blob: f387add1a031dd354b4993630aaf22e41a97ee0e [file] [log] [blame]
/* -*- Mode:C++; c-file-style:"gnu"; indent-tabs-mode:nil; -*- */
/*
* Copyright (c) 2014-2020, Regents of the University of California,
* Arizona Board of Regents,
* Colorado State University,
* University Pierre & Marie Curie, Sorbonne University,
* Washington University in St. Louis,
* Beijing Institute of Technology,
* The University of Memphis.
*
* This file is part of NFD (Named Data Networking Forwarding Daemon).
* See AUTHORS.md for complete list of NFD authors and contributors.
*
* NFD is free software: you can redistribute it and/or modify it under the terms
* of the GNU General Public License as published by the Free Software Foundation,
* either version 3 of the License, or (at your option) any later version.
*
* NFD is distributed in the hope that it will be useful, but WITHOUT ANY WARRANTY;
* without even the implied warranty of MERCHANTABILITY or FITNESS FOR A PARTICULAR
* PURPOSE. See the GNU General Public License for more details.
*
* You should have received a copy of the GNU General Public License along with
* NFD, e.g., in COPYING.md file. If not, see <http://www.gnu.org/licenses/>.
*/
#include "lp-reliability.hpp"
#include "generic-link-service.hpp"
#include "transport.hpp"
#include "common/global.hpp"
namespace nfd {
namespace face {
NFD_LOG_INIT(LpReliability);
LpReliability::LpReliability(const LpReliability::Options& options, GenericLinkService* linkService)
: m_options(options)
, m_linkService(linkService)
, m_firstUnackedFrag(m_unackedFrags.begin())
, m_lastTxSeqNo(-1) // set to "-1" to start TxSequence numbers at 0
{
BOOST_ASSERT(m_linkService != nullptr);
BOOST_ASSERT(m_options.idleAckTimerPeriod > 0_ns);
}
void
LpReliability::setOptions(const Options& options)
{
BOOST_ASSERT(options.idleAckTimerPeriod > 0_ns);
if (m_options.isEnabled && !options.isEnabled) {
m_idleAckTimer.cancel();
}
m_options = options;
}
const GenericLinkService*
LpReliability::getLinkService() const
{
return m_linkService;
}
void
LpReliability::handleOutgoing(std::vector<lp::Packet>& frags, lp::Packet&& pkt, bool isInterest)
{
BOOST_ASSERT(m_options.isEnabled);
auto unackedFragsIt = m_unackedFrags.begin();
auto sendTime = time::steady_clock::now();
auto netPkt = make_shared<NetPkt>(std::move(pkt), isInterest);
netPkt->unackedFrags.reserve(frags.size());
for (lp::Packet& frag : frags) {
// Non-IDLE packets are required to have assigned Sequence numbers with LpReliability enabled
BOOST_ASSERT(frag.has<lp::SequenceField>());
// Assign TxSequence number
lp::Sequence txSeq = assignTxSequence(frag);
// Store LpPacket for future retransmissions
unackedFragsIt = m_unackedFrags.emplace_hint(unackedFragsIt,
std::piecewise_construct,
std::forward_as_tuple(txSeq),
std::forward_as_tuple(frag));
unackedFragsIt->second.sendTime = sendTime;
auto rto = m_rttEst.getEstimatedRto();
lp::Sequence seq = frag.get<lp::SequenceField>();
NFD_LOG_FACE_TRACE("transmitting seq=" << seq << ", txseq=" << txSeq << ", rto=" <<
time::duration_cast<time::milliseconds>(rto).count() << "ms");
unackedFragsIt->second.rtoTimer = getScheduler().schedule(rto, [=] {
onLpPacketLost(txSeq, true);
});
unackedFragsIt->second.netPkt = netPkt;
if (m_unackedFrags.size() == 1) {
m_firstUnackedFrag = m_unackedFrags.begin();
}
// Add to associated NetPkt
netPkt->unackedFrags.push_back(unackedFragsIt);
}
}
bool
LpReliability::processIncomingPacket(const lp::Packet& pkt)
{
BOOST_ASSERT(m_options.isEnabled);
bool isDuplicate = false;
auto now = time::steady_clock::now();
// Extract and parse Acks
for (lp::Sequence ackTxSeq : pkt.list<lp::AckField>()) {
auto fragIt = m_unackedFrags.find(ackTxSeq);
if (fragIt == m_unackedFrags.end()) {
// Ignore an Ack for an unknown TxSequence number
NFD_LOG_FACE_DEBUG("received ack for unknown txseq=" << ackTxSeq);
continue;
}
auto& frag = fragIt->second;
// Cancel the RTO timer for the acknowledged fragment
frag.rtoTimer.cancel();
if (frag.retxCount == 0) {
NFD_LOG_FACE_TRACE("received ack for seq=" << frag.pkt.get<lp::SequenceField>() << ", txseq=" <<
ackTxSeq << ", retx=0, rtt=" <<
time::duration_cast<time::milliseconds>(now - frag.sendTime).count() << "ms");
// This sequence had no retransmissions, so use it to estimate the RTO
m_rttEst.addMeasurement(now - frag.sendTime);
}
else {
NFD_LOG_FACE_TRACE("received ack for seq=" << frag.pkt.get<lp::SequenceField>() << ", txseq=" <<
ackTxSeq << ", retx=" << frag.retxCount);
}
// Look for frags with TxSequence numbers < ackTxSeq (allowing for wraparound) and consider
// them lost if a configurable number of Acks containing greater TxSequence numbers have been
// received.
