixes that are reachable through the origin
router.

8

5 LINK-STATE DATABASE

5 Link-State Database

The Link-State Database (LSDB) holds LSA information distributed by other routers in the network. The LSDB stores all
three types of LSAs and will trigger necessary events when a new LSA is added, when an LSA is updated, and when an LSA
expires. The LSDB also handles LSA retrieval and validation, performs LSA builds, and triggers routing table calculations.

5.1 Retrieving an LSA

The LSDB provides Lsdb::expressInterest() as a public interface to retrieve an LSA from the network. If LSA Data is
returned, the LSDB will handle the Data validation and perform the necessary LSDB modifications. If the LSA Interest
times out, the LSDB will continue to re-attempt to fetch the LSA Data. The LSDB will stop trying these fetch re-attempts
once it has tried for as long as the maximum configurable LSA refresh time.

5.2 Building LSAs

The LSDB provides three interfaces to build and install a router’s own various LSAs.

• Lsdb::scheduleAdjLsaBuild() schedules an Adjacency LSA calculation if one is not already scheduled and if hyper-
bolic routing is not turned on, i.e. if link-state routing or dry run is on.

• Lsdb::buildAndInstallOwnAdjLsa() instantiates a new Adjacency LSA with the router’s current adjacency list,
incremented sequence number, and number of active neighbors. It also notifies the Sync Logic Handler to publish the
routing update(Section 3.2) if link-state routing or dry-run is enabled to let other node in the network know the newly
instlled Adjacency LSA.

• Lsdb::buildAndInstallOwnCoordinateLsa() instantiates a new Coordinate LSA with the router’s hyperbolic coor-
dinates and an incremented sequence number. The newly constructed Coordinate LSA is then installed in the LSDB.
It also notifies the Sync Logic Handler to publish the routing update(Section 3.2) if hyperbolic routing or dry run is
turned on to let other nodes in the network know the newly installed Coordinate LSA.

• Lsdb::buildAndInstallOwnNameLsa() instantiates a new Name LSA with the router’s current name prefix list and
an incremented sequence number. The newly constructed Name LSA is then installed in the LSDB.

5.3 LSA Installation and Updates

The LSDB provides three internal interfaces for each of the three types of LSAs to add or update LSAs in the LSDB. The
general logic for each type of LSA installation is similar (Figure 5.3), but there are slight differences in the events that are
triggered by an installation or update.

Figure 4: The general LSDB logic for each LSA type

9

5.4 LSA Expiration 5 LINK-STATE DATABASE

5.3.1 Lsdb::installAdjLsa()

When an Adjacency LSA is passed to Lsdb::installAdjLsa(), the LSDB first attempts to find the LSA in its current
database.

If the Adjacency LSA is not installed in the database, the LSA will first be added to the database. If the installed LSA is
advertised by a remote router, the remote router’s name will be added to the NPT and the LSA will be scheduled to expire
after the expiration time point included in the LSA. Since a new Adjacency LSA introduces a new node and new links in the
network, a routing table calculation is scheduled.

If the Adjacency LSA is already installed in the database, the existing LSA will only be updated if the newly received
LSA has a higher sequence number. If an Adjacency LSA with a higher sequence number is being installed, the existing
LSA’s sequence number and expiration time will be updated. If the newly received LSA contains an adjacency list that is
different from the existing LSA, the existing LSA’s adjacencies are updated and a routing table calculation is scheduled to
account for the network change. Finally, if the updated LSA is advertised by a remote router, the LSA will be scheduled to
expire after the expiration time point included in the LSA.

5.3.2 Lsdb::installCoordinateLsa()

When a Coordinate LSA is passed to Lsdb::installCoordinateLsa(), the LSDB first attempts to find the LSA in its
current database.

If the Coordinate LSA is not installed in the database, the LSA will first be added to the database. If the installed LSA is
advertised by a remote router, the remote router’s name will be added to the NPT, and the LSA will be scheduled to expire
after the expiration time point included in the LSA. If hyperbolic routing is enabled, a new Coordinate LSA means that the
routing table should be re-calculated to include the new destination router.

