
NLSR Developer’s Guide

Vince Lehman, Muktadir Chowdhury, Nicholas Gordon, Ashlesh Gawande1

1University of Memphis

July 26, 2017

Abstract

The Named Data Link-State Routing Protocol (NLSR) is a Named Data Networking (NDN) routing protocol that
populates NDN Forwarding Daemon’s (NFD) Routing Information Base (RIB). The main design goal of NLSR is to provide
a routing protocol to populate NFD’s RIB and Forwarding Information Base (FIB). NLSR calculates the routing table
using link-state or hyperbolic routing and produces multiple faces for each reachable name prefix in a single authoritative
domain. NLSR will continue to evolve alongside the NDN protocol, NFD, and ndn-cxx. This document is meant to
explain the design of NLSR including major module and data structures descriptions and the interactions between those
components.

Contents

1 Introduction 3
1.1 NLSR Modules and Data Structures . 3
1.2 Protocol Overview . 3

1.2.1 Discovering Neighbors . 3
1.2.2 Disseminating Routing Information . 3
1.2.3 Calculating the Routing Table and Populating NFD’s FIB . 4

1.3 Dispatcher . 4

2 Hello Protocol 6
2.1 Determining Neighbor’s Status . 6
2.2 Responding to Hello Interests . 6
2.3 Failure and Recovery Detection . 7

3 Sync Logic Handler 8
3.1 On Sync Update . 8
3.2 Publish Routing Update . 8

4 Link-State Advertisements 9
4.1 LSA Base Class . 9
4.2 Adjacency LSAs . 9
4.3 Coordinate LSAs . 9
4.4 Name LSAs . 9

5 Link-State Database 10
5.1 Retrieving an LSA . 10
5.2 General Procedure . 10
5.3 Scheduling LSA Builds . 10
5.4 Building LSAs . 10
5.5 Installing and Processing LSAs . 10
5.6 LSA Expiration . 11
5.7 LSA Refreshment . 11

1

CONTENTS CONTENTS

6 Routing Table 12
6.1 Routing Table Calculators . 12

6.1.1 Link-State Routing Table Calculator . 12
6.1.2 Hyperbolic Routing Table Calculator . 12

6.2 Notifications for Newly Calculated Next Hops . 12

7 Name Prefix Table 13
7.1 Adding an NPT Entry . 13
7.2 Removing an NPT Entry . 13
7.3 Updating an NPT Entry with New Routing Table Entries . 14
7.4 Routing Table Entry Pool . 14

8 FIB Interaction 15
8.1 Updating the FIB . 15

9 Prefix Update Processor 16
9.1 Advertising and Withdrawing Routes . 16
9.2 Security . 16

10 NFD RIB Command Processor 17
10.1 Advertising and Withdrawing Routes . 17
10.2 Security . 17

11 LSDB Status Dataset 18
11.1 Requesting the dataset . 18

12 Security 19
12.1 Creating Keys and Certificates . 19
12.2 Certificate Publishing . 20

13 Configuration File 21
13.1 Naming Conventions . 21
13.2 General Section . 21
13.3 Neighbors Section . 21
13.4 Hyperbolic Section . 22
13.5 FIB Section . 22
13.6 Advertising Section . 22
13.7 Security Section . 22

References 23

2

1 INTRODUCTION

1 Introduction

The Named-data Link State Routing protocol (NLSR) is an intra-domain routing protocol for Named Data Networking
(NDN). It is an application level protocol similar to many IP routing protocols, but NLSR uses NDN’s Interest/Data packets
to disseminate routing updates. Although NLSR is designed in the context of a single domain, its design patterns may offer
a useful reference for future development of inter-domain routing protocols.

NLSR supports name-based routing in NDN, computes routing ranks for all policy-compliant next-hops which provides
a name-based multi-path routing table for NDN’s forwarding strategy, and ensures that routers can originate only their own
routing updates using a hierarchical trust model.

1.1 NLSR Modules and Data Structures

NLSR contains multiple modules that each contribute to the total realization of the protocol. Many of the modules interact
with one another to trigger some behavior or to modify information in data structures. NLSR uses the following modules:

• Hello Protocol (Section 2) - determines the status of neighboring routers using periodic Hello Interests and notifies
other modules when neighbors’ statuses change.

• ChronoSync - provides network-wide synchronization of NLSR LSDBs. [1]

• Sync Logic Handler (Section 3) - handles sync update notifications from NSync by retrieving updated LSAs.

• LSAs (Section 4) - represent routing information published by the router.

• LSDB (Section 5) - stores the LSA information distributed by other routers in the network.

• Routing Table (Section 6) - calculates and maintains a list of next hops for each router in the network.

• Name Prefix Table (Section 7) - stores all advertised name prefixes and their next hops.

• FIB (Section 8) - maintains a shadow FIB which represents the intended state of NFD’s FIB [2].

• Prefix Update Processor (Section 9) - listens for dynamic prefix announcements to advertise or withdraw name
prefixes.

• NFD RIB Command Processor (Section 10) - listens for readvertise-to-NLSR commands to advertise or withdraw
name prefixes that were inserted into NFD.

1.2 Protocol Overview

NLSR is designed to accomplish three main tasks: (1) discover adjacent neighbors; (2) disseminate and synchronize topology,
name prefix, and hyperbolic routing information; and (3) calculate a routing table and populate NFD’s FIB. The entire
protocol is described in detail in the NLSR paper [3].

1.2.1 Discovering Neighbors

NLSR determines the adjacency status of neighboring routers using the Hello Protocol module (Section 2). When the Hello
Protocol detects a status change for a neighbor, it will ask the LSDB module (Section 5) to update the router’s advertised
adjacency information.