auto lostLpPackets = findLostLpPackets(fragIt);
// Remove the fragment from the map of unacknowledged fragments and from its associated network
// packet. Potentially increment the start of the window.
onLpPacketAcknowledged(fragIt);
// This set contains TxSequences that have been removed by onLpPacketLost below because they
// were part of a network packet that was removed due to a fragment exceeding retx, as well as
// any other TxSequences removed by onLpPacketLost. This prevents onLpPacketLost from being
// called later for an invalid iterator.
std::set<lp::Sequence> removedLpPackets;
// Resend or fail fragments considered lost. Potentially increment the start of the window.
for (lp::Sequence txSeq : lostLpPackets) {
if (removedLpPackets.find(txSeq) == removedLpPackets.end()) {
auto removedTxSeqs = onLpPacketLost(txSeq, false);
for (auto removedTxSeq : removedTxSeqs) {
removedLpPackets.insert(removedTxSeq);
}
}
}
}
// If packet has Fragment and TxSequence fields, extract TxSequence and add to AckQueue
if (pkt.has<lp::FragmentField>() && pkt.has<lp::TxSequenceField>()) {
NFD_LOG_FACE_TRACE("queueing ack for remote txseq=" << pkt.get<lp::TxSequenceField>());
m_ackQueue.push(pkt.get<lp::TxSequenceField>());
// Check for received frames with duplicate Sequences
if (pkt.has<lp::SequenceField>()) {
lp::Sequence pktSequence = pkt.get<lp::SequenceField>();
isDuplicate = m_recentRecvSeqs.count(pktSequence) > 0;
// Check for recent received Sequences to remove
auto now = time::steady_clock::now();
auto rto = m_rttEst.getEstimatedRto();
while (m_recentRecvSeqsQueue.size() > 0 &&
now > m_recentRecvSeqs[m_recentRecvSeqsQueue.front()] + rto) {
m_recentRecvSeqs.erase(m_recentRecvSeqsQueue.front());
m_recentRecvSeqsQueue.pop();
}
m_recentRecvSeqs.emplace(pktSequence, now);
m_recentRecvSeqsQueue.push(pktSequence);
}
startIdleAckTimer();
}
return !isDuplicate;
}
void
LpReliability::piggyback(lp::Packet& pkt, ssize_t mtu)
{
BOOST_ASSERT(m_options.isEnabled);
BOOST_ASSERT(pkt.wireEncode().type() == lp::tlv::LpPacket);
// up to 2 extra octets reserved for potential TLV-LENGTH size increases
ssize_t pktSize = pkt.wireEncode().size();
ssize_t reservedSpace = tlv::sizeOfVarNumber(ndn::MAX_NDN_PACKET_SIZE) -
tlv::sizeOfVarNumber(pktSize);
ssize_t remainingSpace = (mtu == MTU_UNLIMITED ? ndn::MAX_NDN_PACKET_SIZE : mtu) - reservedSpace;
remainingSpace -= pktSize;
while (!m_ackQueue.empty()) {
lp::Sequence ackTxSeq = m_ackQueue.front();
// Ack size = Ack TLV-TYPE (3 octets) + TLV-LENGTH (1 octet) + lp::Sequence (8 octets)
const ssize_t ackSize = tlv::sizeOfVarNumber(lp::tlv::Ack) +
tlv::sizeOfVarNumber(sizeof(lp::Sequence)) +
sizeof(lp::Sequence);
if (ackSize > remainingSpace) {
break;
}
NFD_LOG_FACE_TRACE("piggybacking ack for remote txseq=" << ackTxSeq);
pkt.add<lp::AckField>(ackTxSeq);
m_ackQueue.pop();
remainingSpace -= ackSize;
}
}
lp::Sequence
LpReliability::assignTxSequence(lp::Packet& frag)