If the Coordinate LSA is already installed in the database, the existing LSA will only be updated if the newly received
LSA has a higher sequence number. If a Coordinate LSA with a higher sequence number is being installed, the existing
LSA’s sequence number and expiration time will be updated. If the newly received LSA contains hyperbolic coordinate
different from the existing LSA, the existing LSA’s coordinates are updated. If hyperbolic routing is enabled, an LSA with
new coordinates means the routing table should be re-calculated to account for the different coordinates. Finally, If the
updated LSA is advertised by a remote router, the LSA will be scheduled to expire after the expiration time point included
in the LSA.

5.3.3 Lsdb::installNameLsa()

When a Name LSA is passed to Lsdb::installNameLsa(), the LSDB first attempts to find the LSA in its current database.
If the Name LSA is not installed in the database, the LSA will first be added to the database. If the installed LSA is

advertised by a remote router, the remote router’s name and each advertised name in the LSA will be added to the NPT,
and the LSA will be scheduled to expire after the expiration time point included in the LSA.

If the Name LSA is already installed in the database, the existing LSA will only be updated if the newly received LSA
has a higher sequence number. If a Name LSA with a higher sequence number is being installed, the existing LSA’s sequence
number and expiration time will be updated. A set difference is performed between the new LSA’s advertised name prefix
list and the existing LSA’s advertised name prefix list to determine name prefixes that have been added. If there are added
name prefixes, the name prefixes are added to the NPT and to the existing LSA. A set difference is then performed between
the new LSA’s advertised name prefix list and the existing LSA’s advertised name prefix list to determine name prefixes that
have been removed. If there are removed name prefixes, the name prefixes are removed from the NPT and from the existing
LSA. Finally, If the updated LSA is advertised by a remote router, the LSA will be scheduled to expire after the expiration
time point included in the LSA.

5.4 LSA Expiration

LSAs are scheduled to expire after a configurable amount of time in order to allow for LSDB cleanup when a router crashes.
After the expiration period, if the LSA belongs to the current router, the LSA is refreshed with an incremented sequence
number (Section 5.5). Otherwise, if the LSA belongs to a remote router, the LSA is removed from the LSDB. Removing an
LSA from the LSDB triggers different events depending on the type of the LSA.

• Adjacency LSA - When an Adjacency LSA is removed, a routing table calculation is scheduled to determine new
paths that don’t include the associated router.

• Coordinate LSA - When a Coordinate LSA is removed and hyperbolic routing is enabled, a routing table calculation
is scheduled.

10

5.5 LSA Refresh 5 LINK-STATE DATABASE

• Name LSA - When a Name LSA is removed, the name prefixes advertised by the LSA are removed from the NPT.

In all three cases, the LSA’s origin router’s name will also be removed from the NPT.

5.5 LSA Refresh

When a router refreshes its own LSA, all three LSA types trigger the same events:

• Increment the LSA’s sequence number by one

• Schedule the LSA to expire after the configured lsa-refresh-time.

• Publish a routing update in NSync to notify other routers of the change in the LSDB.

11

6 ROUTING TABLE

6 Routing Table

The Routing Table module performs three main tasks: it performs the routing table calculations using a RoutingTableCalculator
(Section 6.1), it stores the calculated routing table entries in a table, and notifies the Name Prefix Table module (Section 7)
when there are changes to the calculated next hops.

6.1 Routing Table Calculators

The RoutingTableCalculator is a base class provides functionality common to both link-state and hyperbolic routing. The
Routing Table module uses the implementation class specific to the type of routing currently enabled.

6.1.1 Link-State Routing Table Calculator

The LinkStateRoutingTableCalculator class calculates the routing table uses Dijkstra’s algorithm to calculate the shortest
paths in the network. When max-faces-per-prefix is set to one, the LinkStateRoutingTableCalculator can simply run
Dijkstra’s algorithm. When max-faces-per-prefix is set to a value indicating multi-path calculation, the
LinkStateRoutingTableCalculator will iteratively perform Dijkstra’s using only a single neighbor link as a next hop. The
calculation will be performed using each neighbor in order to learn the path costs for each destination through each next
hop.