1.2.2 Disseminating Routing Information

When a router’s LSAs (Section 4) changes, the information of this change should be distributed to every other router in the
network. The Sync Logic Handler module (Section 3) is used to notify the synchronization protocol of changes to the router’s
own LSAs as well as to learn of LSA changes from other routers in the network; the Sync Logic Handler module interfaces
with ChronoSync to perform the two tasks.

When the Sync Logic Handler module learns of a new LSA, it will inform the LSDB module. The LSDB module will
attempt to fetch the new LSA and will store it in the LSDB module’s database if it can be retrieved. If the newly fetched
LSA informs the router of previously unknown routing information, the LSDB module will inform other modules depending
on the type of routing information:

3

1.3 Dispatcher 1 INTRODUCTION

FibNamePrefixTableRoutingTableLsdbSyncLogicHandler

8: Register names and nexthops

7: Fib::update()

13: Register names and nexthops

12: Fib::update()

11: updateWithNewRoute()

10: Calculate Table

9: Schedule calculation

6: Add NPT entries for origin router's name

5: Install LSA

4: Validate LSA Data

3: Receive LSA Data

2: Lsdb::expressInterest()

1: onNsyncUpdate()

Figure 1: Simplified Diagram of the Actions of NLSR’s Modules

• Change in network topology - the LSDB module will ask the Routing Table module (Section 6) to recalculate paths
in the network

• Change in name prefix advertisement - the LSDB module will inform the Name Prefix Table module (Section 7),
which will in turn notify the FIB module (Section 8) in order to add or remove the changed name prefixes.

• Change in hyperbolic coordinates - the LSDB module will inform the Routing Table module (Section 6), so the
Routing Table module can calculate an up-to-date routing table.

1.2.3 Calculating the Routing Table and Populating NFD’s FIB

When the routing table is calculated by the Routing Table module, the computed next hops are passed to the Name Prefix
Table module. The Name Prefix Table module will then further pass the next hops to the FIB module to update NLSR’s
expected state of NFD’s FIB. The FIB module will then perform the registrations or unregistrations with NFD’s FIB.

A simplified diagram of NLSR’s actions when receiving new routing information is shown in Figure 1. The remainder of
this documentation will describe the purpose of and interaction between each module in more detail.

1.3 Dispatcher

NLSR takes advantage of a variety of ndn-cxx convenience mechanisms. Among these is the dispatcher. The dispatcher
provides facilities for receiving and decoding ControlCommands, which simplifies the processing workflow. The dispatcher
itself is well-documented, so we will only give a brief overview here.

4

http://named-data.net/doc/ndn-cxx/current/doxygen/de/d34/classndn_1_1mgmt_1_1Dispatcher.html

1.3 Dispatcher 1 INTRODUCTION

• Any prefixes that are registered, such as “prefix/register”, must be registered before top-level prefixes. All prefix
registrations should go in Nlsr::registerLocalhostPrefix.

• The dispatcher can be used to accept incoming ControlCommands and respond to requests for datasets. Currently
NLSR uses the dispatcher only for accepting incoming ControlCommands.

• Top-level prefixes cannot overlap. For example, you cannot register “/localhost/nlsr” and then “/localhost/nlsr/fib”.
The second registration must be done as a sub-prefix of the first, i.e. the first prefix, and then “fib”.

5

2 HELLO PROTOCOL

Figure 2: Router A determines the initial status of Router B

2 Hello Protocol

The Hello Protocol module periodically sends Hello Interests to learn the activity status of the router’s neighbors. Hello
Interests’ names are constructed in the form: /<neighbor’s-router-prefix>/NLSR/INFO/<this-router’s-prefix>. If a
neighbor responds to a Hello Interest, the neighbor is considered to be up and ACTIVE. A Hello Data’s name is constructed
using the following convention: /<neighbor’s-router-prefix>/NLSR/INFO/<this-router’s-prefix>/<version>. If a
neighbor fails to respond to a configurable number of Hello Interests (hello-retries), the neighbors is considered to be
down and INACTIVE. The Hello Protocol continues to send these periodic Hello Interests to each of its neighbors every
hello-interval seconds. If the Hello Protocol detects a change in a neighbors status (i.e. a router that was previously
ACTIVE is not responding to Hello Interests or a router that was previously INACTIVE responds to a Hello Interest), it will
notify the LSDB (Section 5) to schedule a new Adjacency LSA build to include the updated neighbor information.

2.1 Determining Neighbor’s Status

The Hello Protocol begins by scheduling Hello Interests to be sent to each neighbor of the router after first-hello-interval
seconds. When the scheduled event is triggered, the Hello Protocol iterates through the list of neighbors first checking if
there is already a Face to the neighbor. If there is a Face that has already been created, the Hello Protocol will construct
and send a Hello Interest to the neighbor. If a Face has not been created for the neighbor, the Hello Protocol will attempt to
create a Face to the neighbor and register the neighbor’s router prefix. If the Face is created successfully, the Hello Protocol
registers the Sync prefix, LSA prefix, and Key prefix using the Face ID returned by the Face creation command and sends
out the Hello Interest. If the Face cannot be created, the Hello Protocol considers the failure as a Hello Interest timeout.

If the Hello Protocol receives Data in response to its Hello Interest, it will first ask the Validator module to verify that
the Data is valid. Data is valid if the Data is legitimately signed (in the ordinary cryptographic way) and if the key name
and Data name are of a certain format. If the Data is valid, the corresponding neighbor is set as ACTIVE and its timeout
count is reset to zero. If the neighbor was previously INACTIVE, an Adjacency LSA build is scheduled to include the newly
ACTIVE neighbor. If the Data is not valid, the packet is dropped.

If the Hello Interest sent to the neighbor times out, the corresponding neighbor’s timed-out count is incremented. If the
neighbor’s timed-out count is less than hello-retries in the configuration file, the Hello Protocol will send another Hello
Interest after hello-timeout seconds. If the neighbor’s timed-out count equals the hello-retries value and the neighbor
is currently marked as ACTIVE, the neighbor’s status is set to INACTIVE and an Adjacency LSA build is scheduled.