{
lp::Sequence txSeq = ++m_lastTxSeqNo;
frag.set<lp::TxSequenceField>(txSeq);
if (m_unackedFrags.size() > 0 && m_lastTxSeqNo == m_firstUnackedFrag->first) {
NDN_THROW(std::length_error("TxSequence range exceeded"));
}
return m_lastTxSeqNo;
}
void
LpReliability::startIdleAckTimer()
{
if (m_idleAckTimer) {
// timer is already running, do nothing
return;
}
m_idleAckTimer = getScheduler().schedule(m_options.idleAckTimerPeriod, [this] {
while (!m_ackQueue.empty()) {
m_linkService->requestIdlePacket();
}
});
}
std::vector<lp::Sequence>
LpReliability::findLostLpPackets(LpReliability::UnackedFrags::iterator ackIt)
{
std::vector<lp::Sequence> lostLpPackets;
for (auto it = m_firstUnackedFrag; ; ++it) {
if (it == m_unackedFrags.end()) {
it = m_unackedFrags.begin();
}
if (it->first == ackIt->first) {
break;
}
auto& unackedFrag = it->second;
unackedFrag.nGreaterSeqAcks++;
NFD_LOG_FACE_TRACE("received ack=" << ackIt->first << " before=" << it->first <<
", before count=" << unackedFrag.nGreaterSeqAcks);
if (unackedFrag.nGreaterSeqAcks >= m_options.seqNumLossThreshold) {
lostLpPackets.push_back(it->first);
}
}
return lostLpPackets;
}
std::vector<lp::Sequence>
LpReliability::onLpPacketLost(lp::Sequence txSeq, bool isTimeout)
{
BOOST_ASSERT(m_unackedFrags.count(txSeq) > 0);
auto txSeqIt = m_unackedFrags.find(txSeq);
auto& txFrag = txSeqIt->second;
txFrag.rtoTimer.cancel();
auto netPkt = txFrag.netPkt;
std::vector<lp::Sequence> removedThisTxSeq;
lp::Sequence seq = txFrag.pkt.get<lp::SequenceField>();
if (isTimeout) {
NFD_LOG_FACE_TRACE("rto timer expired for seq=" << seq << ", txseq=" << txSeq);
}
else { // lost due to out-of-order TxSeqs
NFD_LOG_FACE_TRACE("seq=" << seq << ", txseq=" << txSeq <<
" considered lost from acks for more recent txseqs");
}
// Check if maximum number of retransmissions exceeded
if (txFrag.retxCount >= m_options.maxRetx) {
NFD_LOG_FACE_DEBUG("seq=" << seq << " exceeded allowed retransmissions: DROP");
// Delete all LpPackets of NetPkt from m_unackedFrags (except this one)
for (size_t i = 0; i < netPkt->unackedFrags.size(); i++) {
if (netPkt->unackedFrags[i] != txSeqIt) {
removedThisTxSeq.push_back(netPkt->unackedFrags[i]->first);
deleteUnackedFrag(netPkt->unackedFrags[i]);
}
}
++m_linkService->nRetxExhausted;
// Notify strategy of dropped Interest (if any)
if (netPkt->isInterest) {
BOOST_ASSERT(netPkt->pkt.has<lp::FragmentField>());
ndn::Buffer::const_iterator fragBegin, fragEnd;
std::tie(fragBegin, fragEnd) = netPkt->pkt.get<lp::FragmentField>();
Block frag(&*fragBegin, std::distance(fragBegin, fragEnd));
onDroppedInterest(Interest(frag));
}
// Delete this LpPacket from m_unackedFrags
removedThisTxSeq.push_back(txSeqIt->first);
deleteUnackedFrag(txSeqIt);
}
else {
// Assign new TxSequence
lp::Sequence newTxSeq = assignTxSequence(txFrag.pkt);
netPkt->didRetx = true;
// Move fragment to new TxSequence mapping
auto newTxFragIt = m_unackedFrags.emplace_hint(