6.1.2 Hyperbolic Routing Table Calculator

The HyperbolicRoutingCalculator class calculates the routing table uses the Coordinate LSAs received from each router in
the network to determine the cost from each of its neighbors to every other router in the network. The HyperbolicRoutingCalculator
iterates through each of the router’s neighbors calculating the hyperbolic distance from the neighbor to every other router in
the network (excluding itself and the neighbor router). The HyperbolicRoutingCalculator then uses these calculated dis-
tances to add routing table entries to the destination with the neighbor as the next hop. The HyperbolicRoutingCalculator
also adds a routing table entry to reach the neighbor itself; a routing table entry using the neighbor as a next hop to the
neighbor with a cost of zero is added.

6.2 Notifications for Newly Calculated Next Hops

Once the Routing Table Module has finished calculating the routing table, it will notify the Name Prefix Table module using
the NamePrefixTable::updateWithNewRoute interface. The Name Prefix Table Module will then update the next hops for
each name prefix based on the newly calculated routing table. This process is described in more detail in Section 7.3.

12

7 NAME PREFIX TABLE

7 Name Prefix Table

NLSR

 m_table : NptEntryList
 m_rtpool : RtpEntryMap

NamePrefixTable

 m_nexthopList : NexthopList
 m_rteList : std::list<std::shared_ptr<RoutingTablePoolEntry>>

NamePrefixTableEntry

 m_useCount : uint64_t

RoutingTablePoolEntry
 m_destination : ndn::Name
 m_nexthopList : NexthopList

RoutingTableEntry

 m_rTable : std::list<RoutingTableEntry>

RoutingTable

1

0..*

0..*
0..*

1
0..*

1

0..*

1

1

1

1

Figure 5: A
diagram of the NPT and Routing Table.

The “wire” arrows represent references (i.e. “x has y”), whereas the “solid” arrows represent inheritance (i.e. “y subclasses x”).

The quantification (e.g. 0..*) is standard UML.

The Name Prefix Table (NPT) is used by NLSR to maintain a list of all known name prefixes advertised by other routers,
including router names. The NPT maintains a collection of NPT entries, where each entry represents a name prefix and all
of its associated routing table entries. Additionally, to optimize the storage and association of the routing table entries, the
NPT also maintains a collection of duplicated routing table entries, called routing table pool entries, which have an additional
use count attribute. The NPT entries keep shared pointers to the appropriate routing table pool entries. If a name prefix
is advertised by multiple routers, the name prefix will be represented by only one Name Prefix Table Entry, but will have
multiple routing table pool entries which correspond with each origin router.

If a Name LSA exists with an advertised name prefix, that advertised name prefix must be represented in the NPT. Thus,
if two routers advertise the same name prefix and one Name LSA expires, the NPT entry must not be removed due to the
existence of the Name LSA from the other router.

If an any type of LSA for a remote router exists in the LSDB, the remote router’s name prefix must be present in the
NPT. An NPT Entry for a router name can be safely removed when there are no more LSAs in the LSDB from the origin
router or there are no routing table entries for the origin router.

7.1 Adding an NPT Entry

The NamePrefixTable::addEntry() method is the public interface for name prefixes to be added to the NPT. The name
prefix as well as the router’s prefix which originates the name prefix are passed as parameters to the interface. The NPT will
look through its collection of routing table pool entries first to see if it already has the appropriate route. If the NPT locates
a local entry, it will increment that entry’s use count. If none can be found, if will check in the Routing Table to see if a
“raw” routing table entry matching the origin of the prefix is available there. If one is found, it will create a routing table
pool entry with the same information, and a use count of one. This new routing table pool entry will then be used. If one is
not found, a routing table pool entry with no routing information and a use count of one is made, and the NPT entry will
retain this “dummy” routing information until the Routing Table performs a calculation and updates it.