2.2 Responding to Hello Interests

If the Hello Protocol receives a Hello Interest from another router, it will first verify that the Hello Interest came from one of
its configured neighbors. If so, the Hello Protocol responds to the Interest with Hello Data. To optimize the time to respond
to link recoveries, the Hello Protocol will then immediately send a Hello Interest to the neighbor if the neighbor is currently
marked as INACTIVE.

6

2.3 Failure and Recovery Detection 2 HELLO PROTOCOL

Figure 3: Router A determines that Router B has failed

2.3 Failure and Recovery Detection

The Hello Protocol will consider a neighbor as failed if the neighbor is currently ACTIVE, but Hello Interests sent to the
neighbor have timed-out hello-retries number of times. A failure can also be detected if a FaceEventNotification is
received with the information that a Face to the neighbor has been destroyed. The event is handled by the Nlsr class, but
the triggered events simulate the actions of the Hello Protocol. If the neighbor was currently ACTIVE, the neighbor will be set
to INACTIVE, the neighbor’s timed-out count will be set to hello-retries, and an Adjacency LSA build will be scheduled.

The Hello Protocol will consider a neighbor as recovered if the neighbor is currently INACTIVE, but the Hello Protocol
has received valid Data in response to a Hello Interest sent to the neighbor.

7

3 SYNC LOGIC HANDLER

3 Sync Logic Handler

The Sync Logic Handler acts as the interface between the synchronization protocol and the NLSR application. The Sync
Logic Handler receives notifications from the synchronization protocol when another router updates an LSA, where an update
can be modification of the contents of the LSA, or just incrementing the sequence number to refresh it. The Sync Logic
Handler then determines if the updated LSA should be retrieved. The Sync Logic Handler is also how NLSR notifies the
sync protocol when its own LSAs are updated.

3.1 On Sync Update

When the sync protocol receives an update, the procedure roughly is this:

• For each name in the update:

• Check that the sequence number in the LSA is newer than the one stored in the LSDB.

• If so, tell the LSDB to fetch this new LSA. The LSDB will finish processing.

When the synchronization protocol receives a sync update, which may contain multiple distinct items, the names and
sequence numbers of each item will be passed to SyncLogicHandler::onNsyncUpdate(). Since other syncs in the network
blindly transmit what they think is new, we need to check that it’s new to us, and we use the LSA sequence number to do
that. The higher sequence number of the locally-stored LSA with the same name as in the update and the sequence number
in the update is taken to be the newer one, noting that an absent LSA has a sequence number of 0. If the update is found
to be newer, the Sync Logic Handler will call Lsdb::expressInterest(), which attempts to fetch the LSA represented by
the update. Other LSDB methods will finish processing and installing the new LSA. (Section 5)

3.2 Publish Routing Update

When any of a router’s LSAs are updated or refreshed by the LSDB, the LSDB will use the
SyncLogicHandler::publishRoutingUpdate() method to notify the sync protocol that the sequence number for that LSA
has changed. The Sync Logic Handler will also write the updated sequence number to file, so that a restarting router can
continue publishing routing updates with sequence numbers larger than the sequence numbers it had published before. This
is only an optimization. If a router were to reset its sequence number to 1, other routers would initially reject these LSAs as
not being new. However, the LSAs in their LSDBs would eventually expire, since they are not being refreshed anymore. Once
those LSAs expire, the LSAs that the restarted router is publishing would then be considered new. However, this process
could take quite a while, so we optimize by resuming numbering where we left off.

8

4 LINK-STATE ADVERTISEMENTS

4 Link-State Advertisements

Link-State Advertisements (LSAs) represent pieces of routing information distributed by routers.

4.1 LSA Base Class

All three LSA implementations inherit from an LSA Base class, Lsa, which maintains information that is included in each
LSA. The LSA class contains the following member variables:

• Origin Router - the router that advertised the LSA. Specifically, this is a name prefix that follows the NLSR convention
of router naming.

• Sequence Number - a number used to indicate the LSA’s version. Because sequence numbers are preserved between
NLSR restarts, a higher sequence number also always indicates a newer LSA.

• Expiration Time Point - a time point indicating when the LSA is no longer valid. This currently is represented as
a Unix timestamp (i.e. seconds since Jan 1, 1970).

4.2 Adjacency LSAs

Adjacency LSAs maintain an AdjacencyList which contains information about all the currently ACTIVE neighbors of the
origin router. It also includes the number of active routers, not just the list itself. This aids in serialization.

4.3 Coordinate LSAs

Coordinate LSAs maintain the hyperbolic angle(s) and hyperbolic radius of the origin router.

4.4 Name LSAs

Name LSAs maintain a NamePrefixList which contains the name prefixes that are reachable at the origin router.

9

5 LINK-STATE DATABASE

5 Link-State Database

The Link-State Database (LSDB) holds LSA information distributed by other routers in the network. The LSDB stores all
types of LSAs and will trigger events when a new LSA is added, updated, or expires. The LSDB also handles LSA retrieval,
performs LSA builds, and triggers routing table calculations.

5.1 Retrieving an LSA

The LSDB provides the Lsdb::expressInterest() method as a public interface to retrieve an LSA from the network. If
LSA Data is returned, the LSDB will validate the Data using the Validator module. Then, it will perform the necessary
LSDB modifications. If the LSA Interest times out, the LSDB will retry until it reaches a configurable maximum number of
tries, or a configurable deadline passes.

The LSDB uses the SegmentFetcher system to retrieve LSAs. LSAs very often will exceed the maximum NDN packet
size. In these cases, the LSA needs to be split into segments to be sent, so the LSDB uses the SegmentFetcher to send all
LSAs. The SegmentFetcher can decide if the data actually needs to be split.