m_firstUnackedFrag != m_unackedFrags.end() && m_firstUnackedFrag->first > newTxSeq
? m_firstUnackedFrag
: m_unackedFrags.end(),
std::piecewise_construct,
std::forward_as_tuple(newTxSeq),
std::forward_as_tuple(txFrag.pkt));
auto& newTxFrag = newTxFragIt->second;
newTxFrag.retxCount = txFrag.retxCount + 1;
newTxFrag.netPkt = netPkt;
// Update associated NetPkt
auto fragInNetPkt = std::find(netPkt->unackedFrags.begin(), netPkt->unackedFrags.end(), txSeqIt);
BOOST_ASSERT(fragInNetPkt != netPkt->unackedFrags.end());
*fragInNetPkt = newTxFragIt;
removedThisTxSeq.push_back(txSeqIt->first);
deleteUnackedFrag(txSeqIt);
// Retransmit fragment
m_linkService->sendLpPacket(lp::Packet(newTxFrag.pkt));
auto rto = m_rttEst.getEstimatedRto();
NFD_LOG_FACE_TRACE("retransmitting seq=" << seq << ", txseq=" << newTxSeq << ", retx=" <<
txFrag.retxCount << ", rto=" <<
time::duration_cast<time::milliseconds>(rto).count() << "ms");
// Start RTO timer for this sequence
newTxFrag.rtoTimer = getScheduler().schedule(rto, [=] {
onLpPacketLost(newTxSeq, true);
});
}
return removedThisTxSeq;
}
void
LpReliability::onLpPacketAcknowledged(UnackedFrags::iterator fragIt)
{
auto netPkt = fragIt->second.netPkt;
// Remove from NetPkt unacked fragment list
auto fragInNetPkt = std::find(netPkt->unackedFrags.begin(), netPkt->unackedFrags.end(), fragIt);
BOOST_ASSERT(fragInNetPkt != netPkt->unackedFrags.end());
*fragInNetPkt = netPkt->unackedFrags.back();
netPkt->unackedFrags.pop_back();
// Check if network-layer packet completely received. If so, increment counters
if (netPkt->unackedFrags.empty()) {
if (netPkt->didRetx) {
++m_linkService->nRetransmitted;
}
else {
++m_linkService->nAcknowledged;
}
}
deleteUnackedFrag(fragIt);
}
void
LpReliability::deleteUnackedFrag(UnackedFrags::iterator fragIt)
{
lp::Sequence firstUnackedTxSeq = m_firstUnackedFrag->first;
lp::Sequence currentTxSeq = fragIt->first;
auto nextFragIt = m_unackedFrags.erase(fragIt);
if (!m_unackedFrags.empty() && firstUnackedTxSeq == currentTxSeq) {
// If "first" fragment in send window (allowing for wraparound), increment window begin
if (nextFragIt == m_unackedFrags.end()) {
m_firstUnackedFrag = m_unackedFrags.begin();
}
else {
m_firstUnackedFrag = nextFragIt;
}
}
else if (m_unackedFrags.empty()) {
m_firstUnackedFrag = m_unackedFrags.end();
}
}
LpReliability::UnackedFrag::UnackedFrag(lp::Packet pkt)
: pkt(std::move(pkt))
, sendTime(time::steady_clock::now())
, retxCount(0)
, nGreaterSeqAcks(0)
{
}
LpReliability::NetPkt::NetPkt(lp::Packet&& pkt, bool isInterest)
: pkt(std::move(pkt))
, isInterest(isInterest)
, didRetx(false)
{
}
std::ostream&
operator<<(std::ostream& os, const FaceLogHelper<LpReliability>& flh)
{
if (flh.obj.getLinkService() == nullptr) {
os << "[id=0,local=unknown,remote=unknown] ";
}
else {
os << FaceLogHelper<LinkService>(*flh.obj.getLinkService());
}
return os;
}
} // namespace face
} // namespace nfd