The rest of the method determines if this NPT entry already exists in the NPT itself. If it has not been added, i.e. it is
new, a new NPT entry will be made and installed in the NPT. Then the routing table pool entry with the routing information
to the origin router’s prefix will be added to this new NPT entry. If the entry already exists in the NPT, then the existing
entry will be updated in the same way as the new one. If the updated NPT entry has next hops, the NPT will update the
FIB with the prefix and its next hops. If there are no next hops, then this means that there is no way for the router to reach
the origin. The FIB entry will be removed, but the NPT entry will be retained, as the routing table may calculate a new
route.

7.2 Removing an NPT Entry

The NamePrefixTable::removeEntry() method is the public interface for name prefixes to be removed from the NPT. The
name prefix as well as the router’s prefix which originates the name prefix are passed as parameters to the interface. The
NPT will use the origin router’s name to look through its local collection of routing table pool entries. Because this is the
NPT’s centralized, total pool of routing information, if the entry does not exist here it cannot exist in any NPT entries. In

13

7.3 Updating an NPT Entry with New Routing Table Entries 7 NAME PREFIX TABLE

that case, the method ends. Else, the method will look through the collection of NPT entries for the entry matching the
name prefix in the parameters. If it does not find it, there is nothing to be done, and the method ends. If it does find a
matching entry, it will remove from that entry the routing table pool entry with the origin router prefix matching the one
given in the parameters. The next hop information of the entry is rebuilt, and then the method checks if the entry has any
next hops. If it does, the method will inform the FIB of the change with the name prefix and the next hops. If the entry no
longer has any next hops, this means that there is no routing information to any router advertising that prefix. In this case,
the NPT will remove that entry, as it is no longer useful.

7.3 Updating an NPT Entry with New Routing Table Entries

When the Routing Table module has finished calculating, it will notify the NPT using the NamePrefixTable::updateWithNewRoute()
interface. The NPT will then iterate over each of its entries and each entry’s routing table pool entry list. For each routing
entry in the list, the NPT will attempt to fetch the new next hop list from the Routing Table, and set the entry’s next hop
list to that. If no list is available, it clears the routing table pool entry’s next hop list. Then, NamePrefixTable::addEntry()
is called with the current NPT entry and routing table pool entry pair.

7.4 Adding routing table pool entries to the pool

Whenever a routing table pool entry (RTPE) needs to be constructed, the method NamePrefixTable::addRtpeToPool() is
called. It constructs and inserts into the hash map a pair object whose first element is the origin router prefix, and whose sec-
ond element is a shared pointer to the actual routing table pool entry object. As stated in the NamePrefixTable::addEntry()
method, the RTPE will have a use count of one.

7.5 Removing routing table pool entries from the pool

After an RTPE is removed from an NPT entry, it will be deleted from the pool if NamePrefixTable::removeEntry()

determines that the RTPE now has a use count of 0. It will then call NamePrefixTable::deleteRtpeFromPool(), passing
the RTPE as a parameter. The method will erase the element from the hash map that they are contained in.

14

8 FIB INTERACTION

8 FIB Interaction

The FIB module interacts directly with NFD to perform registrations and unregistrations of name prefixes. The FIB module
is notified of additions, removals, or updates to the Name Prefix Table and will use the updated Name Prefix Table to perform
the necessary registrations or unregistrations. The Name Prefix Table notifies the FIB module using the Fib::update()

method which accepts a name prefix and next hops for that name prefix as parameters. The FIB module maintains a shadow
FIB which represents its expectations of NFD’s FIB. The FIB module uses the shadow FIB to determine which registrations
and unregistrations are necessary.

8.1 Updating the FIB

When the Name Prefix Table performs an update on the FIB module, the FIB module will first sort the passed next hops
with the next hop’s costs in increasing order. The FIB module will next determine the number of next hops that should be
installed for the name prefix using the max-faces-per-prefix parameter as a maximum. If there are more passed next hops
than the max-faces-per-prefix parameter allows, the FIB module will only use the first max-faces-per-prefix number
of next hops from the sorted list. If there are less passed next hops than the max-faces-per-prefix parameter, the FIB
module will use all of the passed next hops.