5.2 General Procedure

The LSDB is responsible for building, installing, and publishing NLSR’s LSAs, as well as for installing and processing LSAs
from other NSLRs. Generally, the functions of the LSDB are:

• Schedule the building of an LSA.

• Building the LSA.

• Installing the LSA into the LSDB.

5.3 Scheduling LSA Builds

LSAs need to be rebuilt whenever the routing information NLSR has changes. This includes events like neighbors becoming
active, or when a prefix for advertisement is inserted by the Prefix Update Processor, which would cause an adjacency LSA
or a name LSA rebuild, respectively. To improve performance, instead of directly building adjacency LSAs the first request
schedules the build, and build requests that occur after the scheduling but before the actual event are aggregated (in other
words, ignored), because they will be satisfied by the already-scheduled build. Some specifics are shown below. below.

• Adjacency LSAs – will only be scheduled if link-state routing is enabled. In particular, this means Adjacency LSA
builds will not occur if hyperbolic routing is enabled. Note that adjacency LSAs will be built if dry-run hyperbolic
routing is enabled, as the network is still using link-state routing to calculate paths.

5.4 Building LSAs

Building LSAs has a part common to all LSAs and a part specific to each LSA type. For example, all LSA types increment
sequence number and have the same expiration length, and of course come from the same router. Additionally, all LSA
builds cause a sync update publishing. However, each type of LSA includes different data, to represent different kinds of
information that NLSR has. (Section 4) In particular:

• Adjacency LSAs – the number and a list of active neighbors is included.

• Coordinate LSAs – the hyperbolic radius and all hyperbolic angles are included.

• Name LSAs – the list of name prefixes that are accessible at this router is included.

5.5 Installing and Processing LSAs

LSA installation procedure is mostly the same across any type of LSA, but each type also has installation behavior specific
to that type, too. For any LSA type, we need to schedule an expiration event, and we need to update several fields in the
LSA. However, installing an adjacency or coordinate LSA causes a Routing Table calculation, but a name LSA does not, for
example. Additionally, the name of the origin router is added as a “routable prefix” in the NPT. (Section 7).

10

5.6 LSA Expiration 5 LINK-STATE DATABASE

• Adjacency LSAs – each adjacency in the LSA will be added as a “routable prefix” to the NPT. If the adjacencies
have changed since the last version of this LSA, a Routing Table calculation needs to be scheduled, because the state
of the network has changed. Of course, this is necessarily true if the LSA is new to us. Important to note is that we
will also install and process our own adjacency LSA in this way.

• Coordinate LSAs – the router that the LSA is from will be added as a “routable prefix” to the NPT. If the radius
and coordinates have changed since the last version of this LSA, a Routing Table calculation needs to be scheduled,
because the state of the network has changed. As above, this is true for a new LSA. This is only done if the LSA is
from a foreign router.

• Name LSAs – each name prefix in the LSA will be added to our NPT. This is only done if the LSA is from a foreign
router.

5.6 LSA Expiration

LSAs expire so that the network can clean up when a router crashes. The amount of time an LSA lasts is configurable. When
an LSA expires, we refresh it if it’s our LSA, and remove it from the LSDB if not. There is a “grace period” window that is
appended to the end of the expiration period of all LSAs, to provide time for the originating router to refresh the LSA and
for it to propagate back to us. In all expiration cases, the name of the origin router will be removed from the NPT. What
happens when an LSA is removed from the LSDB differs based on the type of LSA:

• Adjacency LSAs – a Routing Table calculation needs to occur, since the state of the network has changed, at least
from our perspective.

• Coordinate LSAs – a Routing Table calculation needs to occur, since the state of the network has changed, at least
from our perspective.

• Name LSAs – the name prefixes in the LSA are removed from the NPT.

5.7 LSA Refreshment

NLSR will only refresh its own LSAs. Additionally, the procedure for refreshing an LSA is the same for all types:

• Increment the LSA sequence number

• Schedule another expiration event. The length of time to wait until refreshing is configurable, but it should probably be
lower than the expiration time that was set when building the LSA initially. This prevents other routers from deleting
our LSAs because the network is slow, for instance. The length of time is set by lsa-refresh-time in the configuration
file.

• Publish an update to sync

Figure 4: The general LSDB logic for each LSA type

11

6 ROUTING TABLE

6 Routing Table

The Routing Table module performs three main tasks: it performs the routing table calculations using a RoutingTableCalculator
(Section 6.1), it stores the calculated routing table entries in a table, and notifies the Name Prefix Table module (Section 7)
when there are changes to the calculated next hops.

6.1 Routing Table Calculators

The RoutingTableCalculator is a base class that provides functionality common to both link-state and hyperbolic routing.
The Routing Table module uses the implementation class specific to the type of routing currently enabled.

6.1.1 Link-State Routing Table Calculator

The LinkStateRoutingTableCalculator class calculates the routing table uses Dijkstra’s algorithm to calculate the shortest
paths in the network. When max-faces-per-prefix is set to one, the LinkStateRoutingTableCalculator can simply run
Dijkstra’s algorithm. When max-faces-per-prefix is greater than one, indicating multi-path calculation, the
LinkStateRoutingTableCalculator will iteratively perform Dijkstra’s using only a single neighbor link as a next hop. The
calculation will be performed using each neighbor in order to learn the path costs for each destination through each next
hop.

6.1.2 Hyperbolic Routing Table Calculator

The HyperbolicRoutingCalculator class calculates the routing table using the Coordinate LSAs received from each router in
the network to determine the cost from each of its neighbors to every other router in the network. The HyperbolicRoutingCalculator
iterates through each of the router’s neighbors calculating the hyperbolic distance from the neighbor to every other router in
the network (excluding itself and the neighbor router). The HyperbolicRoutingCalculator then uses these calculated dis-
tances to add routing table entries to the destination with the neighbor as the next hop. The HyperbolicRoutingCalculator
also adds a routing table entry to reach the neighbor itself; a routing table entry using the neighbor as a next hop to the
neighbor with a cost of zero is added.