The FIB module next determines if there is already a FIB entry in the shadow FIB for the passed name prefix. If the
name prefix will create a new FIB entry and the number of passed next hops is greater than zero, a new FIB entry will
be created, the next hops will be registered for the name prefix in NFD’s FIB, and the FIB entry will be set to expire in
two times the lsa-refresh-time in order to clean up orphaned entries in NFD’s FIB. If there is already an existing FIB
entry for the name prefix and the number of passed next hops is greater than zero, any of the passed next hops that weren’t
previously registered for the FIB entry are registered. Then, any currently registered hops that are not in the passed next
hops are removed from NFD’s FIB, and the entry’s expiration is refreshed. If there is already an existing FIB entry for the
name prefix and the number of passed next hops is equal to zero, the routing table was unable to find a path to this name
prefix and so the name prefix should be removed from NFD’s FIB.

15

9 SECURITY

Figure 6: NLSR Trust Hierarchy

Table 1: Key Names
Key Owner Key Name

Network /<network>/KEY/<key>

Site /<network>/<site>/KEY/<key>

Operator /<network>/<site>/<operator>/KEY/<key>

Router /<network>/<site>/<router>/KEY/<key>

NLSR /<network>/<site>/<router>/NLSR/KEY/<key>

9 Security

The trust model of NLSR is semi-hierarchical. An example certificate signing hierarchy is show in Figure 6. In this hierarchy,
each entity’s name and corresponding certificate name follow the convention described in Table 1.

9.1 Creating Keys and Certificates

The process to create keys and certificates for this hierarchy can be performed using the ndnsec [4] tools included with
ndn-cxx [5]. The steps to create the keys and certificates is outlined below:

1. Create keys for Root:
ndnsec-keygen $ROOT NAME > $ROOT KEY OUTPUT FILE

2. Create certificate for Root:
ndnsec-certgen -N $ROOT NAME -p $ROOT NAME $ROOT KEY OUTPUT FILE > $ROOT CERT OUTPUT FILE

3. For each site, create keys and certificates:

(a) On the Site machine, generate keys for the Site:
ndnsec-keygen $SITE NAME > $SITE KEY OUTPUT FILE

(b) Copy $SITE KEY OUTPUT FILE over to the machine where the Root certificate was created.

(c) Generate a certificate for the Site on the Root machine:
ndnsec-certgen -N $SITE NAME -p $SITE NAME -s $ROOT NAME $SITE KEY OUTPUT FILE > $SITE CERT OUTPUT FILE

(d) Copy $SITE CERT OUTPUT FILE over to the Site machine.

(e) Install the certificate on the Site machine:
ndnsec-cert-install -f $SITE CERT OUTPUT FILE

(f) On the Site machine, create the Operator keys:
ndnsec-keygen $OP NAME > $OP KEY OUTPUT FILE

(g) On the Site machine, create the Operator certificate:
ndnsec-certgen -N $OP NAME -p $OP NAME -s $SITE NAME $OP KEY OUTPUT FILE > $OP CERT OUTPUT FILE

(h) On the Site machine, create the Router keys:
ndnsec-keygen $ROUTER NAME > $ROUTER KEY OUTPUT FILE

(i) On the Site machine, create the Router certificate:
ndnsec-certgen -N $ROUTER NAME -p $ROUTER NAME -s $OP NAME $ROUTER KEY OUTPUT FILE > $ROUTER CERT OUTPUT FILE

4. When NLSR starts, it will automatically create the NLSR keys and certificates for the router.

16

9.2 Certificate Publishing 9 SECURITY

9.2 Certificate Publishing

In a network, every router should have the root certificate configured as a trust anchor for the validator in the configuration
file. For each site, at least one router should publish the site certificate, and at least one router should publish the certificate
of the site operator. Each router should publish its own certificate. All this information must be explicitly specified in the
configuration file.

For example, the following configuration file indicates that NLSR should publish the site certificate and the router
certificate:

...

security

{

validator

{

...

}

cert-to-publish "$SITE_CERT_OUTPUT_FILE" ; name of the site certificate file

cert-to-publish "$SITE_CERT_OUTPUT_FILE" ; name of the router certificate file

...

}

17

10 CONFIGURATION FILE

10 Configuration File

NLSR’s configuration file contains numerous parameters to control the behavior and performance of NLSR. The configuration
file also includes the trust schema used by NLSR to verify LSA Data, Hello Data, and prefix update command Interests. The
configuration file is divided into six sections each with parameters that mainly affect a specific module.

10.1 General Section

The general section in the configuration file includes parameters which deal with the general setup of the router, the behavior
of the LSDB, and logging configuration.

There are three parameters used to configure the router prefix of the router. The router prefix is the name that other
routers in the network know this router by.

• network - the name of the network to which the router belongs; e.g., /ndn.

• site - the name of the site to which the router belongs; e.g., /edu/memphis.

• router - the name to identify the router; e.g., /%C1.Router/cs/pollux.

The router prefix is constructed by combining the three parameters following the format: /<network>/<site>/<router>.
There are three parameters which affect the behavior of the LSDB.

• lsa-refresh-time - the time in seconds the router will wait before refreshing its LSAs (Default value: 1800; Valid
values: 240 - 7200).

• router-dead-interval - the time in seconds after which an inactive router’s LSAs are removed. The configured
value for this parameter must be greater than lsa-refresh-time. (Default value: two times the value configured in
lsa-refresh-time).

• lsa-interest-lifetime - the interest lifetime used for LSA Interests (Default value: 4; Valid values: 1 - 60).

The log-level parameter configures the verbosity of NLSR’s logging. The possible log-level values are listed in
increasing verbosity:

• NONE - no messages

• ERROR - error messages

• WARN - warning messages

• INFO - informational messages (default)

• DEBUG - debugging messages

• TRACE - trace messages (most verbose)

• ALL - all messages

Note that all debugging levels listed above the selected value will also be enabled.
The general configuration section also includes parameters to choose where the NLSR log file and the NLSR sequence

number file are stored. The log-dir parameter is an absolute path to the directory where the NLSR log file should be
written, and seq-dir is an absolute path to the directory where the NLSR sequence number should be written.

10.2 Neighbors Section

The neighbors section in the configuration file contains parameters that define the behavior of the Hello Protocol and the
neighboring routers of the router.

• hello-retries - the number of times to retry a Hello Interest before deciding the neighbor is down (Default value: 3;
Valid values: 1 - 10).

• hello-timeout - the interest lifetime for Hello Interests in seconds (Default value: 1, Valid values: 1 - 15).

• hello-interval - the time in seconds between sending each Hello Interest to a neighbor. (Default value: 60; Valid
values: 30 - 90).

18

10.3 Hyperbolic Section 10 CONFIGURATION FILE

• first-hello-interval - the time to wait in seconds before sending the first Hello Interests (Default value: 10; Valid
values: 0 - 10).

• adj-lsa-build-interval - when the Hello Protocol triggers an Adjacency LSA build, the LSDB will wait this amount
of time in seconds before performing the Adjacency LSA build. This parameter is intended to allow for Adjacency LSA
build requests to be aggregated and the build can then be performed once. (Default value: 5; Valid values: 0 - 5)

The neighbors section also includes multiple neighbor subsections, each of which configures a neighbor of the router.
The neighbor subsection includes:

• name - the router prefix of the neighboring router

• face-uri - the face that should be used to connect to the neighboring router

• link-cost - the cost metric for the link connecting this router to the neighbor router.

10.3 Hyperbolic Section

The hyperbolic section in the configuration file is used to enable/disable hyperbolic routing and to specify the hyperbolic
coordinates of the router.

The state parameter indicates whether or not hyperbolic routing should be enabled. There are three possible values for
this parameter: on, off, and dry-run. on enables hyperbolic routing; off disables hyperbolic routing (link-state routing is
used); dry-run uses link-state routing to populate NFD’s FIB, but will also perform the hyperbolic routing calculations and
write them to the log file for debugging purposes.

The radius parameter defines the router’s radius in the hyperbolic coordinate system and angle defines the router’s
angle in the hyperbolic coordinate system.