6.2 Notifications for Newly Calculated Next Hops

Once the Routing Table Module has finished calculating the routing table, it will update all of the Name Prefix Table’s next
hops. The Name Prefix Table Module will then update the next hops for each name prefix based on the newly calculated
routing table. This process is described in more detail in Section 7.3.

12

7 NAME PREFIX TABLE

7 Name Prefix Table

NLSR

 m_table : NptEntryList
 m_rtpool : RtpEntryMap

NamePrefixTable

 m_nexthopList : NexthopList
 m_rteList : std::list<std::shared_ptr<RoutingTablePoolEntry>>

NamePrefixTableEntry

 m_useCount : uint64_t

RoutingTablePoolEntry
 m_destination : ndn::Name
 m_nexthopList : NexthopList

RoutingTableEntry

 m_rTable : std::list<RoutingTableEntry>

RoutingTable

1

0..*

0..*
0..*

1
0..*

1

0..*

1

1

1

1

Figure 5: A
diagram of the NPT and Routing Table.

The “wire” arrows represent references (i.e. “x has y”), whereas the “solid” arrows represent inheritance (i.e. “y subclasses x”).

The quantification (e.g. 0..*) is standard UML.

The Name Prefix Table (NPT) is used by NLSR to maintain a list of all known name prefixes advertised by other routers,
including router names. The NPT maintains a collection of NPT entries, where each entry represents a name prefix and all
of its associated routing table entries. Additionally, to optimize the storage and association of the routing table entries, the
NPT also maintains a collection of duplicated routing table entries, called routing table pool entries, which have an additional
use count attribute. The NPT entries keep shared pointers to the appropriate routing table pool entries. If a name prefix
is advertised by multiple routers, the name prefix will be represented by only one Name Prefix Table Entry, but will have
multiple routing table pool entries which correspond with each origin router.

If a Name LSA exists with some advertised name prefix, then that prefix must have an entry in the NPT. So, if two
routers advertise the same name prefix, i.e. their name LSAs contain a common name prefix, even if one router withdraws
that common name prefix, the entry must remain in the NPT, because the other router still advertises it.

If any type of LSA for a remote router exists in the LSDB, the remote router’s name prefix must be in the NPT. An NPT
Entry for a router name can only be removed when there are no more LSAs in the LSDB from the origin router. Note, even
if some NPT entry nas no next hops, it will not be removed from the NPT; it may later become possible to route to this
prefix. These prefixes will be removed from the FIB, however.

7.1 Adding an NPT Entry

The NamePrefixTable::addEntry() method is the public interface for name prefixes to be added to the NPT. The name
prefix as well as the router’s prefix which originates the name prefix are passed as parameters to the method.

If the name prefix is new, there will be no NPT entry for it, so one will be created. If the name prefix is not new, the existing
entry will be updated, so the existing entry will also store this new origin router’s prefix, too. If after updating, the NPT
entry has any next hops, which are associated to each of the origin router prefixes, the NPT will update the FIB to include
that prefix and its next hops. The next hop list is sorted and truncated to be only as long as the max-faces-per-prefix

variable. n

7.2 Removing an NPT Entry

The NamePrefixTable::removeEntry() method is the public interface for name prefixes to be removed from the NPT. The
name prefix as well as the router’s prefix which originates the name prefix are passed as parameters to the interface.

This method removes an origin router prefix from some advertised name prefix. After this, there may be other origin
routers that serve this name prefix, so this does not guarantee that the NPT entry will be deleted. If after updating the
entry has any next hops, the NPT will update the FIB to reflect the change. Since the next hop list is sorted by ascending
cost and its length truncated to max-faces-per-prefix, the contents of next hop list will not change if the removed origin
router prefix was not already in the list passed to the FIB.

Note that even if the entry no longer has any next hops, it will be retained. All FIB entries for this prefix will be removed
from the FIB, which will result in unregistrations from NFD, but the NPT entry will be retained. This is because it may
become possible later to route to these origin routers again.

13

7.3 Updating an NPT Entry with New Routing Table Entries 7 NAME PREFIX TABLE

7.3 Updating an NPT Entry with New Routing Table Entries

When the Routing Table module has finished calculating, it will notify the NPT using the NamePrefixTable::updateWithNewRoute()
method. The NPT will then make approximately m× n calls to addEntry, where m is the number of NPT entries and n is
the number of origin routers for each m. That is, n will vary from one NPT entry to the next in most cases.

7.4 Routing Table Entry Pool

The Name Prefix Table has an internal data structure to help de-duplicate Routing Table information. Without this, each
Routing Table entry has to be stored n times, if n is the number of prefixes that origin router advertises. Instead, each time
a Routing Table entry would be fetched, the NPT first checks its internal data structure to see if that Routing Table entry
is being used by another NPT entry. In that case those two NPT entries can share a pointer to that cached copy of the
Routing Table entry.

This internal cache is smart, and will clean up from the cache unused entries when they are removed from the last NPT
entry.

14

8 FIB INTERACTION

8 FIB Interaction

The FIB module interacts with NFD to perform registrations and unregistrations of routes. By registration, what is meant
is the submission of a RIB route to the local NFD, which includes a name prefix, the Face ID of the nexthop, an expiration
time, and the calculated cost from the Routing Table calculation. Additionally, NLSR sets a field to tell NFD that the route
originates from NLSR, and sets a route inheritance flag.

The expiration time for a route is pegged at double the value of the LSA refresh time, which is defined by lsa-refresh-time

in the configuration file. The route inheritance flag is set to capture, which forbids NFD from using a shorter prefix of the
name prefix for forwarding.