10.4 FIB Section

The fib section in the configuration file contains two parameters: one to limit the number of next hops registered for each
name prefix, and the amount of time to wait before calculating the routing table after a request is made.

max-faces-per-prefix defines the maximum number of next hops that can be registered for a name prefix. This value is
intended to reduce the FIB size for routers with a large number of neighbors. The default value for max-faces-per-prefix
is 0 which indicates that all available next hops may be added to each name prefix. max-faces-per-prefix allows values
between 0 and 60.

routing-calc-interval is the time to wait in seconds after a routing table calculation is requested before actually
performing the routing table calculation. This parameter is intended to limit the number of routing table calculations, which
may be performance intensive on some systems. The default value for max-faces-per-prefix is 15 seconds and can be
configured to be in the range of 0 to 15 seconds.

10.5 Advertising Section

The advertising section includes a list of name prefixes that the router should advertise as reachable through itself. Each
name prefix that should be advertised should be in the following format: prefix /name/to/advertise. This section allows
for static configuration of the advertised prefixes, but prefixes can be dynamically advertised and withdrawn using the Prefix
Update Processor.

10.6 Security Section

The security section of the configuration file includes the configuration for NLSR’s validators and the locations of certificates
that should be published by the router.

The validator subsection includes the configuration for the validator used by NLSR to verify the signatures of Hello
Data and LSA Data.

The prefix-update-validator configures the validator used by the Prefix Update Processor to verify that prefix update
command Interests are signed by the operator of the router.

The security section also allows configuration of which certificates should be published by the router using the cert-to-publish
keyword. If the router should publish a certificate, the absolute path for the certificate file can be configured as cert-to-publish
value.

19

REFERENCES REFERENCES

References

[1] Z. Zhu and A. Afanasyev, “Let’s ChronoSync: Decentralized dataset state synchronization in Named Data Networking,”
in Proceedings of IEEE ICNP, 2013.

[2] NDN Project Team, “NFD - NDN forwarding daemon,” http://named-data.net/doc/nfd/.

[3] V. Lehman, A. M. Hoque, Y. Yu, L. Wang, B. Zhang, and L. Zhang, “A secure link state routing protocol for NDN.”

[4] NDN Project Team, “ndnsec,” https://github.com/named-data/ndn-cxx/tree/master/tools/ndnsec.

[5] ——, “ndn-cxx,” http://named-data.net/doc/ndn-cxx/.

20

http://named-data.net/doc/nfd/
https://github.com/named-data/ndn-cxx/tree/master/tools/ndnsec
http://named-data.net/doc/ndn-cxx/

	Introduction
	NLSR Modules and Data Structures
	Protocol Overview
	Discovering Neighbors
	Disseminating Routing Information
	Calculating the Routing Table and Populating NFD's FIB

	Hello Protocol
	Determining Neighbor's Status
	Responding to Hello Interests
	Failure and Recovery Detection

	Sync Logic Handler
	On Sync Update
	Publish Routing Update

	Link-State Advertisements
	LSA Base Class
	Adjacency LSAs
	Coordinate LSAs
	Name LSAs

	Link-State Database
	Retrieving an LSA
	Building LSAs
	LSA Installation and Updates
	Lsdb::installAdjLsa()
	Lsdb::installCoordinateLsa()
	Lsdb::installNameLsa()

	LSA Expiration
	LSA Refresh

	Routing Table
	Routing Table Calculators
	Link-State Routing Table Calculator
	Hyperbolic Routing Table Calculator

	Notifications for Newly Calculated Next Hops

	Name Prefix Table
	Adding an NPT Entry
	Removing an NPT Entry
	Updating an NPT Entry with New Routing Table Entries
	Adding routing table pool entries to the pool
	Removing routing table pool entries from the pool

	FIB Interaction
	Updating the FIB

	Security
	Creating Keys and Certificates
	Certificate Publishing

	Configuration File
	General Section
	Neighbors Section
	Hyperbolic Section
	FIB Section
	Advertising Section
	Security Section

	References