More information about NFD’s RIB can be found on the Redmine wiki. An important thing to note is that NFD has a
module called the FIB. Anywhere in this guide, the word “FIB” refers to the NLSR FIB, which models NLSR’s expectation
of how NFD would forward packets.

The FIB is directed by the Name Prefix Table, which registers and unregisters routes based on calculations by the Routing
Table and advertisements from LSAs. The connection between the FIB and the NPT is through the Fib::update() method.

8.1 Updating the FIB

Generally, updating the FIB looks like this:

• Sort the list of next hops for the prefix, by cost.

• Take the cheapest max-faces-per-prefix hops. This can be set to have no limit, so all next hops are registered.

• Send a RIB route registration command for each next hop.

• Send a RIB route unregistration command for any next hops that have dropped out of the list. This includes next
hops that became invalid since the last Routing Table calculation, as well as valid hops that are no longer in the top
max-faces-per-prefix next hops.

If there are more passed next hops than the max-faces-per-prefix, the FIB module will only use the first max-faces-per-prefix
number of next hops from the sorted list. If there are less passed next hops than max-faces-per-prefix, the FIB module
will use all of the next hops. Specifically, when the NPT updates the FIB, the FIB creates entries so that it can compute
the difference between the set of new next hops, and the set of old next hops that were registered at the last update. These
entries are unique on the destination name prefix. The FIB will update an existing entry instead of creating a new one, which
may involve unregistering old next hops, as mentioned above.

15

https://redmine.named-data.net/projects/nfd/wiki/RibMgmt

9 PREFIX UPDATE PROCESSOR

9 Prefix Update Processor

The Prefix Update processor allows manipulation of NLSR’s advertised name prefixes with ordinary ControlCommands.
Such commands may originate from something like nlsrc, the command line tool for manipulating NLSR.

9.1 Advertising and Withdrawing Routes

The processor accepts valid ControlCommands that are signed by the site operator’s key. Additionally, the commands must
be received on the /localhost/nlsr/prefix-update/ prefix. The full condition list is specified in the validator rules in the
configuration file.

The processor will send responses to commands.

9.2 Security

Prefix Update commands are similar to NFD RIB commands, but with one additional requirement, so they are more secure.
In addition to being on the root-only /localhost/ prefix, Prefix Update commands must be signed by the site operator’s key.
If the site operator’s key were compromised, an attacker could create any number of NLSRs that impersonate the legitimate
NLSR running at that site.

16

10 NFD RIB COMMAND PROCESSOR

10 NFD RIB Command Processor

The NFD RIB Command Processor allows modification of NLSR’s advertised name prefixes using NFD’s RibMgmt commands.
Such commands may originate from something like NFD’s Readvertise module, which permits routes inserted in NFD to be
propagated through to NLSR, so that NLSR can provide routing support for them.

10.1 Advertising and Withdrawing Routes

The processor accepts valid RibMgmt commands that have the name prefix to manipulate the origin of the route specified.
No other validation is performed, as stated below.

The processor does not send any kind of response to commands.

10.2 Security

Any RibMgmt commands received on the /localhost/nlsr/rib prefix are considered secure, and are processed. This
introduces a security hole because anyone who can send a RibMgmt command on this prefix can arbitrarily manipulate
NLSR’s advertised prefixes. However, because sending commands to this prefix requires root access, a would-be attacker will
already have root access locally.

17

11 LSDB STATUS DATASET

11 LSDB Status Dataset

NLSR makes available the entire contents of the LSDB upon request. A command can request LSAs of just a specific type, or
request the collection of all LSAs. Unlike the Prefix Update and NFD RIB command processors, the LSDB Status dataset is
available over both the /localhost and regular router prefixes. That is, you can request an arbitrary router’s LSDB contents.

11.1 Requesting the dataset

• To request the local dataset, simply send an Interest of the form /localhost/nlsr/lsdb/<dataset type>.

• To request a remote dataset, send an Interest of the form /<router name>/lsdb/<dataset type>, where <router

name> is whatever the router’s name is. This is usually general.network + general.site + general.router from
the configuration file.

Where <dataset type> is one of names, adjacencies, coordinates or list.

18

12 SECURITY

Figure 6: NLSR Trust Hierarchy

Table 1: Key Names
Key Owner Key Name

Network /<network>/KEY/<key>

Site /<network>/<site>/KEY/<key>

Operator /<network>/<site>/<operator>/KEY/<key>

Router /<network>/<site>/<router>/KEY/<key>

NLSR /<network>/<site>/<router>/NLSR/KEY/<key>

12 Security

The trust model of NLSR is semi-hierarchical. An example certificate signing hierarchy is show in Figure 6. In this hierarchy,
each entity’s name and corresponding certificate name follow the convention described in Table 1.

12.1 Creating Keys and Certificates

The process to create keys and certificates for this hierarchy can be performed using the ndnsec [4] tools included with
ndn-cxx [5]. The steps to create the keys and certificates is outlined below:

1. Create keys for Root:
ndnsec-keygen $ROOT NAME > $ROOT KEY OUTPUT FILE

2. Create certificate for Root:
ndnsec-certgen -N $ROOT NAME -p $ROOT NAME $ROOT KEY OUTPUT FILE > $ROOT CERT OUTPUT FILE

3. For each site, create keys and certificates:

(a) On the Site machine, generate keys for the Site:
ndnsec-keygen $SITE NAME > $SITE KEY OUTPUT FILE

(b) Copy $SITE KEY OUTPUT FILE over to the machine where the Root certificate was created.

(c) Generate a certificate for the Site on the Root machine:
ndnsec-certgen -N $SITE NAME -p $SITE NAME -s $ROOT NAME $SITE KEY OUTPUT FILE > $SITE CERT OUTPUT FILE

(d) Copy $SITE CERT OUTPUT FILE over to the Site machine.

(e) Install the certificate on the Site machine:
ndnsec-cert-install -f $SITE CERT OUTPUT FILE

(f) On the Site machine, create the Operator keys:
ndnsec-keygen $OP NAME > $OP KEY OUTPUT FILE

(g) On the Site machine, create the Operator certificate:
ndnsec-certgen -N $OP NAME -p $OP NAME -s $SITE NAME $OP KEY OUTPUT FILE > $OP CERT OUTPUT FILE

(h) On the Site machine, create the Router keys:
ndnsec-keygen $ROUTER NAME > $ROUTER KEY OUTPUT FILE

(i) On the Site machine, create the Router certificate:
ndnsec-certgen -N $ROUTER NAME -p $ROUTER NAME -s $OP NAME $ROUTER KEY OUTPUT FILE > $ROUTER CERT OUTPUT FILE

4. When NLSR starts, it will automatically create the NLSR keys and certificates for the router.

19

12.2 Certificate Publishing 12 SECURITY

12.2 Certificate Publishing

In a network, every router must have the root certificate configured as a trust anchor for the validator in the configuration
file. If two routers in a network do not share a common trust anchor, then when one seeks to validate the data of the other,
they may be unable to establish trust in their signature. This is, of course, because of how the trust hierarchy is set up: you
trust the person that signed some router’s certificate, because it was signed by the site certificate, and the site certificate was
signed by the region, etc., and the nth certificate was signed by the root certificate, which is your trust anchor, so you “just
trust it”. Moreover, if your trust anchor is before their trust anchor in the “chain”, then they will be able to trust you, but
you will not be able to trust them.

For each site, at least one router should publish the site certificate, and at least one router should publish the certificate
of the site operator. Each router should publish its own certificate. This is a matter of performance; a network would work
if all certificates for all nodes were kept centrally, but distributing the certificates in this way improves performance. All this
information must be explicitly specified in the configuration file.

For example, the following configuration file indicates that NLSR should publish the site certificate and the router
certificate:

...

security

{

validator

{

...

}

cert-to-publish "$SITE_CERT_OUTPUT_FILE" ; name of the site certificate file

cert-to-publish "$SITE_CERT_OUTPUT_FILE" ; name of the router certificate file

...

}

20

13 CONFIGURATION FILE

13 Configuration File

NLSR’s configuration file contains numerous parameters to control the behavior and performance of NLSR. The configuration
file also includes the trust schema used by NLSR to verify LSA Data, Hello Data, and prefix update command Interests.

13.1 Naming Conventions

The NLSR naming convention is mostly arbitrary. For example, a router’s name, maybe %C1.Router/router1, is composed
of two parts. %C1.Router is the router “tag”, and router1 is the name or label of the router. Different entities are given
different tags, depending on the context.

13.2 General Section

The general section in the configuration file includes parameters which deal with the general setup of the router, the behavior
of the LSDB, and logging configuration.

There are three parameters used to configure the router prefix of the router. The router prefix is the name that other
routers in the network know this router by.

• network - the name of the network to which the router belongs; e.g., /ndn.

• site - the name of the site to which the router belongs; e.g., /edu/memphis.

• router - the name to identify the router; e.g., /%C1.Router/cs/pollux.t

The router prefix is constructed by combining the three parameters following the format: /<network>/<site>/<router>.
There are three parameters which affect the behavior of the LSDB.

• lsa-refresh-time - the time in seconds the router will wait before refreshing its LSAs (Default value: 1800; Valid
values: 240 - 7200).

• router-dead-interval - the time in seconds after which an inactive router’s LSAs are removed. The configured
value for this parameter must be greater than lsa-refresh-time. (Default value: two times the value configured in
lsa-refresh-time).

• lsa-interest-lifetime - the interest lifetime used for LSA Interests (Default value: 4; Valid values: 1 - 60).

The log-level parameter configures the verbosity of NLSR’s logging. The possible log-level values are listed in
increasing verbosity. That is, the value all the way to the left includes the values all the way to the right.

NONE < ERROR < WARN < INFO (Default) < DEBUG < TRACE < ALL

Note that a log level also enables all log levels to its left. That is, setting log level to TRACE causes ERROR, WARN, INFO

and DEBUG messages. to also be logged.
The general configuration section also includes parameters to choose where the NLSR log file and the NLSR sequence

number file are stored. The log-dir parameter is an absolute path to the directory where the NLSR log file should be
written, and seq-dir is an absolute path to the directory where the NLSR sequence number should be written. The log
directory must exist and be writable, or else NLSR will fail to start.

13.3 Neighbors Section

The neighbors section in the configuration file contains parameters that define the behavior of the Hello Protocol and the
neighboring routers of the router.

• hello-retries - the number of times to retry a Hello Interest before deciding the neighbor is down (Default value: 3;
Valid values: 1 - 10).

• hello-timeout - the interest lifetime for Hello Interests in seconds (Default value: 1, Valid values: 1 - 15).

• hello-interval - the time in seconds between sending each Hello Interest to a neighbor. (Default value: 60; Valid
values: 30 - 90).

• first-hello-interval - the time to wait in seconds before sending the first Hello Interests (Default value: 10; Valid
values: 0 - 10).

21

13.4 Hyperbolic Section 13 CONFIGURATION FILE

• adj-lsa-build-interval - when the Hello Protocol triggers an Adjacency LSA build, the LSDB will wait this amount
of time in seconds before performing the Adjacency LSA build. This parameter is intended to allow for Adjacency LSA
build requests to be aggregated and the build can then be performed once. (Default value: 5; Valid values: 0 - 5)

The neighbors section also includes multiple neighbor subsections, each of which configures a neighbor of the router.
The neighbor subsection includes:

• name - the router prefix of the neighboring router

• face-uri - the face that should be used to connect to the neighboring router

• link-cost - the cost metric for the link connecting this router to the neighbor router.

13.4 Hyperbolic Section

Hyperbolic Routing is a greedy geometric routing technique available in NLSR. The best resource to understand how it works
is its white paper. [6]

The hyperbolic section in the configuration file is used to enable/disable hyperbolic routing and to specify the hyperbolic
coordinates of the router.

The state parameter indicates whether or not hyperbolic routing should be enabled. There are three possible values for
this parameter: on, off, and dry-run. on enables hyperbolic routing; off disables hyperbolic routing (link-state routing is
used); dry-run uses link-state routing to populate NFD’s FIB, but will also perform the hyperbolic routing calculations and
write them to the log file for debugging purposes.

The radius parameter defines the router’s radius in the hyperbolic coordinate system and angle defines the router’s
angle(s) in the hyperbolic coordinate system. There can be (d-1) angular coordinates in d-dimensional hyperbolic routing.
Currently the testbed uses 2-dimensional hyperbolic routing with one radial and one angular coordinate.

13.5 FIB Section

The fib section in the configuration file contains two parameters: one to limit the number of next hops registered for each
name prefix, and the amount of time to wait before calculating the routing table after a request is made.

max-faces-per-prefix defines the maximum number of next hops that can be registered for a name prefix. This value is
intended to reduce the FIB size for routers with a large number of neighbors. The default value for max-faces-per-prefix
is 0 which indicates that all available next hops may be added to each name prefix. max-faces-per-prefix allows values
between 0 and 60.

routing-calc-interval is the time to wait in seconds after a routing table calculation is requested before actually
performing the routing table calculation. This parameter is intended to limit the number of routing table calculations, which
may be performance intensive on some systems. The default value for routing-calc-interval is 15 seconds and can be
configured to be in the range of 0 to 15 seconds.

13.6 Advertising Section

The advertising section includes a list of name prefixes that the router should advertise as reachable through itself. Each
name prefix that should be advertised should be in the following format: prefix /name/to/advertise. This section allows
for static configuration of the advertised prefixes, but prefixes can be dynamically advertised and withdrawn using the Prefix
Update Processor.

13.7 Security Section

The security section of the configuration file includes the configuration for NLSR’s validators and the locations of certificates
that should be published by the router.

The validator subsection includes the configuration for the validator used by NLSR to verify the signatures of Hello
Data and LSA Data.

The prefix-update-validator configures the validator used by the Prefix Update Processor to verify that prefix update
command Interests are signed by the operator of the router.

The security section also allows configuration of which certificates should be published by the router using the cert-to-publish
keyword. If the router should publish a certificate, the absolute path for the certificate file can be configured as cert-to-publish
value.

22

REFERENCES REFERENCES

References

[1] Z. Zhu and A. Afanasyev, “Let’s ChronoSync: Decentralized dataset state synchronization in Named Data Networking,”
in Proceedings of IEEE ICNP, 2013.

[2] NDN Project Team, “NFD - NDN forwarding daemon,” http://named-data.net/doc/nfd/.

[3] V. Lehman, A. M. Hoque, Y. Yu, L. Wang, B. Zhang, and L. Zhang, “A secure link state routing protocol for NDN.”

[4] NDN Project Team, “ndnsec,” https://github.com/named-data/ndn-cxx/tree/master/tools/ndnsec.

[5] ——, “ndn-cxx,” http://named-data.net/doc/ndn-cxx/.

[6] V. Lehman, A. Gawande, R. Aldecoa, D. Krioukov, L. Wang, B. Zhang, and L. Zhang, “An Experimental Investigation
of Hyperbolic Routing with a Smart Forwarding Plane in NDN,” https://named-data.net/wp-content/uploads/2016/07/
ndn-0042-1-asf.pdf, 2016.

23

http://named-data.net/doc/nfd/
https://github.com/named-data/ndn-cxx/tree/master/tools/ndnsec
http://named-data.net/doc/ndn-cxx/
https://named-data.net/wp-content/uploads/2016/07/ndn-0042-1-asf.pdf
https://named-data.net/wp-content/uploads/2016/07/ndn-0042-1-asf.pdf

	Introduction
	NLSR Modules and Data Structures
	Protocol Overview
	Discovering Neighbors
	Disseminating Routing Information
	Calculating the Routing Table and Populating NFD's FIB

	Dispatcher

	Hello Protocol
	Determining Neighbor's Status
	Responding to Hello Interests
	Failure and Recovery Detection

	Sync Logic Handler
	On Sync Update
	Publish Routing Update

	Link-State Advertisements
	LSA Base Class
	Adjacency LSAs
	Coordinate LSAs
	Name LSAs

	Link-State Database
	Retrieving an LSA
	General Procedure
	Scheduling LSA Builds
	Building LSAs
	Installing and Processing LSAs
	LSA Expiration
	LSA Refreshment

	Routing Table
	Routing Table Calculators
	Link-State Routing Table Calculator
	Hyperbolic Routing Table Calculator

	Notifications for Newly Calculated Next Hops

	Name Prefix Table
	Adding an NPT Entry
	Removing an NPT Entry
	Updating an NPT Entry with New Routing Table Entries
	Routing Table Entry Pool

	FIB Interaction
	Updating the FIB

	Prefix Update Processor
	Advertising and Withdrawing Routes
	Security

	NFD RIB Command Processor
	Advertising and Withdrawing Routes
	Security

	LSDB Status Dataset
	Requesting the dataset

	Security
	Creating Keys and Certificates
	Certificate Publishing

	Configuration File
	Naming Conventions
	General Section
	Neighbors Section
	Hyperbolic Section
	FIB Section
	Advertising Section
	Security Section

	References

